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We study effects of interaction symmetry in one-dimensional, momentum-conserving disordered lattices. It
is found that asymmetric and symmetric interparticle interactions may result in significant difference: localized
modes can be delocalized by very weak asymmetric interactions but survive much stronger symmetric interactions.
Moreover, in the delocalization regime, asymmetric and symmetric interactions also have qualitatively different
effects on transport: the former (the latter) may lead to a fast decaying (slow power-law decaying) heat current
correlation function and in turn a convergent (divergent) heat conductivity. A method for detecting delocalization
in systems at a nonzero temperature is proposed as well.
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It is well known that the Anderson localization problem [1]
becomes much more complicated if particle interactions have
to be taken into account [2,3]. Whether the localized modes
survive weak enough anharmonic interactions, how to identify
the delocalization energy threshold induced by interactions if
it exists, and what transport properties may emerge beyond the
delocalization threshold are some of the fundamental issues. In
the case of electrons, in 1980 Fleishman and Anderson showed
that at a low enough temperature electron-electron interactions
cannot destroy localization [4], while another group found
that electron-electron interactions may destroy the constructive
interference and lead to a finite electric conductance [2]. Based
on these results, Basko et al. further suggested that there is a
metal-insulator transition at some intermediate temperatures
induced by interactions [5].

However, as to phonons in one-dimensional (1D) disorder
lattices, a counterpart picture has not been established yet. For
disordered harmonic (DH) lattices, it has been proved that the
normal modes of high frequencies are localized while those of
low frequencies are extended [6]. The boundary between the
two, i.e., the mobility edge, is related to the particle number N

(or the system size) as ∼N−1/2. This result leads to that, when
a 1D DH lattice is attached to two heat bathes of different
temperatures, the stationary energy current along the lattice
(or heat current equivalently [7]) depends on the system size
as ∼N−1/2 for free boundary conditions but ∼N−3/2 for fixed
boundary conditions [8–11], which in turn implies that in the
thermodynamic limit, the thermal conductivity diverges in the
former but vanishes instead in the latter case.

The next question is whether and how anharmonic in-
teractions may influence these results. To this question,
numerical studies [12] have revealed that in the regime of high
temperature and strong anharmonic interactions, the thermal
conductivity (denoted by κ) diverges as κ ∼ Nδ with δ = 2/5
in the disordered Fermi-Pasta-Ulam-β (DFPU-β) chain, the
same as in the homogenous Fermi-Pasta-Ulam-β (FPU-β)
chain [13–15]. In the low-temperature regime, the thermal
conductivity was observed to tend to converge as the system
size is increased [12], but Dhar and Saito argued that to
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increase the system size further, the thermal conductivity
may turn to increase again, and they speculated that it will
diverge with the same exponent of δ = 2/5 as well [16].
Other studies also support this speculation [17]. In general, the
present understanding to the 1D disordered and momentum-
conserving lattices is that anharmonic interactions may bring
in some significant changes compared with DH chains, but
heat conduction is still anomalous; i.e., the heat conductivity
diverges in the thermodynamic limit.

Nevertheless, this understanding is based on the DFPU-β
model where the interactions are symmetric. Recently, in
studies of 1D homogenous systems, it has been found that
interaction symmetry may play a crucial role in transport: In
systems with asymmetric interactions, heat current correlation
may decay fast enough to result in a size-independent
(or effectively size-independent [18]) thermal conductivity
[19–21]. The studied models are various, including the
exponential-harmonic model [19], the piecewise harmonic
model [20], the Lennard-Jones model [21,22], and even
the Fermi-Pasta-Ulam-α-β (FPU-α-β) model with proper
parameters [21]. Note that some researchers have argued that
the observed size-independent thermal conductivity in these
studies may be a finite-size effect [23,24], and this could be
true in particular for the FPU-α-β model in the thermodynamic
limit. But in spite of this, a significant difference between
symmetric and asymmetric interactions has been clearly evi-
denced in all these studies [19–24]. For example, in Ref. [23]
the authors have found that in the low-temperature regime
the thermal conductivity of the FPU-α-β model converges,
while in the high-temperature regime there is a platform in the
dependence of κ on the system size N . These properties are in
clear contrast to those of the systems of symmetric interactions.
Moreover, these properties may have deep significance; e.g.,
the platform in the κ-N curve has also been found in the
integrability limit [25], and it could be wide enough to involve
macroscopic systems [18].

In view of their important effects in homogeneous sys-
tems, it is necessary to scrutinize the effects of asymmetric
interactions in disordered systems as well. In addition, recall
that fundamental problems related to anharmonic interactions,
such as whether the localized modes can survive low enough
temperatures and in what way the anharmonic interactions
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FIG. 1. (Color online) The amplitude of the wave passing through the lattice of size N = 512. Panels (a) and (b) are for the DFPU-β model
and (c) is for the DFPU-α-β model. As comparison, the vertical dashed line in each panel indicates the mobility edge of the DH system.

may affect the mobility edge, are still open. Some related
aspects of these problems have been investigated in the
literature [12,16,17,26,27]; e.g., it has been shown that in
disordered pinned anharmonic chains, the energy transport
properties may be changed drastically by very weak on-
site anharmonic interactions [27]. But, despite these efforts,
understanding momentum-conserving disordered chains is
still lacking.

In this work we address these problems by identifying
the qualitative difference induced by interaction symmetry.
The Hamiltonian for a 1D lattice system with the nearest
neighboring interactions can be written as

H =
∑

i

[
p2

i

2mi

+ V (xi − xi−1 − a)

]
, (1)

where pi , mi , and xi denote, respectively, the mass, the
momentum, and the displacement of the ith particle, and the
lattice constant, a, is fixed to be unity. We consider mass
disordered chains with mi = 1 + Ri , where Ri is a random
number distributed uniformly in the range of −0.1 < Ri <

0.1. The potential V between two neighboring particles is

V (x) = 1

2
x2 − α

3
x3 + β

4
x4; (2)

it gives the disordered Fermi-Pasta-Ulam-α-β (DFPU-α-β)
model with asymmetric interactions for α �= 0 and β �= 0, the
DFPU-β model with symmetric interactions only for α = 0
and β �= 0, and the DH model for α = 0 and β = 0. For
both the DFPU-β and DFPU-α-β model we fix β = 1 for the
sake of comparison with previous studies in the literature and
α = 2 for the DFPU-α-β model to make interactions highly
asymmetric [21]. We will mainly consider the temperature
range of 10−4 < T < 0.1 (the Boltzmann constant kB is set to
be unity throughout this paper), in which the averaged distance
a particle moves around its equilibrium position is from about
0.01 to about 0.33. Notice that a solid will be melting if the
vibration amplitude of its atoms exceeds 10%–20% of the
lattice constant according to the Lindemann melting law [28];
hence, this temperature range not only ensures that the normal
modes are meaningful to our study but also are relevant
physically. With these settings, the dynamics of the lattice can
be simulated directly with conventional integration algorithms.

We first study the effects of anharmonic interactions on
the localized modes. For this aim we investigate the influence
of anharmonic interactions on the mobility edge that plays a

key role in determining the properties of a disordered system
[29–31]. One usual method is to check and analyze the waves
that pass through the lattice [30,31], by which we first prepare
a disordered lattice with the fixed boundary conditions x0 = 0
and xN+1 = N + 1 and drive the first particle sinusoidally
with a given frequency ω and a given amplitude A; next,
after a time t = N/vs (vs is the sound speed whose value
is about one with the adopted system parameters), we begin
to measure the motion signals of the N th particle. Finally, the
recorded signals (time series) are analyzed with the fast Fourier
transform, and the amplitude of the vibration component of
frequency ω, denoted by Apass(ω), is evaluated. Its ratio to the
driving amplitude A is taken as a measure of the passing rate,
or the extension rate of the mode of ω. In our simulations, the
first particle is driven for a time of 20 periods, and in order to
suppress the fluctuations in the results, 60 random realizations
are performed for taking the ensemble average.

Figure 1(a) shows the results for the DFPU-β model with
0.01 � A � 0.04, representing the case of weak and sym-
metric anharmonic interactions. It can be seen that all curves
collapse onto one perfectly. Moreover, there is a transition
frequency above which the passing rate is close to a negligible
constant value. This frequency can therefore be regarded as the
critical frequency that separates extended modes and localized
modes and by definition is exactly the mobility edge [6]. On the
other hand, the mobility edge of the corresponding DH chain
can be calculated by using the Thouless criterion [32]; it can be
seen that this theoretical result (indicated by the dashed line)
agrees with the transition frequency very well. Therefore, in
the DFPU-β model, weak anharmonic interactions (A < 0.04)
cannot break the localized modes and affect the mobility
edge. Indeed, we find delocalization does not happen until
A > 0.08 [results for 0.1 � A � 0.4 are shown in Fig. 1(b)].
For A < 0.08, the mobility edge always exists and its position
does not shift; but when A is increased up to about 0.08,
the mobility edge disappears suddenly, suggesting that all
the localized modes get delocalized when the symmetric
anharmonic interaction exceed a certain threshold. In clear
contrast to the DFPU-β model, we find delocalization may
occur in the DFPU-α-β model even when A is as small as about
10−3. As a comparison, the results of the DFPU-α-β model
for 0.01 � A � 0.04 are shown in Fig. 1(c). It suggests that
asymmetric anharmonic interactions may break the localized
modes much more efficiently.

These observations, however, may not necessarily represent
the properties of the studied systems at a nonzero, finite
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FIG. 2. (Color online) The snapshot of the spatial-temporal correlation function of the energy density fluctuations for (a) the DH model,
(b) the DFPU-β model, and (c) the DFPU-α-β model at time t = 1700. The system size is N = 4096 and the temperature is T = 10−3.

temperature. In the following we will show that, when a
system is at the equilibrium state of temperature T > 0, the
localization and delocalization properties can be revealed by
the spatial-temporal correlation function of the energy density
fluctuations, which can be calculated as [33,34]

c(x,t) = 〈δe(x,t)δe(0,0)〉
〈δe(0,0)δe(0,0)〉 + 1

N − 1
, (3)

where δe(x,t) = e(x,t) − 〈e(x,t)〉 represents the fluctuations
of the energy density e(x,t) to the ensemble averaged energy
density 〈e(x,t)〉. We adopt the microcanonical ensemble, and
for each sample system, the periodic boundary conditions and
a zero total momentum is imposed. To calculate the energy
density, we divide the chain into N unit bins, which, together
with the momentum conservation condition, results in the
1/(N − 1) correction term in the right-hand side of Eq. (3)
to the conventionally defined spatial-temporal correlation
function [34].

The snapshot of c(x,t) at a certain time for the studied
systems at temperature T = 10−3 are presented in Fig. 2. One
can see that in all the cases c(x,t) is featured by a still center
peak and two moving side peaks, whose physical meanings can
be understood by studying the DH model. In the DH model, it
is clear that any configuration is a superposition of the normal
modes; in particular, δe(x,t) can be decomposed into two parts,
which are the superposition of, respectively, all the localized
modes and all the extended modes. The former should keep
localized in space, corresponding to the center peak, while the
latter should move ballistically, corresponding to the two side
peaks. These speculations are well verified by our simulations:
For the DH model [Fig. 2(a)], we have checked and verified
that the speed of the two moving side peaks is exactly the
sound speed of the system, and meanwhile the center peak
will keep its height after a short transient time. (See Fig. 3
where the height of the center peak as a function of time is
presented.)

The DH model does not contain anharmonic interactions,
but it provides a useful reference for understanding the effects
of the latter. In Fig. 2(b) the effects of the symmetric FPU-β
interactions are studied. We find that at a low temperature (e.g.,
T = 10−3), the properties of c(x,t) are qualitatively the same
as those of the DH model; i.e., the side peaks move ballistically
at the sound speed and the height of the center peak converges
to a constant (see Fig. 3), suggesting that delocalization does
not occur. But in clear contrast again, the asymmetric FPU-α-β
interactions can induce delocalization. In this case, though

the main features of c(x,t) [see Fig. 2(c)] look similar, the
center peak remains to relax and its height keeps decreasing
continuously (see Fig. 3). In other words, the localized modes
continuously lose the energy they carry due to the anharmonic
interactions.

Increasing the temperature, delocalization can be observed
also in the DFPU-β model; e.g., for T = 5 × 10−3, the height
of the center peak begins to decay continuously as shown in
Fig. 3. As a comparison, the temperature for delocalization in
the DFPU-α-β model could be much lower, at least for T =
10−4, the lowest temperature accessible to our simulations
(see Fig. 3). It shows that at a nonzero, finite temperature,
asymmetric anharmonic interactions are still much more
efficient in resulting in delocalization.

Now let us turn to the energy transport problem. Ac-
cording to the Green-Kubo formula [35,36], i.e., κ =
lim

τ→∞ lim
N→∞

1
NkBT 2

∫ τ

0 C(t) dt , the heat conductivity can be

obtained by calculating the energy current correlation function
C(t) = 〈J (t)J (0)〉, where the energy flux J (t) is defined [37]
by J = ∑

i ẋi∂V (xi+1 − xi)/∂xi . How C(t) decays thus de-
termines the energy transport properties. We first check decay
of C(t) in the DFPU-β model when delocalization does not
happen. In Fig. 4(a), the results of the DFPU-β model at
a low temperature T = 10−3 are compared with those of
the DH model. It can be seen that the two curves almost
overlap with each other as expected, and decay in a power-
law manner with the exponent approximates to −0.5. This

FIG. 3. (Color online) The height of the center peak in the spatial-
temporal correlation function of the energy density fluctuations (see
Fig. 2) as a function of time.
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FIG. 4. (Color online) The correlation function of the energy
current. (a) T = 10−3, which is below the delocalization threshold
for the DFPU-β model; (b) T = 0.1, delocalization occurs in both
the DFPU-β model and the DFPU-α-β model. The black dotted
lines indicating scaling ∼t−0.5 (a) and ∼t−1 (b), respectively, are for
reference.

is analogous with the theoretical prediction for DH chains
with the free boundary conditions. [In calculating C(t) the
periodic boundary conditions have been adopted.] Therefore,
below the delocalization threshold the symmetric anharmonic
interactions do not change the decay behavior of C(t) that
characterizes the DH chains. (Note that the abrupt drop of
C(t) curves around t ≈ N/vs is a finite-size effect induced by
sound mode collision [38,39].)

Increasing the temperature to exceed the delocalization
threshold of the DFPU-β model, one may expect C(t) curves
for both the DFPU-β model and the DFPU-α-β model would
separate from that of the DH model [see Fig. 4(b)]; but
intriguingly, how they decay is qualitatively different: in the
DFPU-β model C(t) tends to decay in a power-law manner
after a transient stage, which is consistent with the conclusion
of previous studies [16], i.e., heat transport is anomalous
in the DFPU-β model, the same as in the homogeneous
FPU-β model. But in the DFPU-α-β model, C(t) decays
much faster than ∼1/t and the faster decaying stage lasts

for at least three orders. Following the Green-Kubo formula,
faster decay of C(t) implies a size-independent thermal
conductivity or normal heat conduction governs by the Fourier
law.

In summary, symmetric and asymmetric anharmonic in-
teractions can result in significantly different properties in
disordered systems. Asymmetric anharmonic interactions,
even weak, can break the localized modes, making the energy
current correlation function decay faster than ∼1/t and the
thermal conductivity converge. But symmetric anharmonic
interactions, if weak enough, would not affect the properties
of the DH chains qualitatively. Only when the temperature is
above the delocalization threshold occurs delocalization, but
thermal conductivity still diverges.

As asymmetric interactions and disorder are common in
real materials, our study also has practical significance: It
implies that the normal heat conductive behavior may be
common in low-dimensional materials. Our study also shows
that the spatial-temporal correlation function of energy density
fluctuations can be applied to explore delocalization in systems
at a nonzero temperature; this makes it more advantageous
than the conventional method for measuring the mobility edge
performed in a zero temperature background.

Finally, as a numerical study, our results are obtained with
systems of a finite size. Whether they can be “extrapolated” to
the thermodynamic limit needs further studies. For the DFPU-
α-β model, simulation accuracy allow us to be confident that
the energy current correlation function decays faster than ∼1/t

for at least three orders, and this fact can guarantee that the
thermal conductivity unchanged as the system size even up to
a macroscopic scale even though the faster decaying stage is
followed by a power-law tail [18]. This result has important
practical significance, but for theoretical understanding, if the
power-law tail really follows should be clarified by large-scale
simulations. Similarly, for the DFPU-β model, large-scale
simulations are also needed to obtain the accurate power-law
exponent with which C(t) decays.
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