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Fluctuation analysis of time-averaged mean-square displacement for the Langevin equation
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The mean-square displacement (MSD) is widely utilized to study the dynamical properties of stochastic
processes. The time-averaged MSD (TAMSD) provides some information on the dynamics which cannot be
extracted from the ensemble-averaged MSD. In particular, the relative standard deviation (RSD) of the TAMSD
can be utilized to study the long-time relaxation behavior. In this work, we consider a class of Langevin equations
which are multiplicatively coupled to time-dependent and fluctuating diffusivities. Various interesting dynamics
models such as entangled polymers and supercooled liquids can be interpreted as the Langevin equations with
time-dependent and fluctuating diffusivities. We derive a general formula for the RSD of the TAMSD for the
Langevin equation with the time-dependent and fluctuating diffusivity. We show that the RSD can be expressed
in terms of the correlation function of the diffusivity. The RSD exhibits the crossover at the long time region.
The crossover time is related to a weighted average relaxation time for the diffusivity. Thus the crossover time
gives some information on the relaxation time of fluctuating diffusivity which cannot be extracted from the
ensemble-averaged MSD. We discuss the universality and possible applications of the formula via some simple
examples.
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I. INTRODUCTION

The mean-square displacement (MSD) is one of the most
commonly utilized quantities to characterize the dynamical
properties in experiments, theories, and simulations. Because
a single-particle trajectory is a stochastic variable, we need to
perform averaging operations. As the averaging operation, the
ensemble average is widely employed. The ensemble-averaged
MSD (EAMSD) is utilized, for example, to characterize
the dynamical properties of particles. In many systems, the
EAMSD shows a power-law type time dependence, i.e., the
anomalous diffusion:

〈[r(�) − r(0)]2〉 ∝ �α. (1)

Here r(t) is a position of a particle at time t , � is the time
difference, 〈. . . 〉 represents the ensemble average, and α > 0 is
the exponent which characterizes the diffusion behavior (α <

1, α = 1, and α > 1 correspond to the subdiffusion, normal
diffusion, and superdiffusion, respectively). The anomalous
behavior is observed in various systems ranging from a charge
carrier transport in amorphous material [1], light diffusion [2],
and polymeric materials [3] to biological transports [4–9]. The
diffusion behavior will depend on the time scale, and thus the
exponent α may take several different values depending on �.
For example, in entangled polymers, the EAMSD of a segment
exhibits four different regions which reflect the crossovers
between different characteristic relaxation time scales [3]. In
supercooled liquids, the EAMSD of a glass-forming particle
strongly depends on the temperature, and it shows a transient
plateau. This is considered as evidence of the cage effect,

which constrains the motion of the particle into a narrow
region [10].

Although the EAMSD provides various useful information
on the dynamical properties, some properties cannot be
extracted from the EAMSD. For example, nonergodic behavior
cannot be analyzed from the EAMSD. For such a purpose, the
time-averaged MSD (TAMSD) can be utilized instead. The
TAMSD is defined as

δ2(�; t) ≡ 1

t − �

∫ t−�

0
dt ′ [r(t ′ + �) − r(t ′)]2, (2)

where � and t are the time difference and the observation time,
respectively. If the system is ergodic and the time average is
taken for a sufficiently long observation time (at the limit
of t → ∞), the TAMSD converges to the EAMSD with
the equilibrium ensemble [11]. In molecular simulations and
single-particle-tracking experiments, it is not easy to calculate
the EAMSD. Instead, the TAMSD (or the average of the
TAMSD over different realizations and/or particles) is widely
used. If the system is nonergodic and/or the observation time
is not sufficiently long, the TAMSD does not coincide to the
EAMSD. In such a case, the TAMSD can be interpreted as a
stochastic variable. In some stochastic models of anomalous
diffusion, such a randomness is intrinsic [12–14]. In other
words, TAMSDs remain random even when the observation
time t goes to infinity. Such an intrinsic randomness of the
TAMSDs will be related to large fluctuations of the TAMSDs.
(The large fluctuations are actually observed in single-particle-
tracking experiments in living cells [5–9].) Thus it is important
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to calculate the statistical quantities such as the average and
standard deviation of the TAMSD.

The magnitude of the fluctuation of the TAMSD
can be quantitatively characterized by the relative fluc-
tuation (RF) [15,16] or the relative standard deviation
(RSD) [12,14,17]:

R(t ; �) ≡ 〈|δ2(�; t) − 〈δ2(�; t)〉|〉
〈δ2(�; t)〉

, (3)

�(t ; �) ≡
√

〈[δ2(�; t) − 〈δ2(�; t)〉]2〉
〈δ2(�; t)〉

. (4)

The RF and RSD behave in a similar way, and it is reported that
these quantities can characterize some dynamical properties
of the system [15–17]. (If the second moment of δ2(�; t)
diverges, then the RSD diverges and the RF should be utilized
to characterize the fluctuation of the TAMSD [11]. In some
literature, the squared RSD is utilized as the ergodicity
breaking parameter [14,18–20].) The RF and RSD analyses
for the TAMSD are useful if the systems are nonergodic. The
t dependence of the RF or RSD can be related to the ergodic
property of the system. For example, Deng and Barkai [20]
analyzed the RSD of the TAMSD for the fractional Langevin
equation and the fractional Brownian motion. They obtained
the analytic expression for the RSD and showed that the
behavior of the RSD depends on the Hurst parameter in a
nontrivial way.

The RF and RSD analyses are also useful to study ergodic
systems. In the recent work [15], the authors applied the RF
analysis to the center-of-mass (c.m.) motion in entangled
polymer systems [3]. In entangled polymer systems, the RF
of the TAMSD shows the crossover behavior:

R(t ; �) ∝
{

t−β (t � τ ′
c),

t−0.5 (t � τ ′
c).

(5)

Here β < 0.5 is the constant and τ ′
c is the characteristic

crossover time. The crossover time τ ′
c behaves in the same

way as the longest relaxation time (the disengagement time)
τd . This means that the crossover time τ ′

c characterizes the
long-time relaxation in entangled polymer systems. (It would
be natural to expect that the RSD of the TAMSD also shows the
similar crossover behavior, although the data are not shown in
the previous work.) Interestingly, the EAMSD does not show
such a crossover around the longest relaxation time, and thus
we consider that the TAMSD is actually useful for the analysis
of the long-time relaxation behavior in ergodic systems.
However, the reason why τ ′

c characterizes the long-time
relaxation behavior has not been theoretically clarified yet.

One possible explanation is that the crossover originates
from the coupling between the dynamic equation for the
center of mass and the end-to-end vector [3]. In the reptation
model, a tagged polymer chain is modeled as a polymer chain
confined in a tubelike obstacle. The polymer chain is allowed to
move only along the tube. Due to this constraint, the dynamic
equation and the relaxation behavior become nontrivial. (The
reptation model can qualitatively reproduce the characteristic
dynamical properties, such as the relaxation modulus.) The
dynamic equation for the center of mass of the chain can be

explicitly expressed as [21]

d rc.m.(t)

dt
=

√
6Dc.m.

〈 p2〉 p(t)w(t). (6)

Here rc.m.(t) and p(t) are the center-of-mass position and the
end-to-end vector of an entangled polymer chain, respectively,
Dc.m. is the diffusion coefficient for the center of mass, and
w(t) is the one-dimensional Gaussian white noise. The first
and second moments of w(t) are given as

〈w(t)〉 = 0, 〈w(t)w(t ′)〉 = δ(t − t ′). (7)

One important property of Eq. (6) is that the noise w(t) is mul-
tiplicatively coupled to another stochastic variable p(t). Due
to this multiplicative coupling, the magnitude of the random
motion of rc.m.(t) directly depends on p(t). Although random
variables rc.m.(t) and p(t) are not statistically independent of
each other, the coupling between them is expected to be rather
weak. (This is because the dynamics of the end-to-end vector
strongly depends on the resampling of new segments at chain
ends, and this resampling process is not directly coupled to the
dynamics of the center of mass.) If we simply assume that they
are statistically independent random variables (the decoupling
approximation), we can interpret Eq. (6) as the Langevin
equation with a time-dependent and fluctuating diffusivity.
Naively, we expect that such a multiplicative coupling causes
the nontrivial crossover behavior of the RF.

Similar time-dependent and fluctuating diffusivity has been
reported for other systems. For example, the diffusion of
molecules in supercooled liquids is known to be heteroge-
neous [22–25]. This “dynamic heterogeneity” can be modeled
by employing time-dependent fluctuating diffusion coefficient.
The simplest model may be the two-state model [22] in which
a tagged particle takes the slow state or fast state, and the
diffusion coefficients of the slow and fast states differ. The
intermittent search strategies [26] also consist of fast and slow
diffusion modes. They are considered to be important for rapid
detection of targets in biological systems such as foraging
behavior of animals and reaction pathways of DNA-binding
proteins to the binding sites [26]. These models can be also
interpreted as the Langevin equations with time-dependent and
fluctuating diffusivities.

Therefore, the analysis for a class of Langevin equations
with time-dependent and fluctuating diffusivity will provide
useful information for several different systems. From the RF
analysis result for entangled polymers, the RF and RSD of
the TAMSD are expected to be especially useful to quantify
the dynamical behavior. However, as far as the authors know,
theoretical analyses of the TAMSD for systems with time-
dependent and fluctuating diffusivities have not been reported.
In this work, we first introduce a class of Langevin equations
with time-dependent and fluctuating diffusivity. Such a class
of Langevin equations has not been studied in detail. Then
we analyze the RSD of the TAMSD and derive a general
formula for the RSD. We show that the RSD can be related
to the time correlation function of the diffusivity. Our formula
gives the relation between the crossover time of the RSD and
the relaxation time of the diffusivity. The crossover time is
expressed in terms of a weighted average relaxation time of the
diffusivity. We show the universality of our formula through
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some analytically solvable examples, the (pure) reptation
model for entangled polymers and the two-state model for the
supercooled liquid with the Markovian and non-Markovian
transition dynamics. Finally, we compare our analysis method
with other analysis methods and discuss the properties of
our method. We also discuss the connection between the
time-dependent and fluctuating diffusivity and other models.

II. MODEL

In this work, we consider a class of Langevin equations with
a time-dependent and fluctuating diffusivity. As we mentioned,
both the reptation model and the two-state model can be inter-
preted as such Langevin equations. In the reptation model [21],
the one-dimensional thermal noise is multiplicatively coupled
to the three-dimensional end-to-end vector. On the other hand,
in the two-state model, the three-dimensional thermal noise
is multiplicatively coupled to the scalar diffusion coefficient.
Although they are not equivalent, we may interpret these
models are special cases of a more general Langevin equation.

We consider a general multiplicatively coupled Langevin
equation model in an n-dimensional space [27]. For simplicity,
we assume that no external force is applied. The dynamic
equation can be expressed as

d r(t)

dt
=

√
2B(t) · w(t). (8)

Here r(t) is the position, B(t) is the noise coefficient matrix,
and w(t) is the Gaussian white thermal noise. The first and
second moments of w(t) are

〈w(t)〉 = 0, 〈w(t)w(t ′)〉 = δ(t − t ′)1, (9)

where 〈. . . 〉 represents the ensemble average and 1 is the
n-dimensional unit tensor. We assume that B(t) obeys a
stochastic process which is stationary and independent of r(t)
and w(t). Therefore, two independent stochastic processes
[B(t) and w(t)] are multiplicatively coupled in Eq. (8). As
we show below, our model does not exhibit the anomalous
diffusion process, since B(t) obeys a stationary stochastic
process. (A nonstationary process of B(t), such as the process
with explicit time dependence, generates anomalous diffu-
sion [28–30]. In the following, we consider only stationary
processes.)

The dynamics model for the noise coefficient matrix can
be any stochastic processes, such as the Langevin equation
and the jump dynamics. The details are not required for the
analysis in the next section. We need only several ensemble-
averaged correlation functions. For convenience, we define the
instantaneous diffusion coefficient matrix D(t) as

D(t) ≡ B(t) · BT(t). (10)

Conversely, we may interpret Eq. (10) as the definition of the
noise coefficient matrix. That is, if we have the stochastic
process for the instantaneous diffusion coefficient D(t), then
the noise coefficient matrix can be defined as the matrix square
root (such as the Cholesky decomposition). The instantaneous
diffusion coefficient matrix D(t) should be positive definite,
and this condition guarantees the existence of the matrix square
root.

The EAMSD is simply calculated to be

〈[r(�) − r(0)]2〉

= 2
∫ �

0
ds

∫ �

0
ds ′ 〈B(s) · BT(s ′)〉 : 〈w(s)w(s ′)〉

= 2 tr〈D〉�, (11)

where the symbol “:” means a double dot product of tensors,
i.e., X : Y ≡ ∑

ij XijYij for second rank tensors X and Y . In
the last line of Eq. (11), we utilized the fact that the ensemble
average of the instantaneous diffusion matrix becomes time-
independent due to the time-translational invariance: 〈D(t)〉 =
〈D〉. (The ensemble average of the instantaneous diffusion
coefficient is independent of time t , due to the stationarity.) If
we assume 〈D〉 to be isotropic, we can simply express 〈D〉 as

〈D〉 = Deff1, (12)

with Deff being the effective diffusion coefficient. Then
Eq. (11) is rewritten as:

〈[r(�) − r(0)]2〉 = 2nDeff�, (13)

where n is the dimension of the system.
The multiplicatively coupled Langevin equation shown

above cannot be expressed as the generalized Langevin
equation (GLE) with the Gaussian noise. Fox [31] showed
that a GLE with the Gaussian noise can be characterized
only by its memory kernel. Therefore, if one obtains the
EAMSD, the corresponding GLE is uniquely determined.
Because our model gives only the normal diffusion behavior,
the corresponding GLE would become a normal Langevin
equation with a Gaussian white noise which has no memory
effect. This apparent inconsistency comes from the assumption
that the noise is Gaussian. (As shown in the next section, the
fourth-order moment of the noise behaves in a way that differs
qualitatively from the Gaussian noise.) The simple dynamics
models such as the reptation model and the two-state model
cannot be expressed as the GLE with the Gaussian noise.

If the force is applied, we need to add the term proportional
to the force F(t) to the Langevin equation. Then Eq. (8) is
modified as

d r(t)

dt
= �(t) · F(t) +

√
2B(t) · w(t), (14)

where �(t) is the time-dependent instantaneous mobility
matrix. If we assume that the fluctuation-dissipation relation
of the second kind holds for the instantaneous mobility, we
have

�(t) = 1

kBT
D(t) = 1

kBT
B(t) · BT(t). (15)

with kB and T being the Boltzmann constant and the absolute
temperature, respectively. Equations (14) and (15) will be
useful to study a particle trapped in a potential or driven by an
external force.

Before we proceed to the detailed analysis, we show that
our general model reduces to the reptaion and two-state models
for some special cases. For a case where n = 3 and the noise
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coefficient matrix is given as

B(t) =
√

3Dc.m.

〈 p2〉
p(t) p(t)

| p(t)| , (16)

Eq. (8) reduces to the reptation model. By introducing the
one-dimensional Gaussian white noise w′(t) as

w′(t) ≡ p(t)

| p(t)| · w(t), (17)

Eq. (8) can be rewritten as follows:

d r(t)

dt
=

√
6Dc.m.

〈 p2〉 p(t)w′(t). (18)

The first- and second-order moments of w′(t) become

〈w′(t)〉 = 0, 〈w′(t)w′(t ′)〉 = δ(t − t ′). (19)

Equations (18) and (19) are equivalent to the reptation model
[Eqs. (6) and (7)]. For the case where n = 3 and the noise
coefficient matrix is isotropic as

B(t) =
√

2D(t)1, (20)

Eq. (8) simply reduces as follows:

d r(t)/dt =
√

2D(t)w(t). (21)

This can be interpreted as the two-state model for supercooled
liquids or the trap model if it is combined with appropriate
transition dynamics for D(t).

III. THEORY

The EAMSD cannot extract the information on the
instantaneous diffusion coefficient. As we mentioned, the
fluctuation analysis of the TAMSD is useful to characterize
the long-time relaxation behavior of entangled polymers. In
the reptation model, the end-to-end vector is multiplicatively
coupled to the thermal noise in the Langevin equation. Naively,
the fluctuation of the TAMSD is expected to be governed
by the dynamics of the end-to-end vector. In the general
Langevin equation model with time-dependent diffusivity, the
fluctuation of the TAMSD can be related to the relaxation
behavior of the noise coefficient matrix or the instantaneous
diffusion coefficient matrix. In this section, we analyze the
RSD of the TAMSD and derive a formula which relates the
RSD and the time correlation functions of D(t).

Because we are considering a stationary process for B(t),
the ensemble average can be evaluated rather straightfor-
wardly. By taking an ensemble average in Eq. (2), we have

〈δ2(�; t)〉 = 〈[r(�) − r(0)]2〉 = 2 tr 〈D〉�, (22)

where the time-translational invariance 〈[r(t ′+�)−r(t ′)]2〉 =
〈[r(�) − r(0)]2〉 and Eq. (11) have been utilized. Then the
RSD of the TAMSD [Eq. (4)] for the Langevin equation (8) is
given by

�(t ; �) =
√

〈[δ2(�; t)]2〉
4(tr 〈D〉)2�2

− 1. (23)

We need the explicit expression of 〈[δ2(�; t)]2〉 to cal-
culate the RSD. We can obtain a rather simple expression
for 〈[δ2(�; t)]2〉, although the detailed calculations become
lengthy. After straightforward but long calculations, we have

〈[δ2(�; t)]
2〉 = 8

(t − �)2

∫ t−�

0
dt ′

∫ t ′

0
dt ′′

∫ t ′+�

t ′
ds

∫ t ′′+�

t ′′

× ds ′ 〈tr D(s) tr D(s ′)〉

+ 32

(t − �)2

∫ t−�

0
dt ′

∫ t ′

max(0,t ′−�)
dt ′′

∫ t ′′+�

t ′

× ds

∫ s

t ′
ds ′ tr〈D(s) · D(s ′)〉. (24)

See Appendix A for detailed calculations. We consider
the properties of two correlation functions in Eq. (24),
〈tr D(t) tr D(t ′)〉 and tr〈D(t) · D(t ′)〉. We assume that the
stochastic process B(t) is ergodic, and thus at the limit of
|t − t ′| → ∞, these correlation functions can be decoupled:

〈tr D(t) tr D(t ′)〉 → (tr〈D〉)2, (25)

tr〈D(t) · D(t ′)〉 → tr (〈D〉 · 〈D〉). (26)

It would be convenient to rewrite two correlation functions by
using Eqs. (25) and (26), as follows:

〈tr D(t) tr D(t ′)〉 ≡ (tr〈D〉)2[1 + ψ1(t − t ′)], (27)

tr〈D(t) · D(t ′)〉 ≡ n tr (〈D〉 · 〈D〉)
[

1

n
+ ψ2(t − t ′)

]
, (28)

where ψ1(t) and ψ2(t) represent four-body two-time correla-
tion functions. Both ψ1(t) and ψ2(t) are symmetric in t and
approach to zero at |t | → ∞. [For one-dimensional systems
(n = 1), ψ1(t) = ψ2(t). For n � 2, generally ψ1(t) and ψ2(t)
do not coincide.]

By combining Eqs. (23), (24), (27), and (28), the squared
RSD is expressed as

�2(t ; �) = 2

�2(t − �)2

∫ t−�

0
dt ′

∫ t ′

0
dt ′′

∫ t ′+�

t ′
ds

∫ t ′′+�

t ′′

× ds ′ ψ1(s − s ′)

+ 8C

�2(t − �)2

∫ t−�

0
dt ′

∫ t ′

max(0,t ′−�)
dt ′′

∫ t ′′+�

t ′

× ds

∫ s

t ′
ds ′

[
1

n
+ ψ2(s − s ′)

]
, (29)

with C being defined as

C ≡ n
tr (〈D〉 · 〈D〉)

(tr〈D〉)2
. (30)

Note that if the average diffusion coefficient matrix 〈D〉
is isotropic, we have C = 1. In many practical cases, the
observation time t is much longer than the time difference
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�. For such a case (t 
 �), Eq. (29) is simplified as follows:

�2(t ; �)≈ 2

�2t2

∫ t

0
ds ′′ (t−s ′′)

∫ �

0
ds

∫ �

0
ds ′ ψ1(s−s ′+s ′′)

+ 4C

3n

�

t
+ 8C

�2t

∫ �

0
ds

∫ s

0
ds ′ (s − s ′)ψ2(s ′).

(31)

Moreover, if the characteristic relaxation time of ψ1(t) and
ψ2(t), τ , is much longer than � (τ 
 �), Eq. (31) can be
further approximated:

�2(t ; �) ≈ 2

t2

∫ t

0
ds (t − s)ψ1(s). (32)

Thus the squared RSD becomes approximately independent of
ψ2(t). If ψ1(t) decays sufficiently fast as t increases (strictly
speaking, if ψ1(t) decays faster than t−1), then we have the
following asymptotic forms:

�2(t ; �) ≈
{

ψ1(0) (t � τ ),
2
t

∫ ∞
0 ds ψ1(s) (t 
 τ ).

(33)

Equations (32) and (33) are the main result of this section. For
the case of t 
 τ , the RSD behaves as �(t ; �) ∝ t−1/2, which
corresponds to the Gaussian fluctuation. From Eq. (32), we
find that the t dependence of the RSD is essentially determined
only by ψ1(t). Therefore the crossover time τc is related only
to ψ1. From Eq. (33), the crossover time τc is estimated as

τc ≈ 2

ψ1(0)

∫ ∞

0
ds ψ1(s). (34)

For a single exponential type relaxation [ψ1(t) = ψ1(0)e−t/τ ],
this crossover time becomes:

τc ≈ 2τ. (35)

As expected, the crossover time is proportional to the relax-
ation time, although they differ by the numerical factor 2. In
general, the correlation function ψ1(t) cannot be expressed as
a single exponential form but a sum of multiple exponential
relaxation modes. Even in such a case, a similar relation
between the relaxation time and the crossover time holds.
For such a case, the relaxation time τ in Eq. (35) is
replaced by the weighted average relaxation time for multiple
exponential relaxation modes (with the weights proportional
to the amplitude of modes). This result justifies the use of the
crossover time as the characteristic relaxation time for systems
with time-dependent diffusivities, as long as ψ1(t) reflects the
characteristic relaxation at the long time scale. As shown in
Appendix B, the RF behaves in a similar way to the RSD. Thus
we consider that the empirical relation between the crossover
time and the longest relaxation time in the entangled polymers
in the previous work [15] is theoretically supported by this
work.

Before we proceed to calculations for some analytically
solvable models, we briefly consider the behavior of the RSD
in the case where �/t is not sufficiently small. In such a case,
the second and third terms in the right-hand side of Eq. (31) are
not always negligible. As before, we approximate the integrand
in the third term in the right-hand side of Eq. (31) by ψ2(0).

Then we have

�2(t ; �) ≈ ψ1(0) + 4C

3

[
1

n
+ ψ2(0)

]
�

t
. (36)

If t/� � 4C[1/n + ψ2(0)]/3ψ1(0), then the contribution of
the second term in the right-hand side of Eq. (36) becomes non-
negligible. Roughly speaking, this term gives the correction,
which is proportional to (�/t)1/2, to the RSD. It should be
noted here that the � dependence of this correction is rather
simple. We may utilize the RSD data with different values of
� to obtain the data at the limit of � → 0 by the extrapolation.
In what follows, we will neglect this correction term for
simplicity.

IV. EXAMPLES

In this section, we apply the general formula [Eqs. (32)
and (33) together with Eq. (27)] obtained in the previous
section to some analytically solvable models. We show the
explicit forms of the RSD and discuss how we can relate the
long-time relaxation behavior of systems to time-dependent
diffusivity from the fluctuation of the TAMSD.

A. Reptation model for entangled polymer

As a simple model of entangled polymers, we consider the
(pure) reptation model [3]. In the reptation model, the motion
of a tagged polymer chain is modeled as one of a polymer chain
in a tubelike obstacle. The dynamic equation is expressed as
a one-dimensional Langevin equation, and various dynamical
properties can be analytically calculated. For example, we can
calculate the shear relaxation modulus, the end-to-end vector
relaxation function, and the EAMSD.

As we mentioned, the dynamic equation for the center
of mass in the reptation model is given as Eq. (6). The
instantaneous diffusion matrix D(t) becomes

D(t) = 3Dc.m.
p(t) p(t)

〈 p2〉 . (37)

The effective diffusion coefficient Deff simply coincides with
Dc.m.:

Deff = 1

3
tr〈D〉 = Dc.m.. (38)

Under the decoupling approximation, the reptation model
reduces to the Langevin equation with the time-dependent and
flucuating diffusivity, and the general formula can be utilized.
The correlation function ψ1(t) [Eq. (27)] becomes

ψ1(t) = 〈 p2(t) p2(0)〉
〈 p2〉2

− 1. (39)

We need to calculate 〈 p2(t) p2(0)〉 to obtain the explicit ex-
pression for the RSD of the TAMSD. The four-body two-time
correlation function ψ1(t) can be analytically evaluated. After
long but straightforward calculations, we have the following
form for ψ1(t):

ψ1(t) = 16

3π2

∑
k:odd

1

k2
E2(k2t/τd ). (40)
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Here Em(z) is the (generalized) exponential integral of the
m-th order [32], and τd is the disengagement time [3]
which corresponds to the longest relaxation time in the
reptation model. The detailed calculations are summarized in
Appendix C.

The behavior of the RSD of the TAMSD in the reptation
model can be calculated from Eqs. (32), (33), and (40). The
asymptotic forms can be calculated as follows. At t = 0, ψ1(t)
simply becomes

ψ1(0) = 16

3π2

∑
k:odd

1

k2
= 2

3
. (41)

Here we have used E2(0) = 1. The integral of ψ1(t) over t is
calculated as∫ ∞

0
dt ψ1(t) =

∑
k:odd

16τd

3π2k4

∫ ∞

0
dz E2(z) = π2τd

36
, (42)

where we have used the integral formula for the exponential
integral [32]: ∫ ∞

0
dz E2(z) = E3(0) = 1

2
. (43)

From Eqs. (41) and (42), we have the following asymptotic
forms for the RSD of the TAMSD:

�(t ; �) ≈
⎧⎨
⎩

√
2
3 (t � τd ),√
π2τd

18t
(t 
 τd ).

(44)

The crossover time τc is then estimated as

τc = π2τd

12
≈ 0.822τd . (45)

Thus we find that τc is actually proportional to τd . Moreover,
τc is closer to τd than the case of the single relaxation
time. This result is consistent with our previous simulation
results for the reptation model [15]. (The crossover time of
the RF, τ ′

c, is almost the same as the disengagement time.)
The analytic results shown above are obtained under the
decoupling approximation, which we employed without any
justifications. The decoupling approximation can be justified
for the calculation of the RSD of the TAMSD, and thus
Eqs. (44) and (45) can be also justified. See Appendix D.

Here it would be worth noting that the integral in Eq. (32)
can be analytically evaluated (although the obtained expression
becomes complicated). After straightforward calculations, we
have the following explicit expression for the squared RSD:

�2(t ; �) = π2τd

18t
− π4τ 2

d

270t2
+ 32τ 2

d

3π2t2

∑
k:odd

1

k6
E4(k2t/τd ).

(46)
This reduces to two asymptotic forms shown in Eq. (44) at
t � τd and t 
 τd .

To validate our result, we perform a simulation for the
discretized version of the reptation model (the discrete rep-
tation model) and calculate the RSD of the TAMSD of the
center of mass. The dynamics of an entangled polymer is
modeled by a stochastic jump process. A polymer chain is
expressed as a series of discrete tube segments which have
the constant size. The chain randomly moves inside the tube

10-1

100

102 103 104 105 106 107

Σ(
t;Δ

)

t / τl

simulation
theory

asymptotic

FIG. 1. The RSD of the TAMSD of a center of mass in the discrete
reptation model. The number of tube segments Z is Z = 80 and the
time difference � is � = 10τl . τl is the characteristic time of the
longitudinal motion of a segment along the tube. Symbols represent
the kinetic Monte Carlo simulation data. The dotted and dashed curves
represent the theoretical prediction [Eq. (46)] and its asymptotic forms
[Eq. (44)].

(the reptation motion), and the end segments are stochastically
resampled. (The details of the model and simulation method
are described in the previous work [15].) We show the RSD of
the TAMSD for the number of tube segments per chain Z = 80
in Fig. 1. The time difference � is taken to be � = 10τl , where
τl is the characteristic time scale for the longitudinal motion
of a segment along the tube. We observe that our analytic
expression [Eq. (46)] and its asymptotic forms [Eq. (44)] are
in good agreement with the simulation result except for the
small t region. This result supports the validity of our general
formula [Eq. (32)] and its asymptotic forms [Eq. (33)].

B. Two-state model for supercooled liquid

The dynamics of supercooled liquids have been extensively
studied by experiments, theories, and simulations [22–25]. In
the molecular dynamics (MD) simulations, the motion of each
particle can be observed and various statistical quantities can
be calculated. One important finding by the MD simulations
is the “dynamic heterogeneity” [33,34]. The mobility or
the diffusivity of a particle strongly fluctuates spatially and
temporally. The dynamic heterogeneity is considered as a
characteristic property of supercooled or glassy liquids. Many
theoretical and experimental studies have been conducted to
observe and characterize the dynamic heterogeneity. The two-
state model is a simple and analytically solvable theoretical
model which takes into account the dynamic heterogene-
ity [22].

In the two-state model, dynamics of a tagged particle is
considered. The position of the tagged particle at time t , r(t),
obeys the following Langevin equation:

d r(t)

dt
=

√
2D(t)w(t). (47)

Here D(t) is the time-dependent diffusion coefficient. The
particle has a state and the state is time dependent. We express
the state of the particle at time t as h(t), and this h(t) can take
either the fast (f ) or slow (s) state. The fast and slow states
have different diffusion coefficients, and thus the diffusion
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coefficient D(t) is expressed as

D(t) =
{
Df (for h(t) = f ),

Ds (for h(t) = s).
(48)

Here Df and Ds are diffusion coefficients of the fast and slow
states (Df > Ds). We describe the probability that the particle
is at the state h at time t as Ph(t). The four-body two-time
correlation function ψ1(t) is given by

ψ1(t) ≡ 〈D(t)D(0)〉
〈D〉2

− 1. (49)

We express equilibrium fraction (equilibrium probability) of
the state h as φh (φh ≡ 〈Ph〉). Then the effective diffusion
coefficient can be expressed as

Deff = 〈D〉 = Df φf + Dsφs. (50)

1. Markovian case

We consider the simplest case where the transition dynam-
ics is Markovian. (Even in the Markovian case, the two-state
model can reproduce some interesting dynamic properties
which reflect the dynamic heterogeneity.) In this case, we can
describe the transition dynamics between the fast and slow
states by the following master equation:

d

dt

[
Pf (t)

Ps(t)

]
=

[−kf ks

kf −ks

][
Pf (t)

Ps(t)

]
. (51)

where kf and ks are the transition rates from the fast to slow
states and from the slow to fast states, respectively. The set of
Eqs. (47)–(51) can be solved analytically.

The equilibrium probabilities (equilibrium fractions) of the
fast and slow states, become

φf = ks

kf + ks

, φs = kf

kf + ks

. (52)

The joint probability to find the particle at the state h′ at time 0
and at the state h at time t (the transition probability), Whh′(t),
can be calculated straightforwardly from the coefficient matrix
in Eq. (51). The explicit expression becomes[

Wff (t) Wf s(t)

Wsf (t) Wss(t)

]
=

[
φf + φse

−t/τ φf (1 − e−t/τ )

φs(1 − e−t/τ ) φs + φf e−t/τ

]
,

(53)

where we have defined the characteristic relaxation time as
τ ≡ 1/(kf + ks). The four-body two-time correlation function
ψ1(t) can be expressed by using Whh′(t) and φh as

ψ1(t) = 1

D2
eff

∑
h,h′=f,s

DhDh′Whh′(t)φh′ − 1. (54)

From Eqs. (53) and (54), the explicit form of ψ1(t) becomes

ψ1(t) = φsφf (Df − Ds)2

D2
eff

e−t/τ . (55)

By substituting Eq. (55) into Eq. (32), finally we have a
simple expression for the squared RSD:

�2(t ; �) = φsφf (Df − Ds)2

D2
eff

2τ 2

t2

(
e−t/τ − 1 + t

τ

)
. (56)
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t;Δ
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1

10
theory

FIG. 2. The RSD of the TAMSD of the Markovian two-state
model. The diffusion coefficients and transition rates are Ds = 1,
Df = 10, ks = 1, and kf = 0.1,1, and 10. The time difference is
� = 0.001. Symbols represent the simulation results and solid curves
represent the theoretical prediction.

The asymptotic forms for t � τ and t 
 τ are

�(t ; �) =
⎧⎨
⎩

√
φsφf (Df −Ds )

Deff
(t � τ ),√

φsφf (Df −Ds )

Deff

√
2τ
t

(t 
 τ ).
(57)

From these asymptotic forms, the crossover time τc is
estimated as τc = 2τ . As expected, the crossover time is twice
of the relaxation time τ .

We perform the simulations and compare the simulation
results with the theoretical prediction [Eq. (56) or Eq. (57)].
We show the simulation method later, because the simulation
for the Markovian two-state model can be performed as
a special case of the non-Markovian two-state model. We
perform simulations with Ds = 1, Df = 10, kf = 1, and
several different values of ks (ks = 0.1,1, and 10). Figure 2
shows the simulation results together with the theoretical RSD
[Eq. (56)] and its asymptotic forms [Eq. (57)]. We observe
that the theoretical prediction agrees well with the simulation
data, except for the small-t region. (The deviations at the
small-t region are similar to the case of the reptation model.)
Therefore, we find that our general formula [Eqs. (32) and (33)]
can be applied to the Markovian two-state model, where
the dynamics of the instantaneous diffusivity is described by
the Markovian transition dynamics between two states. The
deviation from the theory at the small t regions is due to the
correction term. From Eq. (36), the relative contribution of
the correction term increases as the plateau value of the RSD
[ψ1(0)] decreases. Actually, we observe that the deviation is
especially large for the case of kf = 0.1, in which the plateau
value is small.

2. Non-Markovian case

Markovian models are varied for ideal systems where the
memory effects are negligible. If the memory effects are
not negligible, the dynamics should be non-Markovian. In
this subsection, we consider the two-state model defined by
Eq. (47) with non-Markovian transition processes between
fast and slow states. Such non-Markovian dynamics will be
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important when comparing the model with experimental data.
To handle non-Markovian processes, we use the renewal
theoretic approach [35,36]. We assume that the system is
initially in the equilibrium state. In other words, we assume
that the mean trapping time does not diverge and the the system
is well equilibrated. In what follows, we mainly use the same
notations as the Markovian case.

We express the trapping-time distribution of the state h

as ρh(τ ). Also, we express the equilibrium trapping-time
distribution as ρ

(eq)
h (τ ). For example, if a particle is in the

fast state at time t = 0, then this particle became the fast
state at some time t = t0 < 0. If t1 is the time when first
transition (to the slow state) occurs, then τ1 = t1 − t0 obeys
the distribution ρf (τ1), but t1 itself does not necessarily obey
ρf (t1). Instead, t1 obeys ρ

(eq)
f (τ ). (We note that the time t1 is

called the forward recurrence time in renewal theory [36].)
The explicit expression for ρ

(eq)
h is [35,36]

ρ
(eq)
h (τ ) = 1

〈τ 〉h

∫ ∞

τ

dτ ′ ρh(τ ′), (58)

where 〈τ 〉h is the average trapping time of the state h, defined
as

〈τ 〉h ≡
∫ ∞

0
dτ τρh(τ ). (59)

[For the exponential distribution, two distributions ρh(τ ) and
ρ

(eq)
h (τ ) coincide.] Equilibrium fractions of each state, φf and

φs , are given by

φf = 〈τ 〉f
〈τ 〉f + 〈τ 〉s , φs = 〈τ 〉s

〈τ 〉f + 〈τ 〉s . (60)

For the case of the exponential trapping-time distribution,
〈τ 〉h = 1/kh and we recover Eq. (52).

The four-body two-time correlation function ψ1(t) can be
calculated in a similar way to the Markovian case. Using the
joint probability of being at state h at time t , starting from at
state h′ at time 0, Whh′(t), ψ1(t) can be expressed as

ψ1(t) = 1

D2
eff

∑
h,h′=f,s

DhDh′[Whh′(t) − φh]φh′ . (61)

Here Deff is the effective diffusion coefficient defined by
Eq. (50).

Although it is difficult to obtain the explicit expression of
ψ1(t), we can obtain the asymptotic forms. For t = 0, the
transition probability simply becomes Whh′(0) = δhh′ and thus
we have

ψ1(0) = φf φs(Df − Ds)2

D2
eff

. (62)

Equation (62) has formally the same form as the Markovian
case [Eq. (55) with t = 0]. This result is physically natural
because we have no transition at t = 0 and the details of the
transition dynamics do not affect ψ1(0), as long as the system
is in equilibrium.

The integral of ψ1(t) becomes as follows:∫ ∞

0
dt ψ1(t) = φf φs(Df − Ds)2

D2
eff

τ̃ . (63)

Here τ̃ is the characteristic relaxation time of the non-
Markovian two-state model and is defined as

τ̃ ≡
(

〈τ 2〉s − 〈τ 〉2
s

〈τ 〉2
s

+ 〈τ 2〉f − 〈τ 〉2
f

〈τ 〉2
f

)
〈τ 〉f 〈τ 〉s

2(〈τ 〉f + 〈τ 〉s) . (64)

(For the exponential trapping-time distribution, we simply
have τ̃ = τ .) The detailed calculations for Eq. (63) are
summarized in Appendix E.

From Eqs. (33), (62), and (63), we have the following
asymptotic forms for the RSD:

�(t ; �) ≈

⎧⎪⎨
⎪⎩

√
φf φs (Df −Ds )

Deff
(t � τ̃ ),

√
φf φs (Df −Ds )

Deff

√
2τ̃
t

(t 
 τ̃ ).
(65)

Equation (65) has almost the same form as the Markovian
case, Eq. (57) [τ in Eq. (57) is replaced by τ̃ ]. Thus our
theory predicts similar crossover behavior as the Markovian
case. The crossover time is estimated as τc = 2τ̃ . Here it
should be emphasized that the correlation function ψ1(t) of
the non-Markovian two-state model is not a single exponential
form. The crossover time depends on the average relaxation
time τ̃ defined in Eq. (64) and thus is not a simple arithmetic
nor harmonic averages of 〈τ 〉f and 〈τ 〉s . Equation (65)
gives only the asymptotic forms for the RSD. The detailed
transition behavior from the constant RSD [�(t ; �) ∝ t0] to
the Gaussian decay [�(t ; �) ∝ t−1/2] can qualitatively differ
from the Markovian case.

To examine the validity of Eq. (65), we perform simulations
for the non-Markovian two-state model and compare the
simulation results with Eq. (65). The simulation scheme
consists of two steps. First, we sample the waiting time τ at the
current state from the waiting time distribution. Second, we
integrate the Langevin equation (47) until the sampled waiting
time. Then we change the state and go back to the first step
and iterate the same procedure. (This simulation scheme can
be applied for the Markovian two-state model if we use the
exponential distribution functions both for the fast and slow
states.)

In this work, we employ the exponential distribution for the
fast state and a nonexponential distribution for the slow state
as follows:

ρf (τ ) = kf e−kf τ , (66)

ρs(τ ) =
∫ ks,1

ks,0

dks kse
−ksτ qs(ks). (67)

Here ks,0 and ks,1 are the lower and upper limits for the
transition rate at the slow state, and qs(ks) is the distribution of
the transition rate. We employ the following power-law type
distribution for qs(ks),

qs(ks) = α − 1

kα−1
s,1 − kα−1

s,0

ks
α−2, (68)

with 0 � α � 1 being the power-law exponent. As a result,
the distribution for the slow state obeys a power law for small
τ and exponential distribution for large τ . (The transition
from a power law to the exponential occurs at τ ≈ k−1

s,0 .)
We set parameters as Ds = 1, Df = 10, kf = 1, ks,1 = 1,
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FIG. 3. The RSD of the TAMSD of the non-Markovian two-
state model. The diffusion coefficients are Ds = 1 and Df = 10. The
waiting time distribution for the fast state is given by the exponential
distribution with kf = 1, and the waiting time distribution for the
slow state is given by the power-law type distribution with ks,1 = 1
and ks,0 = 0.1,0.01, and 0.001. The time difference is � = 0.001.
Symbols represent the simulation results and dashed curves represent
the theoretically predicted asymptotic forms.

α = 0.2. We vary the value of ks,0 as ks,0 = 0.1,0.01, and 0.001
to control the non-Markovian transition dynamics. Figure 3
shows the simulation results together with the theoretically
derived asymptotic forms. The simulation data show clear
crossovers for the RSD, as in the case of the Markovian
two-state model. We observe the asymptotic forms by our
theory [Eq. (65)] agree with the simulation data.

However, because ψ1(t) is not a single exponential form and
has rather broad distribution of relaxation times, the crossover
region becomes broad compared with the Markovian case.
This means that there is some deviations from the asymptotic
form Eq. (33), at the intermediate t region. Especially for the
case of ks,0 = 0.001, the deviation from two asymptotic forms
is relatively large. (Also, as the case of the Markovian case,
the contribution of the correction term is relatively large for
ks,0 = 0.001. This is another reason why the deviation from
the theoretical form is relatively large for ks,0 = 0.001.)

V. DISCUSSIONS

A. Comparison with other analysis methods

We have shown that our general formula for the RSD of the
TAMSD works well for several analytically solvable systems.
Here we compare our analysis method with other methods.
For supercooled liquids, so far, several different quantities
have been employed to analyze the dynamic heterogeneity.

Yamamoto and Onuki [33,34] showed that the van Hove
correlation function can resolve the dynamic heterogeneity.
The van Hove self-correlation function is defined as

Gs(r,�) ≡ 〈δ[r − r(�) + r(0)]〉. (69)

For a relatively short time scale, Gs(r,�) shows non-Gaussian
behavior, due to the dynamic heterogeneity. For a relatively

long time scale, Gs(r,�) approaches the Gaussian behavior,
which corresponds to the ergodic state. Although the van Hove
correlation is useful to qualitatively observe the dynamic het-
erogeneity, it is not easy to quantitatively determine, for exam-
ple, the crossover time directly from the van Hove correlation
function. For such a purpose, scalar quantities are preferred
than distribution functions. To quantify the non-Gaussian
behavior, the so-called non-Gaussianity parameter has been
utilized. The non-Gaussianity parameter is defined as [37–39]

A(�) ≡ n〈[r(�) − r(0)]4〉
(n + 2)〈[r(�) − r(0)]2〉2

− 1. (70)

This parameter becomes nonzero if the distribution of the dis-
placement (the van Hove correlation function) is not Gaussian.
Although the non-Gaussianity parameter can characterize the
long-time relaxation behavior, its explicit expression for the
time-dependent diffusivity model is not simple compared with
our general formula for the RSD, as shown in Appendix F.

Recent simulation and theoretical works show that the four-
point time-space correlation function is an important quantity
in supercooled liquids [25,40–42]. The four-point dynamic
correlation function is defined as

χ4(r,r ′,�) ≡ 〈δρ(r,�)δρ(r,0)δρ(r ′,�)δρ(r ′,0)〉
− 〈δρ(r,�)δρ(r,0)〉〈δρ(r ′,�)δρ(r ′,0)〉, (71)

where δρ(r,t) is the density fluctuation at position r and time
t . The four-point correlation function can also quantify the
dynamic heterogeneity and was analyzed in detail in recent
works. Although the RSD of the TAMSD is not equivalent
to the four-point correlation function, nor the non-Gaussianity
parameter, the RSD of the TAMSD can be utilized in a similar
way to these quantities. As far as the authors know, the RSD
or RF analysis is not performed for MD data of supercooled
liquids. The application of the TAMSD analysis to the MD
simulation data of the supercooled liquids is an interesting
future work. In particular, the comparison of the crossover
time determined from the RSD of the TAMSD with other
characteristic times (such as the α relaxation time) will be
interesting.

Garrahan, Chandler, and coworkers [43–45] analyzed the
“activity” to study the dynamics of supercooled liquids. The
activity is defined as:

K[x] ≡ �

t∑
t ′=0

[r(t ′ + �) − r(t ′)]2. (72)

Here x(t) represents the point in the configuration space,
and � and t are the time step size and the observation
time, respectively. r(t) represents the trajectory of a particle
and it depends on x(t). The summation over t ′ in Eq. (72)
represents the sum taken for every � within the observation
time window (0 < t ′ < t). The activity is essentially the same
as the TAMSD. [The summation over t ′ may be replaced
by the integral over t ′, and then the activity reduces to the
TAMSD except the normalization factor 1/(t − �).] Thus the
activity can be interpreted as a stochastic variable just like
the TAMSD. [The activity is a time-averaged quantity but
explicitly depends on the position in the configuration space.
Naively, we expect that x(t) contains the same information
as B(t) in our model.] Hedges et al. [43] showed that the
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ensemble average of the activity can be utilized as the order
parameter and the glass transition can be interpreted in analogy
to the first-order phase transition. Although their approach
differs from ours, we consider that the fluctuation analysis of
the TAMSD in this work can also provide useful information
for the dynamics of supercooled liquids.

There are other analysis methods which do not utilize
the MSD. For example, to analyze the longest relaxation
time in entangled polymers, the relaxations of the stress and
the end-to-end vector are simple and useful [3]. As already
pointed out in previous work [15], the RF and RSD analyses
give qualitatively similar long-time relaxation behavior as
other analysis methods. Our general formula [Eq. (34)] or
the analytic result for the reptation model [Eq. (45)] gives
the relation between the relaxation time distribution and the
crossover time τc. In general, if the relaxation is not a single
exponential type, τc becomes differ quantitatively from the
characteristic relaxation times determined by other analysis
methods. Thus, the comparison of τc with other relaxation
time data can provide the information on the relaxation time
distribution. For example, in the case of entangled polymers,
the ratio τc/τd (τd is determined from the stress relaxation)
can be utilized as an index for the contribution of nonreptation
type relaxation mechanisms.

The advantage of the RSD analysis is that it directly reflects
the dynamics of the instantaneous diffusivity. From Eq. (32),
the RSD can be directly related to the correlation function
ψ1(t). From Eqs. (27) and (32), we have the following relation:

〈tr D(t) tr D(0)〉
〈tr D〉2

≈ 1

2

∂2

∂t2
[t2�2(t ; �)]. (73)

Equation (73) means that if we have the RSD of the TAMSD
for several different observation times, we can calculate the
correlation function for the time-dependent and fluctuating
diffusivity. As far as the authors know, there is no such analysis
method which gives the correlation function of the diffusivity.
Equation (73) will be especially useful for the analysis of
experimental data, because we cannot directly observe the
diffusivity from the trajectories.

B. Time-dependent diffusivity model and other models

As shown in Sec. II, various dynamics models can be
expressed as the Langevin equation with time-dependent and
fluctuating diffusivity. Here we discuss the relation between
the time-dependent diffusivity model (described in Sec. II) and
other dynamics models.

Łuczka, Niemiec, and Piotrowski [46,47] considered the
randomly interrupted diffusion model, in which the strength of
the noise in the Langevin equation depends on another stochas-
tic process. The time-dependent diffusivity model reduces to
the randomly interrupted diffusion model by tuning the dynam-
ics of the noise coefficient matrix. Fogedby [48] considered
two coupled Langevin equations. Fogedby replaced the time in
a usual Langevin equation by the virtual time and introduced
another Langevin equation for the evolution of the virtual time.
The virtual time may be interpreted as the time-dependent and
fluctuating diffusivity. Thus, we can interpret the Fogedby
model as a special case of the time-dependent and fluctuating
diffusivity model. However, we should note that the Fogedby

model is designed to reproduce the Lévy flight, and thus the
dynamics of the virtual time is assumed to be nonergodic,
which differs from our model. Recently, Jeon, Chechkin, and
Metzler [49] considered a time-dependent diffusion coefficient
model. In their model, the diffusion coefficient simply depends
on time t as D(t) ∝ tα−1 (with α being an exponent). Namely,
the dynamics of the instantaneous diffusion coefficient matrix
is deterministic. Such a dynamics model reproduces the
anomalous diffusion behavior. Using nonergodic dynamics
to the noise coefficient matrix or the instantaneous diffusion
coefficient matrix, we have anomalous diffusion in the time-
dependent and fluctuating diffusivity model.

When the noise coefficient matrix or the instantaneous
diffusion coefficient matrix obeys the discrete jump dynamics,
the diffusion behavior strongly depends to the properties of
the jump dynamics (as shown for the non-Markovian two-state
model in Sec. IV B 2). Such jump dynamics is often modeled as
the continuous-time random walk (CTRW) [50]. The CTRW
is used, for example, as the diffusion model on the random
potential landscape. Klafter and Silbey derived the CTRW for
the diffusion model on randomly occupied lattices by using
the projection operator technique [51]. Here we show that the
two-state model reduces to the CTRW at a certain limit.

We start from the non-Markovian two-state model. In
general, the non-Markovian two-state model does not reduce
to the CTRW, although some aspects of the model are similar
to the CTRW. We consider the special case where Ds = 0.
In this case, the particle does not move when it is in the
slow state. The particle can move freely in the fast state,
whereas the particle is trapped and cannot move in the slow
state. If the average sojourn time in the fast state, 〈τ 〉f , is
very short, then the movement of the particle looks like the
instantaneous and discrete jump. Thus, at the limit of 〈τf 〉 → 0
with Df 〈τf 〉 = (const), the trajectory of the Brownian particle
reduces to that of the CTRW. The step size distribution for the
CTRW is determined from the sojourn time distribution and
the diffusion coefficient of the fast state. The trapping-time
distribution for the slow state directly corresponds to the
waiting time distribution for the CTRW. This can be interpreted
as a simple and complementary derivation of the CTRW from
a microscopic dynamics model.

It would be informative to mention a connection between
the Langevin equation with the time-dependent and fluctuating
diffusivity and the CTRW in the fluctuation analysis. If we take
the limit of 〈τf 〉 → 0, then the crossover of the RSD disappears
because the crossover time τc = 2τ̃ goes to zero at this limit.
Actually, in the CTRW, the RSD does not show the plateau at
the short-time region. (The constant RSD can be observed only
for nonequilibrium initial ensembles.) However, the RF and
RSD in the CTRW [17,52] also show the crossover behavior
somewhat similar to one in the Langevin equation in this work.
As we mentioned, the crossover time τc goes to zero at the limit,
and thus this crossover behavior of the RSD in the CTRW
has a qualitatively different origin from one in the Langevin
equation with the time-dependent and fluctuating diffusivity.
The crossover in the CTRW is related to the cutoff time of
the waiting time distribution [17,52], not to τc in our analysis.
When the waiting time distribution in the CTRW obeys a power
law with an exponential cutoff, the RSD in the short-t region
shows a power-law type behavior �(t ; �) ∝ t−(1−α)/2 (with
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α > 0 being the power-law exponent). This behavior reflects
the information on the trapping-time distribution, and such
a behavior is not considered in the analysis in this work. A
power-law type behavior of the RSD will be observed in our
Langevin model, if the waiting time has the power-law form
in a rather wide range [ks,1/ks,0 
 1 in Eq. (67)]. In fact, as
shown in Fig. 3, the crossover behavior becomes rather broad
in the case of ks,0 = 0.001. Such t dependence is somewhat
similar to one observed in the CTRW.

VI. CONCLUSIONS

We have derived the formula for the RSD of the TAMSD
(which quantifies the fluctuation of the TAMSD) as a function
of the observation time, in the Langevin equation with the time-
dependent and fluctuating diffusivity. From the asymptotic
behavior, a crossover from a constant RSD [�(t ; �) ∝ t0] to
a Gaussian decay [�(t ; �) ∝ t−1/2] is predicted if there is a
characteristic relaxation time of the fluctuating diffusivity. The
asymptotic forms of our formula give the relation between
the crossover time and the relaxation time. The crossover
time is given as the weighted average relaxation time for the
fluctuating diffusivity. Such a characteristic time cannot be
calculated from the EAMSD. Applying the formula to the
reptation model and the two-state models, we have shown
that the crossover time can actually characterize the relaxation
times of the diffusivities. This is because the RSD reflects the
dynamcis of the time-dependent and fluctuating diffusivity.
Our result justifies our previous study [15] in which we have

numerically found that the crossover time can characterize
the long-time relaxation behavior. We also showed that the
(non-Markovian) two-state model reduces to the CTRW at a
certain limit. However, this does not mean that the Langevin
equation with the time-dependent and fluctuating diffusivity
is equivalent to the CTRW. Actually, the behavior of the RSD
of the CTRW differs qualitatively from one of the Langevin
equation models. The RSD analysis extracts important in-
formation for underlying fluctuating diffusion processes. The
RSD can be directly related to the correlation function of the
instantaneous diffusivity, which is difficult to directly extract
from the trajectories. We expect that the analysis of the RSD
of the TAMSD is also useful for more complex systems such
as MD simulations for entangled polymers and supercooled
liquids, single-particle-tracking experiments, and diffusion in
confined systems [53]. The RSD analysis together with other
analysis methods will also give important information.
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APPENDIX A: DETAILED CALCULATIONS FOR ENSEMBLE AVERAGE OF SQUARED
TIME-AVERAGED MEAN-SQUARE DISPLACEMENT

In this Appendix, we show the detailed calculations for the ensemble average of the squared TAMSD, 〈[δ2(�; t)]2〉. From
Eq. (2), 〈[δ2(�; t)]2〉 can be explicitly written in terms of the noise w(t) and the noise coefficient matrix B(t):

〈[δ2(�; t)]2〉 = 2

(t − �)2

∫ t−�

0
dt ′

∫ t ′

0
dt ′′ 〈[r(t ′ + �) − r(t ′)]2[r(t ′′ + �) − r(t ′′)]2〉

= 8

(t − �)2

∫ t−�

0
dt ′

∫ t ′

0
dt ′′

∫ t ′+�

t ′
ds

∫ t ′+�

t ′
ds ′

∫ t ′′+�

t ′′
du

∫ t ′′+�

t ′′
du′

× 〈wi(s)wj (s ′)wk(u)wl(u
′)〉〈Bmi(s)Bmj (s ′)Bnk(u)Bnl(u

′)〉. (A1)

Here we have employed the Einstein summation convention. By utilizing the Wick’s theorem [3], Eq. (A1) can be rewritten as

〈[δ2(�; t)]2〉 = 8

(t − �)2

∫ t−�

0
dt ′

∫ t ′

0
dt ′′

[ ∫ t ′+�

t ′
ds

∫ t ′′+�

t ′′
du 〈tr D(s) tr D(u)〉

+ 2
∫ t ′+�

t ′
ds

∫ t ′′+�

t ′′
du

∫ t ′+�

t ′
ds ′

∫ t ′′+�

t ′′
du′ δ(s − u′)δ(s ′ − u) tr〈D(s) · D(u)〉

]
. (A2)

The integrals over s, s ′, u, and u′ in the last line of Eq. (A2) can be calculated as follows. For an arbitrary function f (s,s ′,u,u′),
we have the following relation for the integrals over s and u′:∫ t ′+�

t ′
ds

∫ t ′′+�

t ′′
du′ δ(s − u′)f (s,s ′,u,u′) =

{∫ t ′′+�

t ′ ds f (s,s ′,u,s) (t ′′ + � � t ′),

0 (t ′′ + � < t ′).
(A3)

Here we have utilized the condition t ′ > t ′′, which holds for the integrand in (A2). Then the integrals in Eq. (A2) become∫ t ′+�

t ′
ds

∫ t ′′+�

t ′′
du

∫ t ′+�

t ′
ds ′

∫ t ′′+�

t ′′
du′ δ(s − u′)δ(s ′ − u) tr〈D(s) · D(u)〉
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=
{∫ t ′′+�

t ′ ds
∫ t ′′+�

t ′′ du
∫ t ′+�

t ′ ds ′ δ(s ′ − u) tr〈D(s) · D(u)〉 (t ′′ + � � t ′),

0 (t ′′ + � < t ′),

=
{∫ t ′′+�

t ′ ds
∫ t ′′+�

t ′ du tr〈D(s) · D(u)〉 (t ′′ + � � t ′),

0 (t ′′ + � < t ′).
(A4)

By using Eq. (A4), Eq. (A2) can be rewritten as

〈[δ2(�; t)]2〉 = 8

(t − �)2

∫ t−�

0
dt ′

∫ t ′

0
dt ′′

∫ t ′+�

t ′
ds

∫ t ′′+�

t ′′
du 〈tr D(s) tr D(u)〉

+ 16

(t − �)2

∫ t−�

0
dt ′

∫ t ′

0
dt ′′ �(t ′′ − t ′ + �)

∫ t ′′+�

t ′
ds

∫ t ′′+�

t ′
du tr〈D(s) · D(u)〉

= 8

(t − �)2

∫ t−�

0
dt ′

∫ t ′

0
dt ′′

∫ t ′+�

t ′
ds

∫ t ′′+�

t ′′
du 〈tr D(s) tr D(u)〉

+ 32

(t − �)2

∫ t−�

0
dt ′

∫ t ′

max(0,t ′−�)
dt ′′

∫ t ′′+�

t ′
ds

∫ s

t ′
du tr〈D(s) · D(u)〉, (A5)

with �(t) being the Heaviside step function. This gives Eq. (24).

APPENDIX B: RELATION BETWEEN RELATIVE
FLUCTUATION AND RELATIVE STANDARD DEVIATION

In this Appendix, we consider the relation between the RF
and the RSD for the TAMSD. Due to the nature of the absolute
value, the analytic treatment of the RF is not easy compared
with the RSD. We consider two asymptotic limits of the RF,
which can be calculated straightforwardly.

As the case of the calculation for the RSD, we assume � �
t . For the small-t case (t � τ ) the RSD becomes constant as
given by Eq. (33). It can be rewritten as

�(t ; �) ≈
√

ψ1(0) =
√

〈(tr D)2〉 − (tr〈D〉)2

tr〈D〉 . (B1)

From Eq. (B1), we find that �(t ; �) is expressed as the relative
standard deviation of tr D for the equilibrium distribution. This
can be understood as follows. In the case of t � τ , we can
approximate the instantaneous diffusion coefficient matrix by
its initial value D(0), and the TAMSD of each realization can
be reasonably approximated as

δ2(�; t) ≈ 2 tr D(0)�. (B2)

If we use Eq. (B2), the RSD of the TAMSD can be
approximated as the RSD of 2 tr D(0)�, which is equivalent
to Eq. (B1). In a similar way, the RF can be approximately
expressed as the RF of 2 tr D(0)�. Thus we have the following
expression for the RF:

R(t ; �) ≈ 〈| tr D − tr〈D〉|〉
tr〈D〉 . (B3)

Unfortunately, we cannot calculate R(t ; �) further without
the explicit form of the equilibrium distribution for tr D.
Nevertheless, we can formally relate R(t ; �) to �(t ; �) as

R(t ; �) ≈ 〈| tr D − tr〈D〉|〉√
〈(tr D)2〉 − (tr〈D〉)2

�(t ; �). (B4)

For the large t case (t 
 τ ), we have the relation �(t ; �) ∝
t−1/2 from Eq. (33). This means that the distribution of the

TAMSD is given as a Gaussian with the aid of the central
limit theorem. We can explicitly write the distribution of the
TAMSD as follows:

P (δ2(�; t)) ≈ 1√
2π �(t ; �)〈δ2(�; t)〉

× exp

[
− [δ2(�; t) − 〈δ2(�; t)〉]2

2[�(t ; �)〈δ2(�; t)〉]2

]
. (B5)

The RF can be then calculated to be

R(t ; �) ≈ 1

〈δ2(�; t)〉

∫
dδ2(�; t) |δ2(�; t)

−〈δ2(�; t)〉|P (δ2(�; t))

≈
√

2

π
�(t ; �). (B6)

By combining Eqs. (B4) and (B6), we have the asymptotic
forms of R(t ; �):

R(t ; �) ≈
⎧⎨
⎩

〈| tr D−tr〈D〉|〉√
〈(tr D)2〉−(tr〈D〉)2

�(t ; �) (t � τ ),√
2
π
�(t ; �) (t 
 τ ).

(B7)

From Eq. (B7), we find that the RF behaves qualitatively in
the same way as the RSD. The crossover time determined by
the RF, τ ′

c, differs from τc in Eq. (34) by a constant factor:

τ ′
c = 2[〈(tr D)2〉 − (tr〈D〉)2]

π〈| tr D − tr〈D〉|〉2
τc. (B8)

In most practical cases, the ratio of τ ′
c and τc is of the order

of unity, and thus both R(t ; �) and �(t ; �) can be utilized to
analyze the long-time relaxation behavior.

In the case of the reptation model, the explicit asymptotic
forms can be calculated from the equilibrium distribution for
the end-to-end vector p [3]:

P (eq)( p) =
(

3

2π〈 p2〉
)3/2

exp

(
− 3 p2

2〈 p2〉
)

. (B9)
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FIG. 4. The RSD and RF of the TAMSD of a center of mass in the
discrete reptation model. (The RF data are taken from Ref. [15].) The
number of tube segments Z = 80 and the time difference � = 10τl ,
where τl is the characteristic time of the longitudinal motion of a
segment along the tube. Dashed curves represent the asymptotic forms
for the RF [Eq. (B10)].

The asymptotic forms of �(t ; �) is given by Eq. (44). Finally,
we have the following asymptotic forms for R(t ; �):

R(t ; �) ≈
{

2e−3/2√6/π (t � τ ),√
πτd/9t (t 
 τ ).

(B10)

This gives the crossover time τ ′
c ≈ 0.918τd . (In the previous

work, we reported τ ′
c ≈ τd [15]. This small discrepancy may

be due to the accuracy of the fitting for the short observation
time region.) To check whether Eq. (B7) actually holds, here
we examine the RSD and RF data obtained by the discrete
reptation model. We show the RSD and RF of the TAMSD
of a center of mass in the reptation model for Z = 80 and
� = 10τl (τl is the characteristic time of the longitudinal
segmental motion) in Fig. 4. We also show the asymptotic
forms of the RF calculated from the asymptotic forms of the
RSD by Eq. (B10) in Fig. 4. From Fig. 4, we find that our
theoretical prediction agrees well with the asymptotic behavior
of the simulation data. Thus we conclude that the RF shows
qualitatively the same behavior as the RSD. Both the RSD
and RF of the TAMSD can be utilized to study the long-time
relaxation behavior.

APPENDIX C: DETAILED CALCULATIONS
FOR REPTATION MODEL

In this Appendix, we show the detailed calculation for
the correlation function ψ1(t) in the reptation model. In
the reptation model, many of dynamical quantities can be
calculated from the tube survival probability, which represents
the probability of a tube segment at time 0 survives up to time
t [3]. The tube survival probability of the segment index s at
time t can be expressed as

�(s; t) =
∑
k:odd

4

kπ
sin

(
kπs

Z

)
exp

(
−k2t

τd

)
. (C1)

Here Z is the number of tube segments (0 � s � Z) and
τd is the disengagement time. Note that the expression of
the surviving probability in this work differs slightly from

commonly utilized one in the Doi-Edwards textbook [3]. In
this work s represents the segment index along the tube (0 �
s � Z), whereas in the Doi-Edwards definition s represents the
distance along the tube (0 � s � Za). (Our definition makes
the calculations slightly simple, as shown below.)

To calculate the higher-order correlation functions, we need
the joint survival probability �(s,s ′; t) of two segment indices
s and s ′. �(s,s ′; t) represents the probability that both of
segments s and s ′ at time 0 survive up to time t . �(s,s ′; t)
can be obtained by solving the first-passage type problem.
[This is similar to the calculation of �(s,t).] We consider the
case s � s ′ and set ξ ≡ s ′ − s. Then �(s,s ′; t) = �(s,s + ξ ; t)
obeys the backward Fokker-Planck equation:

∂�(s,s + ξ ; t)

∂t
= 1

Zτl

∂2�(s,s + ξ ; t)

∂s2
, (C2)

with τl being the characteristic time scale of the longitudinal
motion of a segment along the tube. The initial condition for
Eq. (C2) is

�(s,s + ξ ; 0) = 1, (C3)

and the boundary condition for Eq. (C2) is

�(Z − ξ,Z; t) = �(0,ξ ; t) = 0. (C4)

The disengagement time (the longest relaxation time) τd is
related to τl as τd = Z3τl/π

2. By solving Eq. (C2), we have
the following expression for the joint survival probability:

�(s,s + ξ ; t) =
∑
k:odd

4

kπ
sin

(
pπs

Z − ξ

)
exp

[
− Z2k2t

(Z − ξ )2τd

]
.

(C5)
For the case of s > s ′, the solution is the same form as Eq. (C5)
with s and ξ replaced by s ′ and s − s ′, respectively. Combining
them we have

�(s,s ′; t) =
∑
k:odd

4

kπ
sin

(
kπ min(s,s ′)
Z − |s − s ′|

)

× exp

[
− Z2k2t

(Z − |s − s ′|)2τd

]
. (C6)

For the case of s = s ′, Eq. (C6) reduces to �(s; t):

�(s,s; t) = �(s; t). (C7)

We consider the four-body two-time correlation function
ψ1(t). From Eq. (39), we need to calculate the correlation
function of the end-to-end vector, 〈 p2(t) p2(0)〉. It can be
calculated by utilizing the joint survival probability �(s,s ′; t),
because the end-to-end vector can be expressed in terms of the
bond vectors of segments. The end-to-end vector at time t can
be expressed as

p(t) =
∫ Z

0
ds u(s,t), (C8)

where u(s,t) is the bond vector at the segment index s at time t .
The bond vector obeys the Gaussian statistics in equilibrium.
The first and second moments in equilibrium are given as

〈u(s)〉 = 0, 〈u(s)u(s ′)〉 = 1
3a21δ(s − s ′). (C9)
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Here a is the tube segment size. The average end-to-end vector
size can be calculated straightforwardly:

〈 p2〉 = Za2. (C10)

The correlation function ψ1(t) can be evaluated if we know
whether two bonds at time 0 still survive at time t . There are
three possible cases. The first case is where both two bonds

(s and s ′) survive, and the probability for this case is given
as �(s,s ′; t). The second case is where only one bond (s
or s ′) survives, and the probabilities are given as �(s; t) −
�(s,s ′; t) or �(s ′; t) − �(s,s ′; t), respectively. The third case
is where none of two bonds survives, and the probability
for this case is 1 − �(s; t) − �(s ′; t) + �(s,s ′; t). Thus we
have

〈 p2(t) p2(0)〉 =
∫ Z

0
ds

∫ Z

0
ds ′

∫ Z

0
dv

∫ Z

0
dv′ {〈[u(s) · u(s ′)][u(v) · u(v′)]〉�(s,s ′; t)

+〈u(s ′)〉 · 〈u(s)[u(v) · u(v′)]〉[�(s; t) − �(s,s ′; t)] + 〈u(s)〉 · 〈u(s ′)[u(v) · u(v′)]〉[�(s ′; t) − �(s,s ′; t)]

+〈u(s) · u(s ′)〉〈u(v) · u(v′)〉[1 − �(s; t) − �(s ′; t) + �(s,s ′; t)]}

=
∫ Z

0
ds

∫ Z

0
ds ′

∫ Z

0
dv

∫ Z

0
dv′ 〈[u(s) · u(s ′)][u(v) · u(v′)]〉�(s,s ′; t) + Z2a4 + Za4

∫ Z

0
ds [�(s,s; t) − 2�(s; t)].

(C11)

By using the Wick’s theorem [3], the average for the bond vectors in Eq. (C11) can be decomposed as follows:

〈[u(s) · u(s ′)][u(v) · u(v′)]〉 = 〈u(s) · u(s ′)〉〈u(v) · u(v′)〉 + 〈u(s)u(v)〉 : 〈u(s ′)u(v′)〉 + 〈u(s)u(v′)〉 : 〈u(s ′)u(v)〉

= a4δ(s − s ′)δ(v − v′) + a4

3
δ(s − v)δ(s ′ − v′) + a4

3
δ(s − v′)δ(s ′ − v). (C12)

The first term in the last line of Eq. (C11) is calculated to be∫ Z

0
ds

∫ Z

0
ds ′

∫ Z

0
dv

∫ Z

0
dv′ 〈[u(s) · u(s ′)][u(v) · u(v′)]〉�(s,s ′; t)

= Za4
∫ Z

0
ds �(s,s; t) + 2a4

3

∫ Z

0
ds

∫ Z

0
ds ′ �(s,s ′; t). (C13)

From Eqs. (39), (C11), and (C13), ψ1(t) can be simplified:

ψ1(t) = 2

Z

∫ Z

0
ds [�(s,s; t) − �(s; t)] + 2

3Z2

∫ Z

0
ds

∫ Z

0
ds ′ �(s,s ′; t)

= 2

3Z2

∫ Z

0
ds

∫ Z

0
ds ′ �(s,s ′; t), (C14)

where we have used Eq. (C7).
Equation (C14) can be further modified by substituting Eq. (C6) into it:

ψ1(t) = 8

3πZ2

∑
k:odd

1

k

∫ Z

0
ds

∫ Z

0
ds ′ sin

[
kπ min(s,s ′)
Z − |s − s ′|

]
exp

[
− Z2k2t

(Z − |s − s ′|)2τd

]

= 16

3πZ2

∑
k:odd

1

k

∫ Z

0
ds

∫ s

0
ds ′ sin

[
kπs ′

Z − (s − s ′)

]
exp

[
− Z2k2t

(Z − (s − s ′))2τd

]
. (C15)

By introducing the variable transform w ≡ s − s ′, Eq. (C15) can be integrated over s as

ψ1(t) = 16

3πZ2

∑
k:odd

1

k

∫ Z

0
dw

∫ Z

w

ds sin

[
kπ (s − w)

Z − w

]
exp

[
− Z2k2t

(Z − w)2τd

]

= 32

3π2Z2

∑
k:odd

1

k2

∫ Z

0
dw (Z − w) exp

[
− Z2k2t

(Z − w)2τd

]
. (C16)

We introduce another variable transform x ≡ Z2/(Z − w)2 to make the integral simple and tractable:

ψ1(t) = 16

3π2

∑
k:odd

1

k2

∫ ∞

1
dx x−2 exp

(
− k2t

τd

x

)

= 16

3π2

∑
k:odd

1

k2
E2(k2t/τd ). (C17)
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In the last line of Eq. (C17), we have utilized the definition
of the (generalized) exponential integral [32]. Thus we have
the explicit expression for the correlation function ψ1(t) in the
main text, Eq. (40).

APPENDIX D: DECOUPLING APPROXIMATION FOR
REPTATION MODEL

In the main text, we employed the decoupling approx-
imation for the reptation model without any justifications.
The dynamics of the end-to-end vector depends on the
one-dimensional white noise w(t), and thus the decoupling
approximation seems not to be fully justified. Here we
discuss the validity of the decoupling approximation for the
reptation model and show that the decouplilng approximation
is reasonable for our calculations.

We consider the EAMSD [Eq. (11) for the reptation model
without the decoupling approximation:

〈[r(�) − r(0)]2〉

= 6Dc.m.

〈 p2〉
∫ t

0
ds

∫ t

0
ds ′〈 p(s) · p(s ′)w(s)w(s ′)〉. (D1)

The integrand in the right-hand side of Eq. (D1) can be
rewritten as

〈 p(s) · p(s ′)w(s)w(s ′)〉 = 〈〈 p(s) · p(s ′)〉w(s),w(s ′)w(s)w(s ′)〉,
(D2)

where 〈. . . 〉w(s),w(s ′) represents the ensemble average under
given values of w(s) and w(s ′). Without loss of generality, we
consider the case of s � s ′. The correlation function 〈 p(s) ·
p(s ′)〉w(s),w(s ′) can be expressed in terms of the fraction of the
surviving tube segments at time s ′. The fraction of surviving
tube segments is related to the minimum and maximum values
of the displacement of the chain along the tube. Therefore, the
correlation function can be calculated as follows:

〈 p(s) · p(s ′)〉w(s)w(s ′) = 〈 p〉2

〈
max

[
0,Z + min

s ′′
(s ′ < s ′′ < s)

W (s ′′,s ′)

− max
s ′′

(s ′ < s ′′ < s)

W (s ′′,s ′)
]〉

w(s),w(s ′).
(D3)

Here W (s,s ′) is the one-dimensional displacement of the chain
along the tube, at time s starting from time s ′. W (s,s ′) can be
expressed as a time integral of the one-dimensional noise w(t):

W (s,s ′) ≡
√

2

Zτl

∫ s

s ′
duw(u). (D4)

The contributions of w(s) and w(s ′) to W (s,s ′) are infinites-
imally small and thus from Eq. (D3), 〈 p(s) · p(s ′)〉w(s)w(s ′)
becomes statistically independent of w(s) and w(s ′). Finally,
Eq. (D2) becomes

〈 p(s) · p(s ′)w(s)w(s ′)〉 = 〈 p(s) · p(s ′)〉〈w(s)w(s ′)〉. (D5)

From the symmetry, Eq. (D5) also holds for s < s ′. Equa-
tion (D5) justifies the decoupling approximation for the
calculation of the EAMSD.

For the calculation of the RSD of the TAMSD, we have a
similar correlation function [see Eq. (A1) in Appendix A]:

〈 p(s1) · p(s2) p(s3) · p(s4)w(s1)w(s2)w(s3)w(s4)〉
= 〈〈 p(s1) · p(s2) p(s3) · p(s4)〉w(s1),w(s2),w(s3),w(s4)

×w(s1)w(s2)w(s3)w(s4)〉. (D6)

Here 〈. . . 〉w(s1),w(s2),w(s3),w(s4) represents the ensemble aver-
age under given w(s1),w(s2),w(s3), and w(s4). The cor-
relation function 〈 p(s1) · p(s2) p(s3) · p(s4)〉w(s1),w(s2),w(s3),w(s4)

depends only on the one-dimensional displacement along the
tube. (The explicit expression becomes quite complicated.)
The contributions of w(s1),w(s2),w(s3), and w(s4) to the
one-dimensional displacement are infinitesimally small, as in
the previous case. Therefore we find that Eq. (D6) can be
rewritten as the following decoupled form:

〈 p(s1) · p(s2) p(s3) · p(s4)w(s1)w(s2)w(s3)w(s4)〉
= 〈 p(s1) · p(s2) p(s3) · p(s4)〉〈w(s1)w(s2)w(s3)w(s4)〉.

(D7)

This justifies the use of the decoupling approximation for the
calculation of the RSD of the TAMSD.

APPENDIX E: DETAILED CALCULATIONS FOR
NON-MARKOVIAN TWO-STATE MODEL

In this Appendix, we show the detailed calculations for
the RSD of the TAMSD in the non-Markovian two-state
model. The (unilateral) Laplace transform is convenient to
calculate some quantities for such a non-Markovian model. For
example, the Laplace transform of the equilibrium trapping-
time distribution ρ

(eq)
h (t) [Eq. (58)] simply becomes

ρ̂
(eq)
h (u) = 1 − ρ̂h(u)

u〈τ 〉h . (E1)

Here the functions with hats (such as ρ̂h and ρ̂
(eq)
h ) represent

the Laplace transformed functions. We define the distribution
for the sum of two successive trapping times as ρ(τ ). ρ(τ ) can
be expressed as the convolution of ρf (τ ) and ρs(τ ),

ρ(τ ) ≡ ρf ∗ ρs(τ ) = ρs ∗ ρf (τ ) =
∫ τ

0
dτ ′ ρf (τ − τ ′)ρs(τ

′).

(E2)

The Laplace transform of ρ(τ ) simply becomes

ρ̂(u) = ρ̂f (u)ρ̂s(u). (E3)

We express the probabilities of having n transitions up to
time t starting from the state h at time 0, as Qh,n(t) (h = f,s).
For convenience, we introduce the following integral operator
I:

If (t) ≡
∫ ∞

t

dt ′f (t ′). (E4)
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Then Qh,n(t) can be expressed as [35]

Qh,n(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Iρ
(eq)
h (t) (n = 0),

ρ
(eq)
h ∗

(n−1)/2︷ ︸︸ ︷
ρ ∗ ρ ∗ · · · ∗ ρ ∗(Iρh̄)(t) (n = 1,3,5, . . . ),

ρ
(eq)
h ∗

n/2−1︷ ︸︸ ︷
ρ ∗ ρ ∗ · · · ∗ ρ ∗ ρh̄ ∗ (Iρh)(t) (n = 2,4,6, . . . ).

(E5)

where h̄ = s and f for h = f and s, respectively. The Laplace transform of Qh,n(t) becomes

Q̂h,n(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈τ 〉hu−1+ρ̂h(u)
〈τ 〉hu2 (n = 0),

[1−ρ̂h(u)][1−ρ̂h̄(u)]
〈τ 〉hu2 ρ̂(n−1)/2(u) (n = 1,3,5, . . . ),

[1−ρ̂h(u)]2

〈τ 〉hu2 ρ̂h̄(u)ρ̂n/2−1(u) (n = 2,4,6, . . . ).

(E6)

The transition probability Whh′(t) can be expressed in terms of
Qh,n(t) as

Whh′(t) =
{∑∞

n=0 Qh,2n(t) (h′ = h),∑∞
n=0 Qh̄,2n+1(t) (h′ = h̄).

(E7)

We calculate the asymptotic form of the correlation function
ψ1(t) in the long-time region. The long-time asymptotic
behavior can be calculated from the small-u limit for the
Laplace transform. Since Whh′(t) converges to φh at the limit of
t → ∞, it is convenient to consider Whh′(t) − φh rather than
Whh′(t) itself. From Eqs. (E6) and (E7), we obtain the following
asymptotic form for the Laplace transform of Whh′(t) − φh for
small u:

Ŵhh′(u) − φh

u
≈ σhh′

〈τ 2〉s〈τ 〉2
f + 〈τ 2〉f 〈τ 〉2

s − 2〈τ 〉2
s 〈τ 〉2

f

2〈τ 〉h′ (〈τ 〉s + 〈τ 〉f )2
,

(E8)

where σhh′ = 1 or −1 for h′ = h or h′ = h̄, respectively, and
we have utilized the expansion of ρ̂h(u) around u = 0,

ρ̂h(u) = 1 − 〈τ 〉hu − 〈τ 2〉hu2/2 + · · · . (E9)

From Eq. (E8), we have the following simple relation for the
transition probability:∫ ∞

0
dt [Whh′(t) − φh]

= lim
u→0

[
Ŵhh′(u) − φh

u

]
=

{
τ̃ φh̄ (h′ = h),
−τ̃ φh (h′ = h̄), (E10)

where τ̃ is the characteristic relaxation time defined by
Eq. (64). By combining Eqs. (61) and (E10), finally we have
Eq. (63).

APPENDIX F: NON-GAUSSIANITY PARAMETER

The non-Gaussianity parameter [37–39] is widely em-
ployed to investigate the non-Gaussian properties of the diffu-
sion processes. In this Appendix, we calculate the expression

for the non-Gaussianity parameter A(�) [Eq. (70)] in terms
of the four-body two-time correlation functions. Then we
compare it with the RSD of the TAMSD.

The ensemble average of quartic displacement can be
calculated in the same way as Eq. (A2),

〈[r(�) − r(0)]4〉

= 4
∫ �

0
ds

∫ �

0
ds ′

∫ �

0
du

∫ �

0
du′ 〈wi(s)wj (s ′)wk(u)wl(u

′)〉

× 〈Bmi(s)Bmj (s ′)Bnk(u)Bnl(u
′)〉

= 8
∫ �

0
ds

∫ s

0
du 〈tr D(s) tr D(u)〉

+16
∫ �

0
ds

∫ s

0
du tr〈D(s) · D(u)〉. (F1)

By using the correlation functions ψ1(t) and ψ2(t) defined in
Eqs. (27) and (28), Eq. (F1) can be rewritten as

〈[r(�) − r(0)]4〉

= 4

(
1 + 2C

n

)
[tr〈D〉]2�2 + 8[tr〈D〉]2

×
∫ �

0
ds

∫ s

0
du [ψ1(s − u) + 2Cψ2(s − u)]. (F2)

From Eqs. (70) and (F2), finally we have the following formula
for the non-Gaussianity parameter:

A(�) = 2(C − 1)

n + 2
+ 2n

(n + 2)�2

∫ �

0
ds

×
∫ s

0
du [ψ1(s − u) + 2Cψ2(s − u)]. (F3)

Equation (F3) contains both ψ1(t) and ψ2(t). Because
these correlation functions exhibit the characteristic long time
relaxation, the non-Gaussianity parameter can be utilized to
analyze the characteristic relaxation at the long time scale.
The short- and long-time asymptotic forms are calculated to
be

A(�) ≈
{

2(C−1)
n+2 + n

n+2 [ψ1(0) + 2Cψ2(0)] (� � τ ),
2(C−1)

n+2 + 2n
(n+2)�

∫ ∞
0 dv [ψ1(v) + 2Cψ2(v)] (� 
 τ ).

(F4)
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Equation (F4) has somewhat similar properties to the squared RSD, Eq. (33). However, the bahavior of A(�) qualitatively differs
from one of the squared RSD. A(�) approaches to the constant 2(C − 1)/(n + 2) at the limit of � → ∞, whereas �2(t ; �)
approaches to zero at the limit of t → ∞. Such a property of A(�) makes the numerical analysis difficult. [We need to determine
the constant 2(C − 1)/(n + 2) and then subtract it from A(�).] In the case of the isotropic systems, C = 1 and this constant
vanishes. Then Eq. (F4) reduces to

A(�) ≈
{ n

n+2 [ψ1(0) + 2ψ2(0)] (� � τ ),

2n
(n+2)�

∫ ∞
0 dv [ψ1(v) + 2ψ2(v)] (� 
 τ ).

(F5)

Even in this simple case, A(�) depends on both ψ1(t) and ψ2(t). Also A(�) explicitly depends on the dimension of the system.
On the other hand, the explicit expression for the squared RSD [Eq. (32)] and its asymptotic forms [Eq. (33)] are simple and
common for isotropic and anisotropic systems. [As mentioned in the main text, �2(t ; �) essentially depends only on ψ1(t).] Thus
we consider that the RSD would be more suitable than the non-Gaussianity parameter to characterize the long-time relaxation
behavior of time-dependent and fluctuating diffusivities.
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