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Interfacial thermal conduction and negative temperature jump in one-dimensional lattices
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We study the thermal boundary conduction in one-dimensional harmonic and φ4 lattices, both of which
consist of two segments coupled by a harmonic interaction. For the ballistic interfacial heat transport through
the harmonic lattice, we use both theoretical calculation and molecular dynamics simulation to study the heat
flux and temperature jump at the interface as to gain insights into the Kapitza resistance at the atomic scale.
In the weak coupling regime, the heat current is proportional to the square of the coupling strength for the
harmonic model as well as anharmonic models. Interestingly, there exists a negative temperature jump between
the interfacial particles in particular parameter regimes. A nonlinear response of the boundary temperature jump
to the externally applied temperature difference in the φ4 lattice is observed. To understand the anomalous result,
we then extend our studies to a model in which the interface is represented by a relatively small segment with
gradually changing spring constants and find that the negative temperature jump still exists. Finally, we show
that the local velocity distribution at the interface is so close to the Gaussian distribution that the existence or
absence of a local equilibrium state is unable to be determined by numerics in this way.

DOI: 10.1103/PhysRevE.92.032135 PACS number(s): 05.70.Ln, 44.10.+i, 05.90.+m

I. INTRODUCTION

Since its observation between liquid helium and a metal [1],
thermal boundary resistance, namely, Kapitza resistance, has
been extensively studied theoretically and experimentally [2].
With the rapid development of modern electronic technology,
there has been much interest in understanding the fundamental
nature of thermal boundary conductance since it has been
a significant obstacle in designing micro- and nanoscale
electronic chips. Two phenomenological models, the acoustic
mismatch model [3] and diffuse mismatch model [2], have
been proposed to study the mechanism of the thermal boundary
conductance. However, because they neglect atomic details at
the interface, they both offer limited accuracy, particularly
for nanoscale interfacial resistance [4]. To understand the
mechanism of thermal boundary conductance at the atomic
level, many studies have been done in one-dimensional lattices
via different methods [4–6]. Most of the previous studies focus
on the effect of the interface on the steady-state heat flux and
little attention has been paid to the temperature jump between
the interface from the atomic viewpoint.

On the other hand, heat conduction in low-dimensional
dynamical systems has become the subject of a large number
of theoretical and experimental studies in recent years [7–9].
An exact approach to interacting Hamiltonian systems is so
far unavailable except for harmonic crystals. A meaningful
definition of local temperature depends on the local thermal
equilibrium and it is difficult to give a microscopic derivation
of the condition in general [10]. With the usual definition
of local temperature, i.e., the mean local kinetic energy, the
temperature profile may show some unexpected features, such
as the temperature oscillations in the steady state of alternate
mass hard particle gas [11], in the Fermi-Pasta-Ulam chain
[12], and in harmonic chain with alternating mass [13].

In the present study, we study the heat flux and temperature
jump at the interface to gain insights into the Kapitza resistance
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at the atomic scale via theoretical calculations and molecular
dynamics simulations. We find that there exists a negative
temperature jump between the interfacial particles in particular
parameter regimes. A nonlinear response of the boundary tem-
perature jump to the externally applied temperature difference
in the φ4 lattice is observed. Note that although the interface
between two segments is not well defined in one-dimensional
Hamiltonian systems, our studies can give some insights into
the thermal boundary resistance in real systems.

The paper is organized as follows. In Sec. II we define the
model and give the methods for theoretical calculations and
molecular dynamics simulations. In Sec. III we demonstrate
the existence of negative temperature jump in both the
harmonic and φ4 model. Finally, we give a brief summary
and discussion in Sec. IV.

II. MODEL AND METHODS

We study the nonequilibrium steady state of a one-
dimensional chain consisting of two coupled lattices,

H = HL + HR + 1
2kc(xN/2 − xN/2+1)2. (1)

The Hamiltonians for the left and right segments are given by
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where xi denotes the displacement of the ith particle from
its equilibrium position. Fixed boundary conditions are taken,
i.e., x0 = xN+1 = 0. The particles 1 and N at the two ends
are connected to the heat baths at temperature TL and TR ,
respectively. The heat baths are modeled by the Langevin
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equations corresponding to Ohmic baths; i.e., the self-energy
of the baths are �(ω) = iγ ω [8].

When λL = λR = 0, the on-site potential and interparticle
interaction are all quadratic. In the classical limitation, the
steady heat current from left to right reservoir can be given by
the Langevin equations and Green’s function (LEGF) method
[8,14],

J = kB(TL − TR)

π

∫ ∞

−∞
dωTr[G+

S (ω)�L(ω)G−
S (ω)�R(ω)],

(3)

with

G±
S (ω) = 1

[−ω2MS + KS − �±
L (ω) − �±

R (ω)]
, (4)

�L,R(ω) = Im(�+
L,R(ω)), (5)

where MS and KS denote the mass matrix and force constant
matrix of the system. Note that G±

S ,�±
L,R are all N × N

matrices for one-dimensional systems. The only nonzero
elements of �±

L,R are respectively [�±
L ]1,1 = � = iγ ω and

[�±
L ]N,N = � = iγ ω. γ is the coupling strength of the first

and N th particle to the left and right reservoirs, respectively.
The velocity-velocity correlation and position-velocity corre-
lation are

K = 〈 ˙̃XS
˙̃XT

S

〉 = kBTL

π
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π
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−∞
dωωG+

S (ω)�R(ω)G−
S (ω), (6)
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S (ω)
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π

∫ ∞
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The correlation function K can be used to define local
energy density, which can in turn be used to define the local
temperature, i.e.,

Ti = mKi,i, (8)

and C gives the local heat current density [15–18]. We
integrate Eqs. (3) and (6) numerically to obtain the steady-state
heat current and local temperature, for which the rectangular
method is used [19]. We also verify that the local current,
obtained by integrating Eq. (7) numerically, is the same along
the chain, which is one of the properties in the steady state.

When λL,λR �= 0, we apply the nonequilibrium molecular
dynamics simulation (NEMD) to the system, for which the
Langevin heat baths are used at the two ends of the chain. The
equations of motion are given by

mẍi = −∂H

∂xi

− γi ẋi + ηi, (9)

where γi = γ (δ1,i + δN,i) and ηi = ηLδ1,i + ηRδN,i . The noise
terms ηL,R denote a Gaussian white noise with zero mean
and variance of 2γ kBTL,R . The local heat flux is given by
j = 〈F (xi+1 − xi)vi+1〉, where F (x) = −V ′(x) and the notion
〈· · · 〉 denotes a steady-state average. The equations of motion

[Eq. (9)] are integrated by using a second-order stochastic
Runge-Kutta algorithm [20]. At steady states, the numerically
computed local heat flux is always constant along the chain,
and the local temperature is defined as Ti = m〈ẋ2

i 〉. To compute
the boundary temperature jump, i.e., �Tb = TN/2 − TN/2+1,
the relaxation and average time must be both long enough. In
what follows we set m = 1,kB = 1, and γ = 1.

III. RESULTS AND DISCUSSION

For many devices of several segments, interfacial coupling
is pretty weak, which indicates that kc is far less than kL and kR

in our model. So it is desirable to study the thermal transport
through atomic chains in the weak coupling regime. It has been
shown that [21] the heat current is proportional to the square
of the coupling strength in one-dimensional weakly coupled
chain with the Morse on-site potential by a phenomenological
analysis. Is this square-law relation between heat current and
coupling strength still valid in the weak coupling limit when
the anharmonic on-site potential is absent? As shown in Fig. 1,
we plot the heat current as a function of the coupling strength
in the weak coupling limit by integrating Eq. (3) numerically.
It turns out that the square law relation is still valid when
the anharmonicity is absent. Furthermore, the square law
relation still holds when the system consists of symmetrical or
asymmetrical segments with or without an on-site potential.

Figure 2 shows the steady-state heat current and the
boundary temperature jump as a function of the coupling
strength kc. The reason to carry out both theoretical calculation
and NEMD simulation is to verify that the results we obtained
are from physical reasons rather than numerical uncertainty.
Note that the temperature jump between the N/2-th particle
and the (N/2 + 1)-th particle is sensitive to heat fluctuation
when kc approaches to kR , which requires high-precision sim-
ulations. By inspecting the figure, we can see that theoretical

FIG. 1. (Color online) Heat flux as a function of interfacial cou-
pling kc via the LEGF approach as kc approaches to zero. Symmetry:
kL = kR = 1,fL = fR = 0; asymmetry: kL = 1,kR = 2,fL = fR = 0;
symmetry with on-site potential: kL = 1,kR = 1,fL = fR = 2; and
asymmetry with on-site potential: kL = 1,kR = 2,fL = fR = 2. For
all cases, we set TL = 2,TR = 1 and N = 64.
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FIG. 2. (Color online) The heat flux (a) and temperature jump
between the N/2-th and (N/2 + 1)-th particles (b) as a function of
kc via both the LEGF approach and MD simulations. Here fL =
fR = 0,TL = 2,TR = 1,λL = λR = 0, and N = 64. In panel (b), the
horizontal dotted line is drawn as a reference line for �Tb = 0.

calculations and MD simulations agree well with each other.
The heat current increases at first, arrives at a maximum
value, and then slightly decreases with the increase of kc.
As depicted in Fig. 2, the maximum heat current occurs at
kc = 2kLkR/(kL + kR), which agrees with the result obtained
in Ref. [5] by the scattering boundary method. Furthermore,
both theoretical calculations and MD simulations indicate that
there is a negative boundary temperature jump, i.e., �Tb < 0,
when kc approaches to kR . The word negative is in contrast
with normal heat conduction where the direction of the heat
flow is from hot to cold regions. In fact, similar negative
temperature jumps occurs in several systems, for example,
the temperature jump between the second and third particles
and between the (N − 2)-th and (N − 1)-th particles in the
uniform harmonic chain [7] coupled with reservoirs, and the
temperature oscillations in the steady state of hard particle
gas [11], the Fermi-Pasta-Ulam chain [12], and the harmonic
chain [13] with alternating mass. To understand the negative
temperature jump at the interface, we need to inspect the
concept of the local temperature further. The local temperature
of the ith particle can be written as Ti = i(ωmax), with

i(ω) = 2
∫ ω

0
dω′

(
kBTL

π
ω′G+

S (ω′)�L(ω′)G−
S (ω′)

+ kBTR

π
ω′G+

S (ω′)�R(ω′)G−
S (ω′)

)
, (10)

and ωmax is the top boundary of the phonon spectra. The
kinetic energy of a particle gets contributions from all the
modes, and the net result depends on the distribution of
energy in the different modes. As shown in Fig. 3, we plot
the contribution of normal modes to the local temperature
for the (N/2)-th and (N/2 + 1)-th particles by integrating
Eq. (10) numerically. As we can see, equipartition among
phonon modes, i.e., each normal mode shares the same average
kinetic energy, is not satisfied for kc = 0.5 and kc = 1 shown
by the nonlinear behaviors of i(ω)(i = N/2,N/2 + 1) in
the high-frequencies region. Surprisingly, for the case of

FIG. 3. (Color online) The contribution of normal modes to local
temperature at the interface for (a) kc = 0.5, (b) kc = 1, (c) kc = 1.5,
and (d) kc = 2, respectively. Here kL = kR = 1, fL = fR = 0, λL =
λR = 0, TL = 2,TR = 1, and N = 64.

kc = 1.5, i(ω) exhibit almost linear behavior with increasing
ω, indicating that the contributions to the local temperature
from possible phonon modes are closely equivalent. By
comparing them with kc = 0.5, we can see that the high-
frequency normal modes are suppressed more dramatically
than the low-frequency normal modes for kc = 1.5 and kc = 2,
and the turning of N/2 and N/2+1 in the high-frequencies
region indicates the negative temperature jump between the
N/2-th and (N/2 + 1)-th particles.

It would be interesting to see if the negative temperature
jump is an artificial effect due to the integrability of the
harmonic system. Thus we conduct similar studies in the
φ4 lattice, which has additional nonlinear on-site potential
on each site in comparison with the harmonic system. We
plot the boundary temperature jump �Tb as a function of
the external temperature difference �T = TL − TR and some
typical temperature profiles in Fig. 4. One can see that the
boundary temperature jump is proportional to �T for kc < 1
and proportional to (−�T ) for kc > 1 when �T is small,
which are typical linear-response behaviors shown in harmonic
models. With the increasing of �T , the linear behavior of
�Tb no longer holds for the φ4 lattice. Note that negative
temperature jump occurs when kc � 1.3 and the absolute value
of �Tb nonlinearly increases as �T increases.

So far our discussions is based on the model consisting
of two segments with a single harmonic coupling, which
inevitably leads to the argument that the origin of negative
temperature jump comes from the ill-defined interface of the
two-segment model with a sharp discontinuity of the interfacial
coupling. In what follows we propose an extended model to
show that it is not the case. Actually, in a practical considera-
tion, the interface may be a junction which is small compared
with the two sublattices. So we divide our system into three
regions, say, two sublattices and a junction. The particle
number of the junction is small compared with the two sublat-
tices. The spring constant of the intermediate segment varies
smoothly, which is done by setting the spring constants of
the intermediate junction by ki = exp [−(i − N/2)2/50] + 1,
where i represents the index of particles. The NEMD
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FIG. 4. (Color online) (a) Temperature profile in the φ4 lattice
for kc = 0.1, 0.5, 0.9, 1.1, 1.5, and 1.9, respectively. (b) �Tb as a
function of �T for kc < 1. (c) �Tb as a function of �T for kc > 1.
The lines in panels (a), (b), and (c) are drawn to guide the eyes. Here
we set TL = TR + �T , TR = 0.5, λL = λR = 1, kL = kR = 1, and
N = 64.

simulation results of harmonic and φ4 lattices are presented in
Figs. 5 and 6, respectively. As we can see, negative temperature
gradient still exists for both harmonic and φ4 lattices within
the interfacial segment.

FIG. 5. (Color online) The temperature profile of the harmonic
chain with an interfacial junction, whose spring constants are
smoothly varied. The distribution of spring constants for the whole
system is given as follows: ki = kL = 1 for 1 � i � 7N/16; ki =
exp [−(i − N/2)2/50] + 1 for 7N/16 < i � 9N/16; and ki = kR =
1 for 9N/16 < i � (N − 1), where i is the index of particle number
and N = 256. The first three even moments of velocity are given
by T

(2)
i = m〈ẋ2

i 〉 for the second moment, T
(4)
i = m(〈ẋi

4〉/3)
1/2

for

the fourth moment and T
(6)
i = m(〈ẋi

6〉/15)
1/3

for the sixth moment,
respectively. Here TL = 2,TR = 1, and N = 256.

FIG. 6. (Color online) The temperature profile of the φ4 lattice
with an interfacial junction, whose spring constants are smoothly
varied. The distribution of the spring constants in the interfacial
junction is the same as that for Fig. 5. Here λL = λR = 1,TL = 2,

TR = 1, and N = 256.

As mentioned above, a meaningful local temperature can be
defined only in systems exhibiting local thermal equilibrium.
And we know that, if the system can exhibit local thermal
equilibrium, the local distribution should be Gaussian and
all even moments can be obtained based on the second
moment. We can then use T

(2)
i = m〈ẋ2

i 〉, T (4)
i = m(〈ẋi

4〉/3)
1/2

,

and T
(6)
i = m(〈ẋi

6〉/15)
1/3

to define local temperature equiva-
lently, so we carry out NEMD simulation for both the harmonic
and φ4 lattice and plot the local temperature defined by the
first three even moments of velocity, namely, the second,
fourth, and sixth moments in Figs. 5 and 6. To our surprise,
the local temperatures defined by T (2), T (4), and T (6) at the
boundary particles agree well with each other. The deviation
at the interface is not significant in comparison with the
inside segments. The result indicates the local distribution
is at least very close to the Gaussian, which cannot be well
distinguished by numerics and should be examined with
more careful theoretical studies of local distribution in the
future.

IV. SUMMARY

We have studied interfacial thermal conductance in one-
dimensional inhomogeneous systems by using both theoretical
calculations and MD simulations. In the weak coupling
limit, theoretical calculations show that the heat current
is proportional to the square of the coupling strength in
the absence of anharmonicity. A negative temperature jump
between the interfacial particles occurs in both the harmonic
and φ4 lattices. To understand the counterintuitive observation,
we have investigated the contribution of normal modes to
the local temperature at the interface. It is shown that the
high-frequency modes make dominant contributions when
the coupling strength is small; however, the contribution of
each mode is almost equivalent when the coupling strength
is strong. We have confirmed that the occurrence of the
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negative temperature jump is not trivially artificial due to
the integrability of the system or the sharp discontinuity of
the interfacial coupling by extending the system to a model
consisting of two sublattices and an intermediate junction for
both the harmonic and φ4 lattices.

One should re-examine the notion of temperature to
understand the anomalous negative temperature jump, which
seemingly indicates that heat flows against a local temperature
gradient in a small scale. On the one hand, from the viewpoint
of traditional thermodynamics, local temperature should be
defined in a cell, which should be macroscopically infinitesi-
mal but contain enough microscopic degrees of freedom. Such
kind of cell is, strictly speaking, not well defined for our
microscopic model due to the large atomic-scale fluctuations
and the word local defined for a single oscillator loses its
inherent meaning. On the other hand, we stress that the
traditional definition of local temperature with respect to the
kinetic energy of an oscillator is still in the framework of
equilibrium thermodynamics. The anomalous phenomenon

may partly comes from the definition as used here, which lacks
a complete description of the nonequilibrium steady state. A
new definition of nonequilibrium temperature might be taken
into consideration on this count [22,23], especially when one
take notice of the temperature profile for the middle region of
the intermediate junction, which is anomalously smaller than
TR , as shown in Fig. 5. However, whether the concept of (local)
temperature can be extrapolated beyond local equilibrium or
should be modified in the nonequilibrium systems is still an
open question.
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