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Generalized model of blockage in particulate flow limited by channel carrying capacity
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We investigate stochastic models of particles entering a channel with a random time distribution. When the
number of particles present in the channel exceeds a critical value N , a blockage occurs and the particle flux
is definitively interrupted. By introducing an integral representation of the n-particle survival probabilities, we
obtain exact expressions for the survival probability, the distribution of the number of particles that pass before
failure, the instantaneous flux of exiting particles, and their time correlation. We generalize previous results for
N = 2 to an arbitrary distribution of entry times and obtain exact solutions for N = 3 for a Poisson distribution
and partial results for N � 4.
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I. INTRODUCTION

A stream of particles flowing through a channel may be
slowed or blocked if the number of particles present exceeds
the carrying capacity of the channel. This phenomenon is
widespread and spans a range of length scales. Typical ex-
amples include vehicular and pedestrian traffic flow, filtration
of particulate suspensions, and the flow of macromolecules
through micro- or nanochannels. A specific, comic book
example of the first category is a bridge that collapses
if the combined weight of the vehicular traffic exceeds a
threshold. In filtration, the experimental data of the fraction
of grains retained by a filter mesh can be explained by
assuming that clogging may occur when two or more grains
are simultaneously present in the same vicinity of a mesh
hole, even though isolated grains are small enough to pass
through the holes [1]. A biological example is provided by the
bidirectional traffic in narrow channels between the nuclear
membrane and the cytoplasm [2].

The totally asymmetric simple exclusion effect process
(TASEP) provides a theoretical approach to these phenomena.
The TASEP is a lattice model with a stochastic dynamics where
particles hop randomly from site to site in one direction with
the condition that two particles cannot occupy the same site at
the same time [3,4]. At the two extremities of the finite lattice,
particles are inserted and removed with two different rates. The
model and its extensions provide quantitative descriptions of
the circulation of cars and pedestrians [5–10]. In this model,
blockage due to the channel is not possible. The dynamics
of the process is controlled by the entering and exiting
fluxes and exclusion effects. The so-called bridge models
consider two TASEP processes with oppositely directed flows
but allow exchange of particles on the bridge [11–15]. At
the microscopic level, active motor protein transport on the
cytoskeleton has been modeled by a TASEP [16,17].

Recently, some of the present authors [18,19] introduced
a class of continuous time and space stochastic models
that are complementary to the TASEP approach in that the
blockage is due to the limited carrying capacity of the channel
(and not the exclusion effect between particles). In these
models particles enter a passage at random times according

to a given distribution. In the simplest concurrent model,
particles move in the same direction and an isolated particle
exits after a fixed transit time τ , but if N = 2 particles
are simultaneously present, blockage occurs. If the particle
entries follow a homogeneous Poisson process, all properties
of interest, including the survival probability, mean survival
time, and the flux and distribution of exiting particles can be
obtained analytically. The model has a connection to queuing
theory in that it is a generalization of an M/D/1 queue, i.e.,
one where arrivals occur according to a Poisson process,
service times are deterministic, and with one server. This queue
has many other applications, including, for example, trunked
mobile radio systems and airline hubs [20–22].

Opposing streams where blockage is triggered by the
simultaneous presence of two particles moving in different
directions can be treated within the same framework [18].
Inhomogeneous distributions of entering particles can be
treated analytically [23]. It is also possible to obtain exact
solutions for when the blockage is of finite duration rather than
permanent [24]. In this case, for a constant flux of incoming
particles the system reaches a steady state with a finite flux of
exiting particles that depends on the blockage time τb.

The purpose of this article is to explore the properties of
the concurrent flow models for any distribution of entry times
and when the threshold for blocking is N > 2. In addition to
the applications described above, this generalized model may
also be relevant for internet attacks, in particular, denial of
service attacks (DoS) and distributed denial of service attacks
(DDoS) where criminals attempt to flood a network to prevent
its operation [25–27].

Unfortunately, the method used to solve the models for
N = 2 [18,24] applies only to a Poisson distribution and cannot
be used even in this case for N > 2. In Sec. II A, we develop
an approach providing formal exact expressions of the key
quantities describing the kinetics of the model. In Sec. II B, as a
first application, we recover the results of the model N = 2 that
were first obtained by using a differential equation approach
[18]. In Sec. II C we present a complete solution when the
entry time distribution is Poissonian for N = 3. In Sec. II D
we consider the case of general N . In Sec. III we investigate
the time correlation for N = 2 and N = 3, and we further
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FIG. 1. (Color online) Concurrent flow model N = 3. Particles
enter the left-hand side of a channel of length L randomly. Top: two
particles cross and exit the channel in a time τ . Bottom: If a third
particle enters while the two previous particles are still in the channel,
a blockage occurs instantaneously.

explore the model by studying the correlations between the
arrival times of the particles. We also consider the connection
with the equilibrium properties of the hard rod fluid.

II. CONCURRENT FLOW MODEL

A. Definition and quantities of interest

We assume that at t = 0 the channel of length L is empty.
The first particle enters at a time t0 that is distributed according
to a probability density function ψ(s). The entry of subsequent
particles is characterized by the interparticle time ti ,i > 0
between the entry of particle i and i + 1. We assume that the
ti are distributed according to ψ(s) and uncorrelated. The total
elapsed time is then t = t0 + ∑n−1

i=1 ti + t ′ when n particles
have entered and t ′ is the time elapsed after the entry of the
last particle.

If unimpeded by the presence of another particle, a particle
exits after a transit time τ > 0. Blockage occurs when N

particles are present in the channel at the same time, which
occurs if ti + ti+1 + · · · + ti+N−2 < τ (see Fig. 1 for the case
N = 3). The behavior of the model depends on the recent
history, more specifically, the entry times of the particles that
are still in the channel. The probability that no particle enters
in the interval [0,t] is 1 − ψc(t), with ψc(t) the cumulative
distribution ψc(t) = ∫ t

0 ψ(s)ds.
The simplest case is a homogeneous Poisson process

where the probability density function of particle entry times
is ψ(t) = λe−λt where λ is the rate (sometimes called the
intensity).

The key quantities describing the process are the probability
that the channel is active at time t , namely, the survival
probability ps(t), the average blocking time 〈t〉 (where the
brackets indicate an average over realizations of the process),
the number of particles that have exited the channel at time t ,
〈m(t)〉, and the instantaneous particle flux j (t).

The survival probability can be expressed as the sum
over all n-particle survival probabilities q(n,t), i.e., the joint
probability of surviving up to t and that n particles have entered
the passage during this time,

ps(t) =
∞∑

n=0

q(n,t). (1)

For general N and n > N − 1, q(n,t) can be expressed as

q(n,t) =
∫ ∞

0
· · ·

∫ ∞

0

[
n−1∏
i=0

dtiψ(ti)

]∫ ∞

0
dt ′[1 − ψc(t ′)]

×
⎡
⎣n−N+1∏

j=1

θ

(
N−2∑
m=0

tj+m − τ

)⎤
⎦δ

(
t −

n−1∑
i=0

ti − t ′
)

,

(2)

where θ (x) is the Heaviside step function. The first n integrals
correspond to the arrival of n particles in the channel, and with
time intervals ti , the integral over t ′ imposes that no particle
enters after particle n. The Heaviside functions account for the
constraint that no consecutive sequence of N particles can be
simultaneously in the channel, i.e., in a time interval smaller
than τ , the δ function imposes that the observation time t is
equal to the sum of the time intervals ti plus t0 and t ′.

For 0 � n � N − 1 there is no constraint on the particle
time interval so the probability q(n,t) is expressed as the joint
probability of n independent and identically distributed events,

q(n,t) =
∫ ∞

0

[
n−1∏
i=0

dtiψ(ti)

]∫ ∞

0
dt ′[1 − ψc(t ′)]

×δ

(
t −

n−1∑
i=0

ti − t ′
)

(3)

and

q(0,t) = 1 − ψc(t). (4)

Once the q(n,t), and hence ps(t), are known we can obtain
several useful quantities. The probability density function of
the blocking time f (t) is simply related to ps(t) [28],

f (t) = −dps(t)

dt
. (5)

Defining the Laplace transform as f̃ (u) = ∫ ∞
0 dte−utf (t), one

infers

f̃ (u) = 1 − up̃s(u). (6)

The mean blocking time is given by

〈t〉 =
∫ ∞

0
dt tf (t) = p̃s(0). (7)

The instantaneous flux of particles exiting the channel can
be obtained by noting that if a particle exits the channel at time
t , at most N − 1 particles can enter the channel between t and
t − τ if no blockage is to occur. Since blockage is irreversible,
the flux tends to 0 when the time increases, j (∞) = 0 for all
values of N . The total flux is given by the sum

j (t) =
∞∑

n=1

j (n,t), (8)

where j (n,t) is the partial flux where a particle exits the
channel at time t such that the channel is still open and n
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particles have already entered, for n � N :

j (n,t) =
∫ ∞

0
dt ′[1 − ψc(t ′)]

∫ ∞

0

[
n−1∏
i=0

dtiψ(ti)

]

×
⎡
⎣n−N+1∏

j=1

θ

(
N−2∑
m=0

tj+m − τ

)⎤
⎦δ

(
t −

n−1∑
i=0

ti − t ′
)

×
{

δ(t ′ − τ ) +
N−2∑
k=1

[
δ

(
t ′ +

k∑
w=1

tn−w − τ

)]}
,

n � N. (9)

The condition that a particle exits at time t is expressed
in terms of δ functions. The last line of the above equation
corresponds to different situations. The isolated δ function
corresponds to a single particle in the channel, while the sum
corresponds to the presence of N − 1 particles with the first
one exiting (which was the first to enter). For n < N blocking
is not possible, so Eq. (9) is replaced by one without the
Heaviside functions.

Finally, the number of particles that have exited at time t

can be obtained by integrating over the particle flux

〈m(t)〉 =
∫ t

0
dt ′j (t ′). (10)

We can also obtain the distribution of particles exiting the
channel. Let h(m,t) denote the probability that blockage occurs
in the interval (0,t) and that m particles have exited during this
time. Its time evolution is given by

dh(m,t)

dt
=

∫ ∞

0

m+N−1∏
i=0

dtiψ(ti)
m∏

j=1

θ

⎛
⎝N−2∑

p=0

tj+p − τ

⎞
⎠

×θ

⎛
⎝τ −

N−1∑
p=1

tm+p

⎞
⎠δ

(
t −

m+N−1∑
i=0

ti

)
, m � 1.

(11)

The upper part of the right hand side corresponds to the event
where m + N particles have entered at time t , and there was no
blockage involving the first m + N − 1 particles. The second
Heaviside function corresponds to the constraint that the last N
particles are blocked in the channel, with the N + mth particle
entering at time t .

One can check that

〈m(t)〉 =
∞∑

m=0

mh(m,t) =
∫ t

0
j (t ′)dt ′. (12)

We now consider the specific cases N = 2 and N = 3.

B. Explicit solution for N = 2

Since each Heaviside function in Eq. (2) depends on
only one variable, the multiple integrals can always be
calculated. Taking the Laplace transforms of Eqs. (2) and (3),

one obtains

q̃(n,u) = ψ̃(u)

(
1

u
− ψ̃c(u)

)[∫ ∞

τ

dt e−utψ(t)

]n−1

. (13)

Using Eq. (1) and ψ̃c(u) = ˜ψ(u)
u

, we obtain the Laplace
transform of the survival probability:

p̃s(u) =
∞∑

n=0

q̃(n,u)

= 1 − ψ̃(u)

u

(
1 + ψ̃(u)

1 − ∫ ∞
τ

e−utψ(t)dt

)
. (14)

Therefore the mean time of blockage is

〈t〉 = t̂

[
1 + 1∫ τ

0 ψ(t)dt

]
, (15)

where t̂ = ψ̃ ′(0) = ∫ ∞
0 dt tψ(t) is mean interparticle time. To

interpret Eq. (15) we note that ψc(τ ) = ∫ τ

0 ψ(t)dt gives the
probability that two consecutive particles are separated by a
time smaller than τ .

The integral representation of the n-particle survival prob-
abilities approach presented in Sec. II A allows us to consider
distributions other than the Poissonian. In particular, we study
the � distribution,

ψ(t) = λαtα−1e−λt

�(α)
, (16)

where α is a shape parameter. For α = 1 this reduces to the
Poissonian case. For α > 1 the maximum of the distribution
occurs at a finite time rather than t = 0. This may be more
appropriate for the description of traffic flow where there is a
gap between successively arriving particles. The mean time of
blocking is equal to

〈t〉 = α

λ

(
1 + �(α)

�(α) − γ (τ,α)

)
, (17)

where �(α) and γ (α,x) are the � and incomplete � functions,
respectively. When λτ < 1, one obtains

〈t〉 = 1

λ

α!

(λτ )α
. (18)

Figure 2 shows 〈t〉 versus λτ for α = 2,3,4. One observes
an excellent agreement between simulation data (circles) and
the exact formula, Eq. (17). As expected, the mean time
〈t〉 diverges when λ goes to zero. The asymptotic behavior,
Eq. (18), provides a good approximation of simulation data
when λτ < 1.

By taking α = 1 in the � distribution, which corresponds
to a homogeneous Poisson process, the mean time of blockage
is given by

〈t〉 = 2 − e−λτ

λ(1 − e−λτ )
, (19)

a result previously obtained by using a master equation for the
time evolution of the q(n,t) [18].
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FIG. 2. (Color online) Mean time of blocking 〈t〉 as a function
of the intensity λ for a � distribution for α = 2,3,4 (from bottom
to top), from numerical simulation (circles) and Eq. (15) (full lines).
Dotted lines correspond to the asymptotic behavior [Eq. (17)].

The mean flux j (t) can be obtained by using Eqs. (8) and (9):

j (t) =
∞∑

n=1

∫ ∞

0
dt ′[1 − ψc(t ′)]

∫ ∞

0

[
n−1∏
i=0

dtiψ(ti)

]

×
⎡
⎣n−1∏

j=1

θ
(
tj − τ

)⎤⎦δ

(
t −

n−1∑
i=0

ti − t ′
)

[δ(t ′ − τ )].

(20)

The multiple integral can be factorized and the flux is given
by

j (t) =
∞∑

n=1

∫ ∞

0
dt0ψ(t0)

∫ ∞

0
dt ′[1 − ψc(t ′)]

[∫ ∞

τ

dtψ(t)

]n−1

×δ

(
t −

n−1∑
i=0

ti

)
[δ(t ′ − τ )]. (21)

In Laplace space, the summation over n can be performed
and j̃ (u) is given by

j̃ (u) = [1 − ψc(τ )]e−uτ ψ̃(u)

1 − ∫ ∞
τ

e−utψ(t)dt
. (22)

With a Poisson distribution ψ(t) = λe−λt , we have

j̃ (u) = λe−(u+λ)τ

u + λ(1 − e−(u+λ)τ )
. (23)

By taking the inverse Laplace transform, the mean flux j (t)
can be expressed as a series

j (t) = λe−λt

∞∑
n=1

[
1

n!
{λ[t − (n + 1)τ ]}nθ{λ[t − (n + 1)τ ]}

]
,

(24)
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FIG. 3. (Color online) Mean flux j (t) as a function of time for a
� distribution with α = 3 and for different values of λ (τ = 1). The
solid lines show the exact expression, Eq. (22), and the circles show
simulation results.

as obtained previously by using a master equation approach
[19].

No particle exits the channel between 0 and τ ; indeed,
the flux is obviously equal to 0 in this interval and rises
instantaneously to a maximum, jmax = λe−λτ , which itself is
maximum when λ = 1

τ
, and then decreases to 0.

For a � distribution with an integer value of α, the Laplace
transform of the flux can be obtained explicitly but as α

increases, it rapidly leads to lengthy expressions.
Figure 3 displays the time evolution of the mean flux j (t)

for different values of λ and α = 3. In all cases, the flux
becomes nonzero for t > τ , corresponding to the exit of a
first particle. For λτ � 1, j (t) displays a strong maximum at
a time tm slightly larger than τ and decays to 0. For λτ = 0.5,
the maximum of the flux is shifted to a time tm � 3τ and
the typical decay time is around 100τ . For λτ = 0.25, j (t)
increases up to a quasiplateau and the typical decay time is
larger than 1000τ , which corresponds to a physical situation
where a large number of particles exits the channel before
the definitive clogging. Note that for a given value of λ the
flux is much larger than for a Poisson distribution. However, it
approaches zero for sufficiently long times with a characteristic
time equal to the mean blocking time.

We also consider the probability h(m,t) that blockage
occurs in the interval (0,t) and that during this time m particles
exit the channel. The time evolution of this function is given by

dh(m,t)

dt
=

∫ ∞

0

m+1∏
i=0

dtiψ(ti)
m∏

j=1

θ (tj − τ )

×θ (τ − tm+1)δ

(
t −

m+1∑
i=0

ti

)
. (25)

Two particles have to be in the channel for the system to
block, so the interval between two consecutive particles has
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to be less than τ (the second θ function). The previously
entering particles exited the channel without blockage.

Taking the Laplace transform, we obtain for m � 0,

h̃(m,u) = ψ̃(u)

u

∫ τ

0
ψ(t ′)e−ut ′dt ′

[∫ ∞

τ

dtψ(t)e−ut

]m

. (26)

The probability that the channel is blocked can be expressed
as the sum over partial probabilities h(m,t), namely, h(t) =∑∞

m=0 h(m,t). By using Eq. (26), one infers limt→∞ h(t) =
limu→0 uh̃(u) = 1. This is consistent with the fact that block-
age is certain to occur for any reasonable distribution ψ(t).
Finally, we note the following sum rule,

∑
n�0[qs(n,t) +

h(n,t)] = 1, where all configurations of the process are either
blocked or unblocked.

For the Poisson process, an explicit expression can be
obtained:

h̃(m,u) = λm+2

u(λ + u)m+2
[1 − e−(λ+u)τ ]e−(λ+u)mτ . (27)

Performing the Laplace inversion we obtain h(m,t) as obtained
previously [19]. As expected, h(m,t) is equal to zero for
t < mτ corresponding to the minimum time necessary for m

particles to exit the channel. For the � distribution, with α = 2
we obtain

h̃(m,u) = 1

u(u + λ)2(m+2)
(e−(u+λ)τmλ2(m+2)[1 + (u + λ)τ ]m

×{1 − e−τ (u+λ)[1 + (u + λ)τ ]}). (28)

For the � distribution, we plot in Fig. 4 the time evolution
of h(m,t) as a function of time with m = 0,1,2 for α = 2
and λ = 2. As expected, h(m,t) = 0 for t < mτ , which can
be explained by the fact that the minimum time for having a
configuration where m particles exit the channel must be at
least larger than mτ . Similarly, the transient time associated
with h(m,t) increases with m and corresponds to rare events
when m increases.

0 2 4 6 8 10
t

0

0.1

0.2

0.3

0.4

0.5

h(
m

,t)

FIG. 4. (Color online) The probability h(m,t) as a function of
time for a � distribution with α = 2, λ = 2, and m = 0,1,2,3,4 (from
top to bottom). The full curves show the exact expression, Eq. (28),
and circles show simulation results.

C. Explicit solution for N = 3

For the first three partial probabilities, there is no constraint
and one easily obtains that q(0,t) = 1 − ψc(t), and for i = 1,2
the probabilities are given in terms of the Laplace transforms
q(i,u) = ( 1−ψ̃(t)

u
)ψ̃(u)i . For a Poisson process, one recovers

that q(0,t) = e−λt , q(1,t) = λte−λt , and q(2,t) = (λt)2

2 e−λt .
For n > 2, Eq. (2) becomes

q(n,t) =
∫ ∞

0
dt ′[1 − ψc(t ′)]

∫ ∞

0

n−1∏
i=0

dtiψ(ti)

×
n−2∏
j=1

θ (tj + tj+1 − τ )δ

(
t −

n−1∑
i=0

ti − t ′
)

. (29)

The constraint, imposed by the θ function, requires that the
sum of two consecutive time intervals be less than τ . Taking
the Laplace transform of Eq. (29), one obtains

q̃(n,u) = ψ̃(u)[1 − ψ̃(u)]

u

∫ ∞

0
dtψ(t)e−ut r(n − 1,t,u), (30)

where the auxiliary function r(n − 1,t,u) is given by

r(n − 1,t,u) =
∫ ∞

0

n−2∏
i=1

dtiψ(ti)e
−uti

n−2∏
j=1

θ (tj + tj+1 − τ ),

(31)

where tn−1 = t . A recurrence relation can be written for
r(n,t,u),

r(n,t,u) =
∫ ∞

max(τ−t,0)
dt ′ψ(t ′)e−ut ′r(n − 1,t ′,u), (32)

with r(1,t,u) = 1.
Let us introduce the generating function Gr (z,t,u), defined

as

Gr (z,t,u) =
∑
n=1

zn−1r(n,t,u), (33)

the explicit form of which is given in Appendix A for
ψ(t) = λ exp(−λt).

For n = 0,1,2 the partial probabilities q(n,t) correspond to
those of a Poisson process. For n > 2, by using the generating
function Gr (z,t,u), the Laplace transform of q(n,t) is given by

q̃(n,u) = λ

(λ + u)2

∫ ∞

0
dtλe−(λ+u)t ∂

n−2Gr (z,t,u)

∂zn−2

∣∣∣∣
z=0

. (34)

After some calculation, one obtains

q(3,t) = θ (t − τ )λ3e−λt

[
1

2
τ (t − τ )2 + 1

6
(t − τ )3

]
,

q(4,t) = λ4e−λt

[
θ (t − τ )

(t − τ )4

12
− θ (t − 2τ )

(t − 2τ )4

24

]
.

(35)

By using Eqs. (30) and (33), the Laplace transform of the
survival probability ps(t) is

p̃s(u) = q̃(0,u) + q̃(1,u) + ψ(u)[1 − ψ̃(u)]

u

×
∫ ∞

0
dtψ(t)e−utGr (1,t,u). (36)
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By inserting the solution of Eq. (A2), the Laplace transform
of the survival probability is given by

p̃s(u) = λ

(λ + u)2

[
1 + u

λ
+ A(1,u)

(
1 + λ

s2
(1 − e−s2τ )

)

+B(1,u)

(
1 + λ

s1
(1 − e−s1τ )

)]
, (37)

where

A(1,u) = λes2τ (s2 − λ)(s1 + s2)

�
,

(38)
B(1,u) = λes1τ (s1 − λ)(s1 + s2)

�
,

with

� = e(s1+s2τ )s1s2(s1 − s2) + λ
(
s2

2e
s2τ − s2

1e
s1τ

)
. (39)

From the generating function Gr (z,t,u), one can also obtain
global quantities, like the mean blocking time 〈t〉 = p̃s(0).

Let g =
√

|1 − 4e−λτ | and ν = λτ
2 , then, after some calcu-

lation, one obtains for λτ > 2 ln(2),

λ〈t〉 = 2eν sinh(ν) + geλτ

−g − 2 sinh(ν)e−ν + eν[sinh(ν) + g cosh(ν)]
+ 1,

(40)

and for λτ < 2 ln(2),

λ〈t〉= 2eν sin(ν) + geλτ

−g − 2 sin(ν)e−ν + eν[sin(ν) + g cos(ν)]
+ 1. (41)

Figure 5 shows the mean blocking time 〈t〉 of the models
with N = 2,3,4,5 for a Poisson distribution obtained by
simulation and for N = 2,3 by using the analytic expressions.
We observe a perfect agreement between simulation data and
exact expressions for N = 2 [Eq. (19)] and N = 3 [Eqs. (40)
and (41)]. More generally, one observes a divergence of the
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FIG. 5. (Color online) Mean time of blocking as a function of
the intensity λτ for N = 5,4,3,2, top-to-bottom, from numerical
simulation (circles) and Eq. (19) N = 2 and Eqs. (40) and (41)
N = 3 (full curves) for a Poisson distribution. The inset compares
the asymptotic formula, Eq. (54), with simulation results.

mean blocking time as λτ goes to 0, and indeed, performing a
first-order expansion of Eq. (41) in λτ gives

〈t〉 � 2τ

(λτ )3
. (42)

The mean flux j (t) can be also obtained by using Eq. (9) and
the auxiliary functions r(n,t,u), and we find for the Laplace
transform j̃ (n,u) (for n � 1),

j̃ (n,u) = e−uτ ψ̃(u)

(
[1−ψc(τ )]

∫ ∞

0
dte−utψ(t)r(n−1,t,u)

+
∫ τ

0
dtψ(t)[1 − ψc(τ − t)]r(n − 1,t,u)

)
. (43)

By summing over n [accounting for the boundary terms
j̃ (1,u) and j̃ (2,u)], the Laplace transform j̃ (u) is expressed as

j̃ (u) =e−uτ ψ̃(u)[1 − ψc(τ )]
∫ ∞

0
dte−utψ(t)Gr (1,t,u)

+ e−uτ ψ̃(u)
∫ τ

0
dtψ(t)[1 − ψc(τ − t)]Gr (1,t,u)

+ j̃ (1,u). (44)

By using Eq. (A3) and the expression of the generating
function Gr (1,t,u), the Laplace transform of the flux can be
expressed as

j̃ (u) = λe−(u+λ)τ

λ + u

[
A(1,u)

(
es1τ

[
1 + λ

s1

]
− λ

s1

)

+B(1,u)

(
es2τ

[
1 + λ

s2

]
− λ

s2

)]
, (45)

where A(1,u) and B(1,u) are given by Eq. (38).
Because the right-hand side of Eq. (45) can be factorized

by e−uτ , it implies that j (t) = 0 for t < τ , which corresponds
to the minimum time for a particle to exit the channel.

The mean flux j (t) is plotted as a function of time for
λ = 1,2 with a Poisson distribution for λ = 1,2 (Fig. 6). A
discontinuity appears at t = τ where the flux is maximum
j (τ ) = λ. At t = τ , the flux is given by

j (τ ) = λ(1 + λτ )e−λτ , (46)

which corresponds to events where a particle exits between t

and t + dt such that there is either zero or one particle in the
channel. The flux decay exhibits a visible cusp at t = 2τ , which
corresponds to the nonanalytical structure of the solution. At
long times, the flux decays to 0, with a typical time which
becomes larger when λ decreases.

The joint probability h(m,t) can also be obtained with the
function r(n,t,u). For m � 1 its time evolution is given by

dh(m,t)

dt
=

∫ ∞

0

m+2∏
i=0

dtiψ(ti)
m∏

j=1

θ
(
tj + tj+1 − τ

)

×θ (τ − tm+1 − tm+2)δ

(
t −

m+2∑
i=0

ti

)
. (47)
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FIG. 6. (Color online) Mean flux j (t) as a function of time for
a Poisson distribution for λ = 1,2 (τ = 1). The solid lines show the
exact expression [inverse Laplace transform of Eq. (45)], accurately
matching simulation results (noisy lines).

Taking the Laplace transform gives

h̃(m,u) = ψ̃(u)

u

∫ ∞

0

m+2∏
i=1

dtiψ(ti)e
−uti

m∏
j=1

θ (tj + tj+1 − τ )

×θ (τ − tm+1 − tm+2), (48)

which can be expressed using the function r(n,t,u) as

h̃(m,u) = ψ̃(u)

u

∫ τ

0
dtψ(t)e−ut

∫ τ−t

0
dt ′ψ(t ′)

×e−ut ′r(m + 1,t ′,u). (49)

Figure 7 shows the time evolution of the probability
distributions h(m,t) for a Poisson distribution with λ = 1. The
probability that zero or one particle (m = 0,1) exits is smaller
for N = 2 than for N = 3. For m � 2 the order reverses (e.g.,
for m = 2, case shown). This is because, for a given value of
λτ , more particles exit before blockage as N increases.

D. Partial solution for N � 4

We have seen that for N = 3 the product of Heaviside
functions in Eq. (2) leads to a simple recurrence relation Eq.
(32). For N � 4 the task is much more difficult, because one
needs to introduce auxiliary functions that depend on N −
2 time variables. These functions are related by an integral
equation that cannot be converted to an ordinary differential
equation. We therefore propose an approximate treatment of
the dynamics. For the model where the blockage occurs when
N particles enter the channel between t − τ and t , the first
N − 2 partial probabilities q(i,t) obey differential equations
identical to those of a Poisson process:

dq(0,t)

dt
= −λq(0,t) (50)
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FIG. 7. (Color online) Probability distributions h(m,t) versus
time t for a Poisson distribution, for m = 0,1,2 (from top to bottom)
and λ = 1. The solid lines correspond to the model with N = 2, and
dashed lines correspond to the model with N = 3.

and
dq(n,t)

dt
= −λq(n,t) + λq(n − 1,t), 1 � n � N − 1. (51)

For n > N − 1, there is a constraint on the interval between
particles, but for n = N , the time evolution is simply given by

dq(N,t)

dt
=−λq(N,t)+λ

N−2∑
s=0

(λτ )s

s!
e−λτ q(N−1−s,t−τ ).

(52)

The gain term reflects the fact that blockage only occurs
with N particles, and the N − 1 terms of the summation
correspond to the cases where there may be from 0 to N − 1
particles in the channel.

For n > N , the dynamics of q(n,t) for n > N can be
approximated as follows:

dq(n,t)

dt
= −λq(n,t) + λq(n−1,t−τ)e−λτ

+ λ

N−2∑
s=1

∫ τ

0
dt1Ks(t1)e

−λτ qs(n − 1 − s,t − τ − t1),

(53)

where we have introduced a kernel Ks(t). We then consider
two physical situations. In the first, the last s particles are
assumed to have entered the channel in an infinitesimal time
interval and the kernel is given by Ks(t) = (λτ )s

s! δ(t). This
choice overestimates the survival probability. N − 2 particles
can be in the channel (so can enter between t − τ and t) when
a new particle enters. The other particles enter between time
0 and t − τ . This fails to take into account some blocking.
In the second case we take Ks(t) = λ (λt)s−1

(s−1)! e
−λt , which is

proportional to the probability that s − 1 particles enter in
(0,t). This choice underestimates the survival probability.
When a particle enters at time t there may be a maximum
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of N − 2 particles in the channel to avoid blocking. If a
particle arrives at a time t1 between t − τ and t , there may
be a maximum of N − 3 particles between t and t − t1 and no
particle between t − t1 and t − t1 − τ .

Taking the Laplace transform of Eq. (53), we calculate
two different generating functions corresponding to the two
kernels, and the corresponding mean survival times. These
bracket the exact value and for λτ � 1 the two solutions
approach the same limit:

〈t〉 = (N − 1)!

(λτ )N
. (54)

To obtain exact results for N � 4 is a challenging problem.
We therefore finish this section by presenting some numerical
results that illustrate the general trends. The inset of Fig. 5
compares the asymptotic behavior for mean blocking time
[Eq. (54)], with simulation results for N = 2 to N = 5. We
observe that the scaling law provides a good description of the
process for λτ � 0.5.
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FIG. 8. (Color online) Mean flux j (t) versus time t for N =
2,3,4,5,6,7 (from bottom to top) for a Poisson distribution with
λ = 1. Top: short time behavior. At t = 1, circles correspond to
the exact values of the mean flux, Eq. (55). Bottom: linear-log plot
showing the long-time behavior (τ = 1).

In Fig. 8 we present numerical results for the mean flux of
exiting particles as a function of time. This quantity acquires
a nonzero, maximum value at t = τ given by

j (τ ) = λ

N−2∑
i=1

(λτ )i

i!
e−λτ . (55)

This expression corresponds to events where a particle exits
between t and t + dt such that 0,1..,N − 2 particles are still
in the channel. For t > τ , we observe a drastic increase of the
characteristic decay time as N increases (see the lower figure
of Fig. 8). For N = 2, j (t) is very small for t > 3τ , while for
N = 7, the flux is almost constant during two decades. More
generally, the decay occurs on a time scale comparable to the
mean time to blockage [Eq. (54)], which diverges rapidly as
N increases.

III. CORRELATIONS

A. General results

Here we investigate how the entrance of new particles is
constrained by the previously entering particles. To that end,
the relevant quantity is the time correlation function C(t) that
represents the density function that any two particles have a
time separation t . C(t) can be expressed as the sum of partial
correlation functions c(n,t) that correspond to the probability
density that the first and last particles of a sequence of n + 1
particles are separated by t :

C(t) =
∞∑

n=1

c(n,t). (56)

The partial correlation function c(n,t), the joint probability of
having a particle at t = 0 and the nth particle at time t , can be
written as

c(n,t) =
∫ ∞

0

N−2+n∏
i=1

dtic
(N−2)(t1,...,tN−2)

N−2+n∏
j=N−1

ψ(tj )

×
⎡
⎣ n∏

j=1

θ

(
N−2∑
m=0

tj+m − τ

)⎤
⎦δ

(
t −

N+n−2∑
i=N−1

ti

)
, (57)

where c(N−2)(t1,...,tN−2) is the joint probability of having
N − 1 particles such that the first and the second particles are
separated by a duration of t1, the second and the third particles
by a duration of t2,.. and the N − 2 and N − 1 particles by
tN−2. We can write this probability as

c(N−2)(t1,...,tN−2) =
∫

dt0c
(N−2)(t0,...,tN−3)

×ψ(tN−2)θ

⎛
⎝N−2∑

j=1

tj − τ

⎞
⎠. (58)

This definition of the correlation function considers all
trajectories, including those that end before a given time t .
As a result, the correlation function approaches zero at long
times. It seems more interesting to keep only trajectories which
survive until time t .
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To generate an infinite sequence of particles corresponding
to a trajectory of the model, let us consider the following
rejection-free algorithm. Accounting for the constraints of the
model (less than N particles must enter the channel in the time
interval τ ), we introduce the discrete stochastic equation

tn = max

⎛
⎝τ −

N−2∑
j=1

tn−j ,0

⎞
⎠ + η, (59)

where η is a random number generated from the ψ distribution,
and tn−j ,j = 1,N − 2 are the time intervals of between the
N − 2 previously entering particles.

In order to compute the correlation function associated with
this rejection-free algorithm, we replace ψ(ti) in Eqs. (57) and
(58) with

ψ

⎡
⎣ti − max

⎛
⎝τ −

N−2∑
j=1

ti−j ,0

⎞
⎠

⎤
⎦. (60)

The partial correlation function c(n,t) can be also expressed
as the average over the event of having a first and n + 1th

particles separated by a time duration t :

c(n,t) =
〈
δ

(
t −

n∑
i=1

ti

)〉
. (61)

The conservation of the probability reads∫ ∞

0
dtc(n,t) = 1. (62)

By summing over n, the integral correlation function C(t)
is given at long time by∫ t

0
dt ′C(t ′) = 〈n(t)〉, (63)

where 〈n(t)〉 is the mean number of particles along a trajectory
for a time duration t . At large t , this quantity goes to a constant
because we only consider trajectories that have survived. By
using that C(t) goes to a constant at long times (due to the
decay of the memory between particles that entered with a
large time difference) [C(t) → C∞], we infer that C∞ = 1/t̄ ,
where t̄ is the average separation in time between successive
particles.

We now focus on N = 2 and N = 3 by using the rejection-
free trajectories for which exact solutions can be obtained.

B. Explicit solution for N = 2

The partial correlation function c(n,t) is simply given as the
product of integrals on each independent interval. Equation
(59) is very simple, tn = τ + η, which means that ψ(t) is
replaced with ψ(t − τ ) [see Eq. (60)]. Therefore the Laplace
transform of c(n,t) is given by

c̃(n,u) =
(∫ ∞

τ

dtψ(t − τ )e−tu

)n

= c̃(1,u)n. (64)

This results from the fact that successive events are not
correlated.

Inserting Eq. (64) into Eq. (56), we obtain

C̃(u) = c̃(1,u)

1 − c̃(1,u)
. (65)

At long times, C(t) approaches a constant value
corresponding to a constant mean density. By using
the factorization property c̃(n,u) = c̃(1,u)n and the ex-
pansion c̃(1,u) = c̃(1,0) + u∂c̃(1,u)/∂u|u=0 + O(u2), one
can show that C(∞) = limu→0 uC̃(u) = 1/t̄ , where t̄ =∫ ∞

0 tc(1,t)dt = −∂c̃(1,u)/∂u|u=0 is the average interval be-
tween particles. That is, the smaller the average separation in
time between successive particles, the larger the steady-state
value of the time correlation function.

For a Poisson distribution ψ(t) = λe−λt we find

C̃(u) =
∞∑

n=1

(
λ

λ + u

)n

e−nuτ . (66)

The inverse Laplace transform gives an explicit expression,

C(t) = λ

∞∑
n=1

θ [λ(t − nτ )]
[λ(t − nτ )]n−1e−λ(t−nτ )

(n − 1)!
. (67)

Figure 9(a) shows C(t) for two values of λτ . As expected,
C(t) is strictly equal to 0 for t < τ , since no particle can be
inserted if the delay between two successive particles is less
than τ , corresponding to a strong anticorrelation. C(t) reaches
a maximum at t = τ , where C(τ ) = λ and then, after a short
oscillatory period, attains a stationary value. Therefore after
a few τ there is no remaining correlation between entering
and exiting particles. Note that a cusp is present at t = 2τ ,
a similar behavior observed for the other quantities such as
the flux and the survival probability. In the long time limit
C(t = ∞) = limu→0 uC̃(u) = λ/(1 + λτ ).

It is also interesting to note that the correlation function
Eq. (67) corresponds to the density correlation function of the
positions of the particle centers in a hard rod fluid of density
ρ with λ = ρ/(1 − ρ).

C. Explicit solution for N = 3

For N = 3, the discrete stochastic equation, Eq. (59),
becomes

tn = max(τ − tn−1,0) + η, (68)

where tn denotes the time interval between the n − 1 and n

particles, and η is a random number chosen with an exponential
probability distribution λe−λt . In queuing theory this equation
is known as the Lindley-type equation [29–31].

For the Poisson distribution ψ(t), Eqs. (57) and (58) with
Eq. (60) gives

c(n,t) =
∫ ∞

0
dt0c(1,t0)δ

(
t −

n∑
i=1

ti

)

×
n∏

i=1

(∫ ∞

max(τ−ti−1,0)
dtiλe−λ[ti−max(τ−ti−1,0)]

)
(69)

and

c(1,t) =
∫ ∞

Max(τ−t,0)
dt1c(1,t1)λe−λ[t−Max(τ−t1,0)]. (70)
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FIG. 9. (Color online) Correlation functions for (a) N = 2 and (b) N = 3 for λ = 1 and 0.5 (lower curves). The solid lines correspond to
Eq. (67) (N = 2) and Eq. (79) (N = 3) and circles to numerical simulations.

Note that the constraint applies to two consecutive intervals,
i.e., the arrival time between three consecutive particles is
greater than τ . Consequently, the partial correlation c̃(n,u) is
never the product of smaller correlation functions, as for the
N = 2 model.

Because the kinetics were obtained exactly in the previous
section only for the Poisson distribution, we restrict our
analysis to this distribution.

From Eq. (70), one easily shows that c(1,t) is constant for
t > τ . For t < τ , by taking the derivative of Eq. (70), one
obtains

dc(1,t)

dt
= λ[−c(1,t) + θ (τ − t)c(1,τ − t)] (71)

whose solution is

c(1,t) = λ

1 + λτ
[θ (τ − t) + e−λ(t−τ )θ (t − τ )]. (72)

One can easily obtain the average time between two
consecutive particles in a trajectory:

t̄ =
∫ ∞

0
dtc(1,t)t = (λτ + 1)2 + 1

2λ(λτ + 1)
. (73)

As might be expected, when the intensity λτ is high, the
probability distribution is uniform within the first interval [0,τ ]
and equal to 1

2 . Conversely, when λτ tends to 0 the effect of
the constraint is negligible and t̄ diverges as 1

λ
, corresponding

to the Poisson distribution.
It is easy to calculate the first few partial correlation

functions by direct integration of Eq. (69), for instance, the
probability c(2,t) is given by

c(2,t) = λ2t

λτ + 1
e−λ(t−τ )θ (t − τ ). (74)

To obtain a general expression of c(n,t), we first take the
Laplace transforms of Eq. (69),

c̃(n,u) =
∫ ∞

0
dtc(1,t)e−utm(n,t), (75)

where m(n,t) is auxiliary function given by

m(n,t) =
∫ ∞

max(τ−t,0)
dt ′λe−[(u+λ)t ′−λ max(τ−t,0)]m(n − 1,t ′).

(76)
The initial condition is obviously m(1,t) = 1.

Let us introduce the generating function Gm(z,t,u) of the
auxiliary functions m(n,t):

Gm(z,t,u) =
∞∑

n=1

zn−1m(n,t). (77)

After some calculation, one obtains Gm(z,t,u) (see Ap-
pendix B), and using Eq. (56), the Laplace transform of the
correlation function is given,

C̃(u) =
∫ ∞

0
dtc(1,t)Gm(1,t,u)e−ut

= λ

1 + λτ

(∫ τ

0
dtGm(1,t,u)e−ut + Gm(1,τ,u)

e−uτ

u + λ

)
.

(78)

By inserting Eq. (B7) in Eq. (78), we obtain

C̃(u) = λ

(u + λ)(1 + λτ )

[
A1(1,u)

(
−e−s2τ (λ+s1)−u−λ

s2

)

+B1(1,u)

(
− e−s1τ (λ + s2) − u − λ

s1

)

+ (u + λ)2 + e−uτ λ[u2τ + λ(uτ − 1)]

u(u + λ − λe−uτ )

]
. (79)
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Figure 9(b) displays the correlation function C(t) for N =
3 versus time (with τ = 1). As expected for t � τ , C(t) is
constant and is equal to λ

1+λτ
, because c(n,t) = 0,n > 1, and

c(1,t) is given by Eq. (72), which is constant and different
from 0 in this time interval. One also observes a discontinuity
at t = τ and a long time limit equal to 2λ(1+λτ )

2+2λτ+λ2τ 2 . We verify
that, as for N = 2, this is equal to 1/t̄ with t̄ given by Eq. (73).

Comparing the correlation functions for N = 2 and N = 3
for the same values of λ, we note that the steady-state values
are higher for N = 3, corresponding to a shorter time interval
between particles in the steady state. The oscillations are
less pronounced for N = 3 and decay more quickly than
for N = 2 due to the greater constraint imposed by the
channel. In general, the time correlation is flatter for larger
N corresponding to weaker two-body correlation.

IV. DISCUSSION

In this article we have developed a theoretical approach
to describe blocking that occurs in channels with limited
carrying capacity. These models are relevant for a variety
of applications spanning a range of length scales, including
vehicular and pedestrian traffic flow, filtration of particulate
matter, and the flow of molecules through nanotubes. The
results presented here generalize the model introduced by
Gabrielli et al. [18,19], in which blocking is triggered by the
simultaneous presence of only two particles in a channel. It
was also assumed that the particles enter according to a Poisson
distribution.

The results presented here go beyond these initial models
by considering an arbitrary threshold where blocking is
triggered by the simultaneous presence of N > 2 particles. In
addition, the particle ingress is no longer limited to a Poisson
distribution but follows a general distribution of entry times.
This necessitated the introduction of an integral representation
of the n-particle survival probabilities.

For N = 3, we have presented exact solutions of the
model for the Poisson distribution and obtained expressions
for all physically relevant quantities, including the survival
probability, the mean time to blockage [Eqs. (40) and (41)], the
statistics of exiting particles, and the exiting flux. In addition,
we have also investigated the interparticle time correlation
functions.

For N � 4 obtaining an exact solution appears to be very
challenging, but we have analyzed the generic features of the
model using numerical simulation. One of the key results is
that the mean time to blockage for small intensity and arbitrary
N diverges as a power of N [Eq. (54)]. This results from the
fact that as N increases, the channel exerts a weaker constraint
on the incoming stream and blocking is less likely. A similar
trend occurs for the exiting flux, which remains nearly constant
for times comparable to the mean blocking time.

Future directions include the development of a multichannel
model that can be applicable to filtration phenomenon [1], and
to consider systems with diffusive motion that are relevant for
transport through biological or synthetic nanotubes [32].
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APPENDIX A: Gr (z,t,u) FOR THE N = 3 MODEL

Multiplying Eq. (32) by zn−1 and summing over n, one
obtains that

Gr (z,t,u) = 1 + z

∫ ∞

max(τ−t,0)
dt ′ψ(t ′)e−ut ′Gr (z,t ′,u). (A1)

For t > τ Gr (z,t,u) is constant, i.e., Gr (z,t,u) =
Gr (z,τ,u). For t < τ , it is convenient to express the time
evolution of Gr (z,t,u) as follows: taking the first two partial
derivatives of G(z,t,u) with respect to t , one obtains the
following ordinary differential equation:

∂2Gr (z,t,u)

∂t2
=

(
− ψ̇(τ − t)

ψ(τ − t)
+ u

)
∂Gr (z,t,u)

∂t

− z2ψ(τ − t)ψ(t)e−uτGr (z,t). (A2)

By using Eq. (A1), the differential is supplemented by two
boundary conditions:

Gr (z,0,u) = 1 + zGr (z,τ,u)
∫ ∞

τ

dt ′ψ(t ′)e−ut ′

(A3)
∂Gr (z,t,u)

∂t

∣∣∣∣
t=τ

= zψ(0)Gr (z,0,u).

Equation (A2) cannot be solved analytically in general, but
for a Poisson distribution it becomes

∂2Gr (z,t,u)

∂t2
= (λ+u)

∂Gr (z,t,u)

∂t
−(zλ)2e−(u+λ)τGr (z,t,u),

(A4)

with the boundary condition given by Eq. (A3) with
ψ(t) = e−λt .

The solutions of the characteristic equation of Eq. (A4) are

s1,2(z,u) = (λ + u) ±
√

(λ + u)2 − 4(zλ)2e−(λ+u)τ

2
, (A5)

and the generating function is given by Gr (z,t,u) =
A(z,u)es1(z,u)t + B(z,u)es2(z,u)t , where A(z,u) and B(z,u) are
determined by Eq. (A3), adapted to a Poisson process.

APPENDIX B: Gm(z,t,u) FOR THE N = 3 MODEL

Inserting Eq. (76) into Eq. (77), we obtain

Gm(z,t,u) = 1 + z

∫ ∞

max(τ−t,0)
dt ′Gm(z,t ′,u)

×λe−[(u+λ)t ′−λ max(τ−t,0)]. (B1)

For t > τ the generating function is constant, Gm(z,t,y) =
Gm(z,τ,u). For t < τ , by taking the two partial derivatives of
the integral equation Eq. (B1), one obtains

∂2Gm(z,t,u)

∂2t
= zλue−u(τ−t)

(
Gm(z,τ − t,u)

+ ∂Gm(z,τ − t,u)

∂t

)
− λ

∂G(z,t,u)

∂t
. (B2)
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Simplifying, we obtain

∂2Gm(z,t,u)

∂t2
= u

∂Gm(z,t,u)

∂t
+ [uλ + λ2 − (λz)2e−uτ ]Gm(z,t,u) − uλ − λ2 − λ2ze−u(τ−t), (B3)

with boundary conditions [from Eq. (B1)]

Gm(z,0,u) = 1 + zGm(z,τ,u)
λe−uτ

u + λ
(B4)

∂Gm(z,t,u)

∂t

∣∣∣∣
t=τ

= zλGm(z,0,u) − λ[Gm(z,τ,u) − 1],

whose solution is given by

Gm(z,t,u) = A1(z,u)es1t + B1(z,u)es2t + (uλ + λ2 + λ2ze−u(τ−t))

uλ + λ2 − (λz)2e−uτ
, (B5)

where s1,2 are the roots of the characteristic equation

s1,2 = 1
2 [u ±

√
(u + 2λ)2 − 4z2λ2e−uτ ]. (B6)

Finally, we have

Gm(z,t,u) =
(

A1(z,u)es1t + B1(z,u)es2t + (uλ + λ2 + λ2ze−u(τ−t))

uλ + λ2 − (λz)2e−uτ

)
θ (τ − t) + Gm(z,τ,u)θ (t − τ ), (B7)

where A(z,u) and B(z,u) are determined by the boundary conditions [Eq. (B4)].
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