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Effect of self-propulsion on equilibrium clustering
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In equilibrium, colloidal suspensions governed by short-range attractive and long-range repulsive interactions
form thermodynamically stable clusters. Using Brownian dynamics computer simulations, we investigate how
this equilibrium clustering is affected when such particles are self-propelled. We find that the clustering process
is stable under self-propulsion. For the range of interaction parameters studied and at low particle density, the
cluster size increases with the speed of self-propulsion (activity) and for higher activity the cluster size decreases,
showing a nonmonotonic variation of cluster size with activity. This clustering behavior is distinct from the
pure kinetic (or motility-induced) clustering of self-propelling particles which is observed at significantly higher
activities and densities. We present an equilibrium model incorporating the effect of activity as activity-induced
attraction and repulsion by imposing that the strength of these interactions depend on activity superlinearly.
The model explains the cluster size dependence of activity obtained from simulations semiquantitatively. Our
predictions are verifiable in experiments on interacting synthetic colloidal microswimmers.
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I. INTRODUCTION

Concentrated colloidal or protein solutions which are
governed by a combination of short-range attractive and long-
range repulsive interaction potentials exhibit a stable clustering
phenomenon in equilibrium at finite temperature and moderate
densities. This phenomenon is first predicted by theory [1] and
simulation [2–5] and has been confirmed in experiments [6,7].
The intuitive explanation [1] for equilibrium clustering lies in
the fact that the short-ranged attraction first leads to growth
of clusters in an initially dilute suspension of particles. The
growth stops, however, when the cluster size reaches a char-
acteristic size where the long-ranged repulsion leads to an in-
crease in the self-energy of the cluster. In equilibrium, at finite
temperature, this leads to a typical average cluster size which
depends on the interaction parameters and the imposed global
particle density. While the details of this equilibrium cluster
process have been understood for a decade now, recent devel-
opments have considered self-propelled (or active) particles
which dissipate energy, leading to synthetic microswimmers
[8,9]. These particles also exhibit a purely kinetic clustering
if the strength of self-propulsion is sufficiently large [9,10],
which has recently been found in experiments [11–13] and
explored by simulation [12,14–22] and theory [17,20,23–28].
This purely motility-induced clustering occurs for repulsive
systems and is therefore absent in equilibrium (i.e., for
vanishing drive). The study of Redner et al. [29] showed
reentrant phase behavior in active Lennard-Jones particles,
where attractive interaction and activity compete to stabilize
phase-separated states at low and high activities, respectively.

Here we link the fields of equilibrium clustering to that of
microswimmers. We consider the equilibrium clustering and
study how this is affected by an imposed self-propulsion. The
motivation to do so is threefold. First of all, this is an interesting
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problem in itself, since upon increasing the self-propulsion,
there are two counterbalancing effects: on the one hand,
the self-propulsion leads to a higher mobility and hence an
effect which is expected to correspond to an increase of
temperature. On the other hand, however, the self-propulsion
yields a larger sticking probability of neighboring particles
which would favor and enhance the clustering tendency.
The second motivation comes from the fact that one needs
to understand whether there is a hidden pathway between
the two different kinds of clustering mentioned above, i.e.,
to check whether they are distinct or interconnected in a
certain parameter space. Finally, artificial colloidal model
microswimmers can be prepared with controlled interactions,
e.g., by adding depletants [30], tuned van der Waals attractions,
or charging the particles such that model colloidal swimmers
can be prepared, in principle, with short-ranged attraction
and long-ranged repulsion. The additional tunability of the
interparticle potential then allows one to control the degree of
clustering, which requires a systematic understanding.

In this paper we simulate a two-dimensional model of mi-
croswimmers with competing interactions by using Brownian
dynamics computer simulations. We use a model proposed
by Sear et al. [31] and Imperio and Reatto [3], for which
the equilibrium clustering behavior is well understood in
two dimensions, but supplement this here for an additional
self-propulsion in the simplest form by neglecting explicit
alignment and hydrodynamic interactions [32]. As a result,
we find, indeed, that the trends of clustering depend on the
interaction parameters. The self-propulsion can either increase
or decrease the cluster size. In fact, there is a complex and
maybe unanticipated nonmonotonic behavior of the cluster
size as a function of increasing self-propulsion: it can first
increase and then decrease again. This cannot be understood
by simple temperature rescaling, as has been previously noted
for active systems in the context of freezing [32] as well as
in a trapping [33] and in a gravitational field [11]. Dynamic
(or purely motility-induced) clustering also occurs in our
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ETHAYARAJA MANI AND HARTMUT LÖWEN PHYSICAL REVIEW E 92, 032301 (2015)

model, although at much larger drives, where the details of the
interactions become irrelevant. In this case, the cluster sizes
are rather small compared to those of equilibrium clusters.
Thus the two clustering phenomena appear quite distinct.

II. MODEL AND SIMULATION

We model short-range attractive and long-range repulsive
interactions using a modified Lennard-Jones potential u1(r)
and a double-exponential potential u2(r) that was introduced
previously to explain the formation of finite-sized clusters and
stripes of nanoparticles at the air-water interface [31]. The
overall potential is given as

u(r) = u1(r) + u2(r). (1)

Here u1(r) is defined as

u1(r) = 4εLJ

[(
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r

)100

−
(
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r

)50]
(2)

and u2(r) is given by

u2(r) = −εaσ
2
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Here r is the interparticle distance, and σ is the diameter of
the particle. εLJ and σLJ are the parameters of the modified
Lennard-Jones potential. We fix the potential parameters to
σLJ = σ , Ra = σ , Rr = 2σ , and εa = εr . In the following,
we use dimensionless quantities and express energy in units
of kBT , length in units of σ , and time in units of τ = σ 2/D.
Here, kB is the Boltzmann constant, T is temperature, and
D is the diffusion coefficient of a single passive particle. We
further fix εLJ = 0.002 5kBT . Figure 1 shows the variation of
potential with interparticle distance for εa = 25kBT . Note that
the repulsive part of the double-exponential potential is rather
long ranged.

Brownian dynamics simulations in two dimensions in the
xy plane are performed with particles interacting via the
potential given in Eq. (1). We simulate N = 1050 particles
using a square box with periodic boundary conditions. To
mimic self-propulsion, the particles are defined with an

FIG. 1. (Color online) Overall interaction potential u(r) showing
competing attractive and repulsive interactions for εa = 25kBT from
Eq. (1). The inset shows the potential near contact.

orientation ei diffusing freely about the perpendicular z
axis with rotational diffusivity Dr . In two dimensions, the
components of ei are given as ei = (cos ϕi, sin ϕi). In addition
to translational Brownian motion, the particles are driven with
constant speed v along their orientation ei . Here there are
no aligning interactions, as the pair potential is independent
of orientations. Moreover, hydrodynamics interactions are
neglected. The resulting equations of motion for the particle
positions {ri} and orientations {ei} are then given by

ṙi = D

kBT
(−∇ri

U ) + eiv + ξ i , (4)

ϕ̇i = ξ r
i . (5)

Here, U = ∑
i<j u(|ri − rj |) is the total pair potential. The

self-propulsion speed of the particle is referred to in terms of
the dimensionless Péclet number Pe defined as

Pe = σv

D
. (6)

The Gaussian noise ξ i models the stochastic solvent kicks. It
has a zero mean and variance 〈ξ i(t)ξT

j (t ′)〉 = 2δijD1δ(t − t ′),
where 1 is the identity matrix. Similarly, the stochastic random
torque ξ r

i has a zero mean and a variance of 〈ξ r
i (t)ξ r

j (t ′)〉 =
2Drδij δ(t − t ′). The rotational diffusivity is taken as Dr =
3D/σ 2, which is a valid approximation for a spherical particle
undergoing free rotational diffusion. The equations of motion,
Eqs. (4) and (5), are numerically integrated with a time step
of 10−5τ . The long-range potential Eq. (1) is truncated at
r = 15σ . Simulations were done for various reduced areal
densities (typically of 0.13σ−2 unless stated otherwise) and for
different values of εa . The simulations are performed starting
from a random initial configuration of particles. Typically the
system is simulated for 500τ (i.e., 5 × 107 steps) to attain a
steady state, followed by production runs of another 500τ .
The simulations are replicated five times with different initial
random configurations and the properties are time-averaged
over all the replicas. Careful tests were performed to check that
the system achieved a steady state by monitoring the saturation
of the cluster size as a function of time and by making sure
that there is enough exchange dynamics between the clusters.

To define a cluster we use a cutoff distance of 1.5σ , which
corresponds to the interparticle distance where the potential is
roughly half of the potential at contact. Two particles belong
to the same cluster if they are connected by a sequence of
other particles which are all separated by less than 1.5σ . The
average cluster size is calculated from

〈n〉 =
N∑

n=1

nP (n). (7)

Here, P (n) is the probability to find a cluster of n number of
particles at steady state. We also monitor the fluctuations in
the cluster size by calculating the reduced variance

Var(n) = 〈n2〉 − 〈n〉2

〈n〉2
. (8)

III. CLUSTERING OF ACTIVE PARTICLES

Passive particles with short-ranged attractive and long-
ranged repulsive interactions defined in Eq. (1) show
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FIG. 2. Effect of activity on the average cluster size 〈n〉 for various
values of εa . The lines serve as a guide to the eye.

equilibrium clustering at certain densities. In particular, equi-
librium clustering occurs for a density of about 0.13 and for
attraction energies εa in the range of 12kBT to 25kBT [3].
These clusters are quasicircular in shape. The effect of activity
on clustering is shown in Fig. 2, where the average cluster size
〈n〉 is shown versus the Péclet number Pe. For the cases of
vanishing activity, the average cluster size is about 〈n〉 ≈ 14
independent of εa .

Strikingly, the dependence of the average cluster size on
activity is nonmonotonic. The cluster size first increases with
increasing activity and attains a maximum before it finally
decreases at higher activity. This trend is seen for all the εa

values studied here. The critical activity corresponding to the
maximum of cluster size increases with increasing εa . This
behavior points to the possibility that the activity manifests
itself as an effective attraction which increases the cluster
size until the activity gets so high that particles are eventually
removed from the cluster, overcoming attractive interactions

FIG. 4. Effect of activity on the reduced variance of cluster size
for various εa values. The lines serve as a guide to the eye.

between the particles in the cluster. It is interesting that we find
a maximum in the cluster size at intermediate Pe, while Redner
et al. [29] find a suppression of phase separation at intermediate
Pe. Therefore our findings are qualitatively different from
those of Redner et al. [29] due to the combination of attraction
and repulsion.

Representative snapshots showing clusters for Pe = 0 and
Pe = 6 (at fixed εa = 25kBT ) are shown in Figs. 3(a) and 3(b),
respectively. The clusters exhibit an inner crystalline structure
as found in previous simulations for dynamical clustering [12].
Moreover, there is a large spread in cluster sizes. This is also
documented by the normalized size distribution function P (n),
which is shown in the insets of Figs. 3(a) and 3(b). An increased
activity leads to a much larger distribution in the cluster size
at steady state. This is documented by the reduced variance of
the cluster size distribution, which steeply increases with Pe
as shown in Fig. 4 until it reaches a maximum and decreases
as it is correlated with the average cluster size.

FIG. 3. (Color online) Representative snapshots of clusters for Pe = 0 (a) and Pe = 6 (b) for εa = 25kBT . The insets show the cluster size
distribution P (n) in the steady state. The scale bars correspond to 10σ .
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ETHAYARAJA MANI AND HARTMUT LÖWEN PHYSICAL REVIEW E 92, 032301 (2015)

IV. EFFECTIVE EQUILIBRIUM MODEL

We now present a phenomenological model to explain the
clustering behavior observed in active particles by balancing
interparticle interactions with activity. First we consider
passive particles with short-ranged attractive and long-ranged
repulsive interactions and include the effect of activity in
the model later. Consider monomeric disks of diameter σ

assembled as circular clusters of uniform diameter d with n

number of monomers. The disks interact with themselves via
a short-range attraction and long-range repulsion. Following
the approach of Groenewold and Kegel [1], the free energy of
such a cluster of passive particles can be written as

f (n) = gn2Erσ

d
− nEa + πdλ, (9)

where g is a geometric parameter related to circular shape,
and Er and Ea are typical repulsive and attractive energies of
a particle inside the cluster. The first term accounts for total
repulsive energy and is of order n2 due to the long-range nature
of repulsion; the second term accounts for attractive energy
assuming the attraction to be short ranged and therefore scales
linear in n. The last term is energy due to line tension λ of the
cluster boundary. Also note that n and d are related via

n = πd2

4a
, (10)

where a is the cross-sectional area of the monomer (a =
πσ 2/4). Combining Eqs. (9) and (10) we get

f (n)

n
=

√
π

a
gEr

√
n − Ea + 2λ

√
πa

1√
n
. (11)

Minimizing Eq. (11) with respect to n yields an equilibrium
cluster size n∗:

n∗ = 2aλ

gEr

. (12)

Approximating the line tension as λ ≈ Ea/σ , the equilibrium
cluster size is given as

n∗ = πσEa

2gEr

. (13)

Equation (13) gives the effect of interaction parameters
on the equilibrium cluster size of passive particles with
short-ranged attractive and long-ranged repulsive interactions.
We use Eq. (13) as a starting point to analyze active particles,
wherein each particle propels with a speed of v and rotates
freely in two dimensions in addition to their short-ranged
attractive and long-ranged repulsive interparticle interactions.
The critical issue is to know how to incorporate the effect of
activity in terms of effective attractive and repulsive interac-
tions in Eq. (13). Consistent with previous work [11,30,34],
we propose that the role of activity in affecting interparticle
interactions has the following features:

(1) Both effective attraction and repulsion increase
with Pe.

(2) For small Pe, the increase of an activity-induced
effective attraction is more pronounced than the activity-
induced effective repulsion.

TABLE I. Fit parameters used in the effective equilibrium model.

εa(kBT ) Ea(kBT ) Er (kBT ) a b

12 2.6 0.18 1.0605 0.0142
15 3.3 0.21 0.5928 0.0030
20 4.4 0.31 0.4550 0.0008
25 5.5 0.38 0.3226 0.0002

(3) For large Pe, the effective activity-induced repulsion is
getting more pronounced than the activity-induced effective
attraction.

Therefore we replace Ea in Eq. (13) to account for an
effective activity-induced attraction as Ea + aPep with two fit
parameters: an amplitude a and an exponent p. Similarly, we
add to Er an activity-induced repulsion, i.e., we replace Er

by Er + bPeq with two fit parameters, namely, an amplitude b

and an exponent q which is larger than p. Therefore

n∗ = πσ (Ea + aPep)

2g(Er + bPeq)
(14)

We find reasonable fits for our simulation data when fixing
p = 2 and q = 4 by adjusting only the amplitudes a and b.
The actual fit parameters are given in Table I, and in Fig. 5 the
comparison between the model and simulation data is shown.
Good fits are obtained for small εa , but deviations are visible
for larger εa . Here, the values of Ea and Er correspond to the
minimum and maximum of the potential described in Eq. (1).
The parameter g = 1.83 is chosen such that the model predicts
the size of the cluster size in the absence of activity. Hence
this phenomenological model can give account for the trends
that at low Pe, 〈n〉 increases and then decreases for high Pe.

V. EQUILIBRIUM VERSUS DYNAMICAL CLUSTERING

Next we discuss the state behavior of active particles with
competing interactions to understand the link between equi-
librium clustering and kinetic clustering induced by activity.
Representative configurations obtained from simulations for
different density and activity are shown in Fig. 6 and a

FIG. 5. (Color online) Comparison between predictions of the
model [Eq. (14)] (lines) with simulation data (points). Legends for
the data points are same as in Fig. 2.
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FIG. 6. (Color online) Representative configurations of various states of active particles with competing interactions for varied Péclet
number Pe and reduced number density ρσ 2 for εa = 25kBT .

corresponding state diagram is presented in Fig. 7. In the
absence of activity (Pe = 0), the particles form quasicircular
clusters at low density and extended wormlike clusters at
higher densities. Upon increasing activity the phase behavior
changes significantly. For instance, up to a reduced density
of 0.2, the activity increases the cluster sizes until a critical
activity is reached and beyond this activity clusters dissolve,
leading to a disordered fluid phase. In the density range of
0.3–0.4, we see a similar behavior but now the elongated
wormlike clusters are getting smaller in length upon increasing
the activity. Further increase in activity again leads to a
disordered fluid in this density regime. At higher densities such
as 0.5, the disordered fluid is followed by phase separation due
to kinetic clustering induced by motility, as found in earlier
reports on purely repulsive particles [12,17]. At these high
Péclet numbers, details of the interparticle interaction except
for the repulsive core are not relevant. The dynamic clustering
observed at high Pe is therefore explained as a pure kinetic
effect. It is well separated from the equilibrium clustering
considered earlier which occurs at small Pe and small densities,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120

ρσ
2

Pe

Equilibrium clustering
Wormlike clusters

Disordered fluid
Dynamical clustering

FIG. 7. (Color online) State diagram of active particles with
competing interactions in the plane spanned by Péclet number Pe
and reduced density ρσ 2 for εa = 25kBT .

demonstrating that these two clustering effects are qualitatively
distinct.

We now revisit the cluster size distribution function P (n)
in the limit of high Péclet numbers where only the repulsive
core is relevant, which is then to be compared to the previous
data shown in Fig. 3. Results for Pe = 100 are shown in
Fig. 8 on a semilog scale. The average cluster size in this
case is 1.8. The clusters are distinctly different, both in size
and shape, from that observed in equilibrium [Fig. 3(a)] and
at moderate activity [Fig. 3(b)], although εa and density are
the same. This means that activity can be used as a knob, to
an extent, in tuning the cluster size either to increase or to
decrease, depending upon the fixed parameters of interactions.
This unique feature is not present for purely motility-induced
clustering in repulsive colloids. In more detail, as can be
deduced from Fig. 8, the cluster size distribution P (n) is almost
linear in the semilogarithmic plot, except for small n (n < 4).
This shows that there is an exponential decay in P (n) for large
n. The data for n < 5 are compatible with a power-law scaling.
Majumdar et al. [35] showed that for an effective aggregating

FIG. 8. Cluster size distribution for Pe = 100, density ρσ 2 =
0.13, and εa = 25kBT .
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and fragmenting particle system, P (n) decays exponentially
for low aggregation rates and decays as power law for high
aggregation rates. In the present case, the initial power-law
decay denoting an effective aggregation process indicates
motility-induced kinetic clustering at high Péclet numbers. The
exponential decay denoting effective fragmentation indicates
fragmentation due to activity. Therefore, high activity induces
both aggregating and fragmenting processes. In contrast, in
the case of Pe = 6, where both the interaction potential and
activity affect clustering, the cluster size distribution P (n) does
not show any conclusive scaling.

Furthermore, we note that our results are different from
flying crystals which were found to exist with and without
cohesive forces [36–38]. In these studies, aligning forces
between the particles are relevant. In our simulations, we
have not considered aligning forces and therefore we have not
observed flying crystals. The velocity vectors of the particles
in the clusters obtained from our simulations are randomly
oriented as the particles are freely rotating with their rotational
diffusion coefficient. Therefore there is only a random and
undirected migration of the clusters.

VI. CONCLUSION

In conclusion, by using Brownian dynamics computer sim-
ulations, we explored how equilibrium clustering is affected
for self-propelled colloidal particles. While this clustering

process is stable under self-propulsion, depending on the
values of interaction parameter, the cluster size can initially
increase with the strength of self-propulsion before it de-
creases for large activity. This allows one to control the
strength of active clustering via the interparticle interactions.
A phenomenological model is shown to qualitatively explain
the nonmonotonic variation of cluster size with activity. For
the future, it would be interesting to construct a dynamical
density functional theory for the clustering considered here by
unifying the density functional theory designed for equilibrium
clustering [39] with that designed for kinetic clustering [17].
Moreover, hydrodynamic effects should be explored by more
sophisticated simulation models [40]. Furthermore, our predic-
tions can in principle be verified in experiments on synthetic
or bacterial microswimmers with well-defined interactions. In
particular, the combination of depletants, particle charge, and
magnetic dipole moments [41,42] opens new ways to steer the
interparticle interactions between swimmers and therefore the
details of the clustering behavior.
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