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Relation between structure of blocked clusters and relaxation dynamics in kinetically
constrained models
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We investigate the relation between the cooperative length and relaxation time, represented, respectively, by
the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically
constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence
time, τp , which is the time until a particle moves for the first time, and the culling time, τc, which is the minimal
number of particles that need to move before a specific particle can move, τp = τ γ

c , where γ is model- and
dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen
models decays subexponentially in time, P (t) = exp[−(t/τ )β ], but unlike previous works, we find that the
exponent β appears to decay to 0 as the particle density approaches 1.

DOI: 10.1103/PhysRevE.92.032133 PACS number(s): 64.60.ah, 64.70.Q−, 66.30.J−, 05.40.−a

I. INTRODUCTION

Increasing the density of particles in granular materials
causes them to undergo a transition from a fluidlike state, in
which the particles can move relatively freely, to a jammed
state, in which almost none of the particles can move [1,2].
In glasses, a similar transition occurs when the temperature is
decreased [3,4]. As the material nears the glass or jamming
transition, the system’s relaxation time increases dramatically,
until it diverges at the critical point [5].

The various kinetically constrained models [6–10] capture
the essence of the glass or jamming transitions and there has
been much recent activity on them. Some of these models
simulate the way that particles block each other’s movement by
requiring that a particle can move only if its neighbors satisfy
some condition [11–19]. Other models add driving forces that
simulate the resistance of jammed systems to external forces
[20–24]. In general, the system is coarse-grained to a lattice,
and each site is in one of two states, 0 or 1. In lattice-gas
models, a site in state 1 represents a particle that may move
to an adjacent vacant site, represented by state 0, if its local
neighborhood satisfies some model-dependent rule. In spin-
facilitated models, state 1 represents a high-density region in
granular systems and an inactive region in glasses, while state
0 represents either a low-density region or an active region
in granular matter and glass-forming liquids, respectively. A
site can change its state from 0 to 1 and vice versa, with a
temperature-dependent rate if the site’s local neighborhood
satisfies some model-dependent rule.

In this paper, we consider the Kob-Andersen (KA) [25] and
Fredrickson-Andersen (FA) [26,27] kinetically constrained
models on one- and two-dimensional square lattices. In the
FA spin-facilitated model, a site can change its state from 0 to
1 and vice versa if it has at least m neighboring vacancies. In
the KA lattice-gas model, a particle needs at least m adjacent
vacancies before and after the move in order to move to
a nearest-neighbor vacant site. Higher-dimensional versions
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of these models with higher values of m have also been
investigated [28,29].

The glass or jamming transitions result from cooperative
dynamics in the manner in which particles are blocked by
their neighbors, which in turn are blocked by their neighbors,
and so on, such that in order for a single particle to move, many
others need to move before it. The number of these “shells”
and their weight represent the structural changes in the system
as it nears the critical point, and they diverge at the critical
point. In effect, they represent the minimal number of steps
needed for a particle to move, which may be found by culling
the shells iteratively. Above the critical density (lattice gas), or
equivalently below the critical temperature (spin model), some
of these shells cannot be culled since the particles in them
block each other. This culling process is the usual manner
to check whether a system is jammed or not, because if no
blocked particles remain after the culling, then all the particles
may eventually move and the system is not jammed. The
culling time represents a length scale related to relaxation
of the system [17,19]. We note here that this length scale is
not the only way to quantify the relation between structure of
the system and its dynamics [30–33], and it remains an open
question which structural order parameter is a better choice.

In most previous works regarding the FA and KA mod-
els, relaxation time was measured by the two-time density
autocorrelation function [34–40]. In this paper, we use the
persistence function, defined as the fraction of particles that
have not yet moved until time t (in lattice-gas models) or
the fraction of sites that have not changed state until time
t (in spin-facilitated models). The persistence function was
thoroughly investigated in the relatively simple m = 1 models
[41–45], but there are also works on higher values of m [44–50]
and other kinetically constrained models [22]. Generally, the
density autocorrelation function and the persistence function
behave similarly.

In this paper, we study the relation between the culling time
and relaxation time, obtained from the persistence function,
and we show that near the critical point the relation is a model-
dependent power law that can be explained as a diffusion of
rare droplets. We show that this is a general result by also
considering another kinetically constrained model, the spiral
model [14,15]. In Sec. II we describe the models investigated
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in this paper. Our results for the culling time and relaxation
time are shown in Secs. III and IV, respectively, and compared
in Sec. V. Section VI summarizes the paper.

II. THE MODELS

We consider the KA and FA models on a d-dimensional
square lattice. At time t = 0, each site in the lattice is either
in state 1 with probability ρ, or in state 0 with probability
v ≡ 1 − ρ without correlations between sites. In this way, we
probe the equilibrium distribution of the system. In the FA
model, a site can change its state from 0 to 1 and vice versa
if it has at least m neighboring vacancies. In the KA model,
sites at state 1 are occupied by particles, and sites at state 0 are
vacant. A particle needs at least m adjacent vacancies before
and after the move in order to move to a nearest-neighbor
vacant site. We consider here three cases: d = m = 1, d =
2,m = 1, and d = m = 2. The first two cases (m = 1) in the
KA model are equivalent to the simple symmetric exclusion
principle (SSEP) model [51,52], in which a particle can move
if it has a neighboring vacancy. When m = 1, all the particles
are able to move eventually (in the KA model) or change their
state eventually (in the FA model), while if m = 2 there is
a system-size-dependent value of the density above which a
finite fraction of the particles will not be able to move (KA
model) [53] or change their state (FA model) [26]. In square
systems of size L × L, this critical vacancy density is given
by [54]

vc = λ

ln L
, (1)

where λ is a weak function of L [55,56]. In the system sizes
we consider here, λ ≈ 0.25, whereas in the limit L → ∞ it is
equal to π2/18 ≈ 0.55.

We perform on these systems two types of dynamics:
culling dynamics and real dynamics. In the culling dynamics,
we iteratively remove the particles that are able to move (KA),
or change to 0 the state of the sites that are able to do so (FA).

In the real dynamics, every time step dt = 1/N , with N

being the number of sites, one of the sites is chosen randomly.
In the FA model, in order for a site to change its state, it first
must have m neighboring vacancies, as noted before. If this
condition is satisfied, the site changes its state from 0 to 1
with probability W01 and from 1 to 0 with probability W10.
To maintain detailed balance while maximizing the transition
probabilities, we set

W01 = min
(

1,
ρ

v

)
,

(2)

W10 = min

(
1,

v

ρ

)
.

In the KA model, if the chosen site is occupied, a random
direction is also chosen, and the chosen particle can move in
that direction if the neighboring site in that direction is empty,
and the particle has at least m neighboring vacancies before
and after the move.

In the real dynamics, we use a continuous-time or rejection-
free algorithm since at high densities the probability that an
allowable move is randomly chosen is very small. In this
algorithm, we randomly generate the number of time steps

that have passed between successive moves based on the
probability that a move is possible. In this way, we do not
wait for long periods of time until a move is made, but rather
advance the clock in large random steps.

For the culling dynamics, we define the culling time
cumulative distribution M (d,m)(s) as the fraction of sites that
started in state 1 and did not change to 0 until iteration s

of the culling process, and for the real dynamics we define
the persistence function P (d,m)(t) as the fraction of particles
that have not yet moved (KA) or the fraction of sites that
started from state 1 and did not change to 0 (FA) until time t .
Obviously M(0) = P (0) = 1 for all models. The culling time
τ (d,m)
c and the persistence time τ (d,m)

p , defined, respectively, as
the average number of iterations needed to cull a particle and
the average time until a particle moves (KA) or a site changes
its state (FA) for the first time, are given by

τ (d,m)
c =

∞∑
s=0

M (d,m)(s) − M (d,m)(∞)

1 − M (d,m)(∞)
,

(3)

τ (d,m)
p =

∫ ∞

0

P (d,m)(t) − P (d,m)(∞)

1 − P (d,m)(∞)
dt,

where P (d,m)(∞) = M (d,m)(∞) = 0 if the system is un-
jammed, i.e., all of the sites (particles) will be able to flip
(move) eventually, and P (d,m)(∞) � M (d,m)(∞) > 0 if the
system is jammed, i.e., some of the sites (particles) will never
be able to flip (move). Therefore, P (d,m)(∞) and M (d,m)(∞)
act as the system’s Edwards-Anderson order parameter [57].
In the FA models, flipping sites only to 0 may occur in
the real dynamics, albeit with a negligible probability, and
thus M (d,m)(∞) = P (d,m)(∞). However, in the KA models it
is possible that some particles will never be able to move
but are still culled because other particles that may move
but block them are culled, and thus M (d,m)(∞) � P (d,m)(∞).
Although the case P (d,m)(∞) > M (d,m)(∞) = 0 is possible
in finite systems, we assume that it does not occur in the
thermodynamic limit since we encountered such a scenario
only in very small systems.

III. CULLING DYNAMICS

A. Culling dynamics for the m = 1 FA and KA models

In the m = 1 models, there are no permanently frozen
particles, and thus M(∞) = 0. Furthermore, we obtain an
explicit expression for M(s). The number of particles culled in
the sth step, M(s − 1) − M(s), is the number of particles for
which all of the (s − 1)-nearest neighbors are occupied and at
least one of the s-nearest neighbors is vacant. For d = 1 this
is

M (1,1)(s − 1) − M (1,1)(s) = ρ2(s−1)(1 − ρ2), (4)

and for d = 2 it is

M (2,1)(s − 1) − M (2,1)(s) = ρ2s(s−1)(1 − ρ4s). (5)

Solving these recursion equations yields for d = 1

M (1,1)(s) = ρ2s , (6)

and for d = 2

M (2,1)(s) = ρ2s(s+1). (7)
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Hence, by substitution in Eq. (3) we find that the culling times
are given by

τ (1,1)
c = 1

1 − ρ2
,

(8)

τ (2,1)
c =

∞∑
s=0

ρ2s(s+1) = �2
(
0,ρ2

)
2
√

ρ
,

where �2 is the Jacobi Theta function [58]. At high particle
densities, v � 1, we may approximate τ (2,1)

c by

τ (2,1)
c ≈

√
π

8v
. (9)

In a similar manner for general dimensions, by calculating
the number of s-nearest neighbors in a d-dimensional hyper-
cubic lattice, Gd (s), we find that

M (d,1)(s) = ρGd (s)−1. (10)

It was shown in [59] that Gd (s) is a polynomial given by

Gd (s) =
d∑

k=0

(
d

k

)(
s − k + d

d

)
. (11)

At high particle densities, v = 1 − ρ � 1, we can find an
approximation for τc in any dimension. From Eq. (10) we find
that τ (d,1)

c is given by

τ (d,1)
c =

∞∑
s=0

ρGd (s)−1 =
∞∑

s=0

exp{[Gd (s) − 1] ln ρ}. (12)

We now note that Gd (s) is a polynomial of order d with the
coefficient of sd given by

Gd (s) =
d∑

k=0

(
d

k

)
1

d!
sd + O(sd−1) = (2s)d

d!
+ O(sd−2).

(13)

Changing the sum over s to an integral over x = sv1/d yields

τ (d,1)
c ≈ v−1/d

∫ ∞

0
exp

[
− (2x)d

d!

]
dx = 	

(
1 + 1

d

)
(d!)1/d

2v1/d
.

(14)

Except for the nontrivial prefactor, the dependence of τc on
the vacancy density v comes simply from the fact that τc is the
distance to the nearest vacancy, which scales as v−1/d .

B. Culling dynamics for the m = 2 FA and KA models

In the d = m = 2 models, we find M (2,2)(s) and τ (2,2)
c

numerically by running simulations on square systems of size
L × L, with L = 100 or 1000. We only consider densities be-
low the critical density [see Eq. (1)], ρc(L = 100) ≈ 0.94 and
ρc(L = 1000) ≈ 0.96, since in the thermodynamic limit the
critical density is ρc(L = ∞) = 1 and thus the results relevant
to this limit are below the size-dependent critical density.

Figure 1 shows the dependence of M(s) on s. At small s

we find an exponential decay − ln M (2,2) ∼ s, which is similar
to the behavior of M (1,1) in Eq. (6), while for large s, the
form is Gaussian, − ln M (2,2) ∼ s2, which is similar to M (2,1)

in Eq. (7). The reason is that for small s, the particles are

FA

2 5 10 20 50 100
s

0.05
0.10

0.50
1.00

5.00
10.00

ln M

KA

2 5 10 20 50 100
s

0.1
0.2
0.5
1.0
2.0
5.0

10.0
20.0

ln M

FIG. 1. (Color online) The fraction of sites that have not yet
been culled, M (top panels), and its logarithm (bottom panels) as
a function of the iteration number s for the d = m = 2 FA model
(left panels) and KA model (right panels). The system’s linear
size is either L = 100 (blue dots) or L = 1000 (red continuous
lines). Each curve is for a different density (from left to right),
ρ = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.91,0.92,0.93,0.94,0.95.
There is almost no difference between the different system sizes. The
bottom panels show only data for L = 1000. The straight black lines
in the bottom panels are ∼s and ∼s2. There is almost no difference
between the FA and the KA models.

culled mostly one by one such that the behavior is quasi-one-
dimensional, and when the empty region is large enough, the
particles around it are culled by diagonal shells as a two-
dimensional system; see Fig. 2.

FIG. 2. (Color online) The culling time s for each site in a typical
100 × 100 configuration in the FA model at ρ = 0.92. The legend
shows the range of s represented by each color. The diagonal borders
between regions of different colors, which are indicative of a two-
dimensional culling process, are clearly seen at large scales. See, for
example, the diagonals at the lower left corner, and in the region
above the legend to the right.
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FIG. 3. A scatter plot of the culling time s vs the distance
(|
x| + |
y|) to the nearest critical droplet for a single 100 × 100
configuration at the critical density ρ = 0.951 for the d = m = 2 FA
model. Lines with positive (negative) slope indicate culling around
the empty region away from (toward) the seed of the droplets; see the
text. At intermediate times (50 � s � 150) the culling time generally
grows with the distance from the droplet, since at those times the
droplet in the configuration shown here expanded away from the seed
in two of the four directions. At longer times, the droplet expanded
in all directions, including toward the seed. The points with low s

and large distance represent small, active regions that are far from the
critical droplet.

In the m = 1 models, the culling process is equivalent to
expanding the vacant regions, and thus the culling time for a
given site is its distance to the nearest vacancy, τc ∼ v−1/d ; see
Eq. (14). In the m = 2 models, the culling process is dominated
by critical droplets [54], which are small regions that may be
expanded by the culling process to include the entire system.
Hence, the culling time is the distance to the nearest seed for
a critical droplet if the site is far enough from the droplet, as
shown in Fig. 3. Because the probability of a given site to seed
a critical droplet is exp (−2λ/v), with λ ≈ 0.25 in the sampled
density range [56], the average distance from a droplet, and
thus the mean culling time, should scale as exp (λ/v). We see
from Fig. 4 that this form of the scaling is consistent with our
numerical data.

IV. PERSISTENCE IN THE PHYSICAL DYNAMICS

A. Real dynamics for the m = 1 FA and KA models

Since the m = 1 KA lattice gas is equivalent to SSEP,
instead of considering motion of particles, we may think of the
dynamics as diffusion of vacancies, such that the persistence
of a given site is the mean first passage time of vacancies to that
site. Since the vacancies can diffuse freely, all particles will
eventually move and thus P (∞) = 0. At high particle density,
v � 1, we may make the approximation that the vacancies
are independent, and allow two (or more) vacancies to occupy
the same site. Furthermore, at long times the discrete nature
of the lattice becomes irrelevant, and we may use results from
continuous models. Under these approximations, the long-time
behavior of the mean first passage time distribution, and thus

1/v
0 10 20 30 40 50 60

τ c

100

101

102

103

1/
v c(L

=1
00

)

1/
v c(L

=1
00

0)

KA,  L=100
FA,  L=100
KA,  L=1000
FA,  L=1000
A exp(λ/v)

FIG. 4. (Color online) The mean culling time τc vs the reciprocal
of the vacancy density 1/v for d = m = 2. There is almost no
difference between the KA and the FA models. Below the jamming
density, there is almost no difference between L = 100 and 1000, and
the mean culling time may be fitted to τc = A exp (λ/v) with A ≈ 2.1
(KA), 1.5 (FA), and λ = 0.25, as shown by the black dotted lines. τc

reaches a maximum around the critical density (vertical dashed black
lines) because at higher densities the frozen sites can no longer be
culled, and thus they do not contribute to τc.

of the persistence function, is described by [60–62]

P (d,1)(t) =

⎧⎪⎪⎨
⎪⎪⎩

exp
[− 2v

√
Dt
π

]
, d = 1,

exp
[− 4πDvt

ln Dt/R2

]
, d = 2,

exp[−(d − 2)SdR
d−2Dvt], d � 3,

(15)

where Sd = 2πd/2/	(d/2) is the surface area of the d-
dimensional unit sphere, and D is the self-diffusion coefficient
for the motion of the vacancies. For the m = 1 models,
D = 1/(2d). In continuous models, R is the radius of the
trapping region. In a discrete lattice, in which each site contains
at most one particle, R = O(1).

At short times we may use a mean-field approximation,
such that the probability that a particle can move to an adjacent
site (for the first time, since this is an approximation for short
times) is v, and thus

∂P

∂t
= −vP (t), (16)

which yields P (t) = e−vt . Note that in kinetically constrained
models, by construction, the occupation probabilities of
neighboring sites at a given time are uncorrelated, and the
dynamics are spatially heterogeneous [7,37]. In the Appendix,
we derive an exact expression for the one-dimensional case at
all times under the approximation that the diffusing vacancies
are independent.

The FA Ising model may be thought of as a diffusion-
reaction model, which behaves similarly. At high particle
densities in the FA model, W10 � W01, and sites in state 0
can be considered to change practically instantly to state 1
(when the kinetic constraint does not prevent them from doing
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FIG. 5. (Color online) The persistence function P as a function
of the normalized time W01W10t in the m = 1 models in d = 1
(a) and d = 2 (b) for the FA (dashed lines) and KA (dotted
lines) models. In panel (a), the continuous lines are the analytical
approximation, Eq. (15). As the scaling from Eq. (15) for d = 2 is
difficult to see from panel (b), we show in panel (c) t/ ln P vs t for
ρ = 0.9999 in the d = 2 FA model. At small times, P decreases
exponentially with t , but at longer times it decreases exponentially
with t/ ln t , as expected from Eq. (15). The drop at long times is due
to finite-size effects, and the thin line is ∼ ln t .

so) compared to the time it takes a site in state 1 to flip.
Thus, when a state 1 flips and immediately after that its state 0
neighbor flips, it appears as if the state 1 moved. This effective
movement happens on a different time scale than in the KA
model, because the rate W10 is smaller than 1, and thus time
should be normalized by W01W10 = min( ρ

v
, v
ρ

) in order to map
the FA dynamics on those of the KA model. In what follows,
we thus normalize time by W01W10 and interpret the rates W10

and W01 as equal to unity in the KA model.
Figure 5 shows the persistence function for the m = 1

models. We see that the FA and KA models behave similarly,
except for a prefactor, and that the analytical approximation,
Eq. (15), is in good agreement with the numerical results.

B. Real dynamics for the m = 2 FA and KA models

Similarly to the m = 1 models, at high densities the m = 2
FA model behaves like the m = 2 KA model under the proper
time normalization for the exact same reasons as in the m = 1
models. At short times, the persistence decays exponentially as

P (t) = e−�W10t , (17)

where in d = 2,

� = (1 − ρ3)2v (18)

is the probability that a random particle has at least two neigh-
boring vacancies before and after the move. This result is ob-
tained from a mean-field approximation, valid for short times,
similarly to the analysis above for the m = 1 models. This ex-
ponential decay continues until time 1/W10, which is the typi-
cal time at which all the sites that were able to flip at t = 0 have
flipped (FA) or all the particles that were able to move at t = 0
have moved (KA). After that time, we see from the numerical
results that the persistence decays as a stretched exponential

P (t) = e−�(W10t)β , (19)

as shown in Fig. 6. Note, however, that in the thermodynamic
limit and at extremely long times, the persistence function
eventually decays exponentially [44].

a

0.5
0.8
0.9
0.92

FAKA Approx

1 100 104 106 W01W10t

10 4

0.01

1

ln P 2,2

FIG. 6. (Color online) (a) The persistence function P as a func-
tion of the normalized time in the m = 2 FA (dashed lines) and
KA (dotted lines) models. At short times, the exponential decay of
the persistence function agrees with Eqs. (17) and (18), denoted by
the solid lines, but at longer times it decays subexponentially as
−lnP ∼ tβ . (b) The exponent β vs the vacancy density v. The blue
symbols are the numerical results, and the dashed red line is the
analytical approximation for small v, Eq. (36).
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Combining Eqs. (3), (17), and (19), we find that the
persistence time may be approximated by

W10τp = 1 − e−�

�
+

	
(

1
β
,�
)

β�1/β
, (20)

where 	(a,z) is the incomplete Gamma function. In the limit
of small v (and thus small β), τp may be further approximated
by

W10τp ≈
√

2π

β

(
1

9ev3β

)1/β

. (21)

Previous numerical studies [49] have shown that in a
50 × 50 system, the exponent β converges to a value of 0.42
as the density is raised to ρ = 0.917 [50], near the critical
density for jamming in a system of that size, ρc ≈ 0.94 [63],
while we get β = 0.25 at ρ = 0.92 and it clearly does not
converge. The reason for this apparent discrepancy lies in the
preparation protocol. In our simulations, each site at time
t = 0 is in state 1 with probability ρ and in state 0 with
probability v, and thus the initial configuration is chosen from
the equilibrium distribution. In the simulations reported in
[49], all the spins were initially set to 0, the system was
evolved for a long time until it apparently reached equilibrium,
and then the measurement of the persistence function started.
However, we suspect that these simulations did not equilibrate.
Indeed, by simulating a 50 × 50 system at ρ = 0.92 with such
a quenched initial condition, we find β = 0.42 if we wait for
105 steps per site, while by waiting for 108 steps per site we
get β = 0.32, still far from the equilibrium result. It would
be interesting to test the convergence of β to its equilib-
rium value by waiting considerably longer times after such
quenches.

V. COMPARISON BETWEEN THE CULLING DYNAMICS
AND THE REAL DYNAMICS

To compare the culling time τc and the persistence time
τp, we return to the picture of diffusing vacancies. For m =
1, combining Eqs. (3), (14), and (15) for d = 1 and d � 3
yields

τ (d,1)
p =

{
πτ 2

c , d = 1,

c̃dτ
d
c , d � 3,

(22)

where c̃d is some constant. For d = 2, the integral

τ (2,1)
p =

∫ ∞

1
P (2,1)(t)dt, (23)

where P (2,1)(t) is given by Eq. (15), cannot be computed
exactly for any finite v, and it requires more work to find
the asymptotic expansion for small v. We first change the
integration variable from t to x = 4πDvt ,

τ (2,1)
p = 1

4πDv

∫ ∞

4πDv

exp

[
− x

ln(x/c2v)

]
dx, (24)

where

c2 = 4πR2, (25)

and as noted above, R = O(1). We now divide the range of
integration into three parts: 4πDv to 1, 1 to 1/(c2v), and
1/(c2v) to ∞. The first part is negligible because its total
contribution is smaller than 1. The third part is negligible
because in the limit of v → 0, both the integrand and the
range of integration go to 0. Hence,

τ (2,1)
p ≈ 1

4πDv

∫ 1/(c2v)

1
exp

[
− x

ln x − ln(c2v)

]
dx. (26)

In this region, | ln x| < | ln c2v|, and thus we may further
approximate τ (2,1)

p by

τ (2,1)
p ≈ 1

4πDv

∫ 1/(c2v)

1
exp

[
x

ln(c2v)

]
dx ≈ − ln(c2v)

4πDv
,

(27)

where in the last approximation we used v � 1. Combining
Eqs. (14) and (27) yields

τ (2,1)
p ∼ τ 2

c ln τc. (28)

In the m = 2 models, the dynamics is dominated by the
movement of droplets, not of individual vacancies. We recall
that the droplets appear with an effective density of

ṽ = exp (−2λ/v), (29)

and that τc ∼ exp (λ/v) ∼ ṽ−1/2. The self-diffusion coefficient
of particles in the m = 2 model is given by [64]

D = exp (−2λ/v) ∼ τ−2
c . (30)

We are interested in the self-diffusion of droplets. The particles
inside the droplets are the most mobile particles in the
system, and thus they contribute the most to the self-diffusion
coefficient of particles in the system. Therefore, the self-
diffusion coefficient for the droplets may be approximated by
the self-diffusion coefficient of the particles, given by Eq. (30).
Using Eq. (30) and changing v to ṽ in Eq. (27) yields

τ (2,2)
p ∼ τ 4

c ln τc. (31)

From this relation, we can find an approximation for β(v)
at small v. Combining Eqs. (21), (30), and (31) for the KA
model yields√

2π

β

(
1

9ev3β

)1/β

= λ

2πv
exp (4λ/v). (32)

Solving for v yields

v = 4βλ

(β − 3)W
{

β

β−3

[
576eλ3β

(
β

2πc2
2

)β/2]1/(3−β)} , (33)

where W (z) is the product-log function [65] defined as the
solution to

z = W (z) exp[W (z)]. (34)

Expanding Eq. (33) for small β yields

v = 3λβ

2 ln (1/β)
. (35)
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Solving for β and approximating for small v yields

β = 2v

3λ
ln

(
3λ

2v

)
, (36)

which for small v is shown in Fig. 6(b) to roughly agree with
the value of β obtained from the stretched exponential form of
the persistence function, Eq. (19).

To show that the relation between τp and τc is general, we
also consider here the two-dimensional spiral model [14,15].
This model jams at a finite density, at which the frozen
structures are one-dimensional strings that run along the
diagonal directions of the lattice. Below the critical density, but
near it, the largest contribution to the persistence time comes
from such almost-frozen strings, and thus we may approximate
this as a quasi-one-dimensional process (see Fig. 7), which

FIG. 7. (Color online) Spatial structure of the culling (top) and
persistence (bottom) times in the spiral model at ρ = 0.61, which is
slightly below the critical density for the simulated system size of
L = 100. The one-dimensional structures running along the diagonal
directions of the lattice are clearly seen.

FIG. 8. (Color online) The self-diffusion coefficient D in the
two-dimensional spiral model vs the culling time τc. The continuous
line is ∼τ−2

c .

leads to

τ spiral
p ∼ τ 2

c

/
D. (37)

As the density approaches the critical density, we see from the
numerical results shown in Fig. 8 that the diffusion coefficient
approaches zero as

D ∼ τ−2
c , (38)

and thus

τ spiral
p ∼ τ 4

c . (39)

Figure 9 shows the excellent agreement between the
numerical results and Eqs. (22), (28), (31), and (39) at densities
slightly below the critical density (ρc = 1 for the FA and
KA models, and ρc ≈ 0.7 for the spiral model). It would be
interesting to study the structural connections between the
directed percolation underlying the jammed structures in the
spiral model and the one-dimensional nature of relaxation
processes in it. Furthermore, it would be interesting to identify
possible logarithmic corrections to Eq. (39) and to numerically
test their applicability.

Τc
4

Τc
2LnΤc

FA,m 2,d 2
KA,m 2,d 2
Spiral,d 2

FA,m 1,d 2
KA,m 1,d 2
FA,m 1,d 1
KA,m 1,d 1

Τc
2

Τc
4LnΤc

1 5 10 50 100 500
Τc

10

104

107

W01W10 Τp

FIG. 9. (Color online) The relation between the normalized per-
sistence time W10W01τp and the culling time τc for the FA and
KA models and for the spiral model. The continuous lines are the
analytical approximations, Eqs. (22), (28), (31), and (39).
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VI. SUMMARY

In this paper, we investigated the relation between the
structural changes in the system, represented by the culling
time τc, and between relaxation time of the persistence function
τp in the Fredrickson-Andersen and Kob-Andersen kinetically
constrained models in one and two dimensions, and in the
two-dimensional spiral model. We found that τp ∼ τ

γ
c , up

to logarithmic corrections in the Fredrickson-Andersen and
Kob-Andersen models in two dimensions, where γ is model-
dependent. This result is explained by mapping the persistence
of a site to a first passage time of diffusing defects, with their
initial distance given by the culling time.

We also found that the persistence function in the m =
2 models at long times behaves like a stretched exponential
exp [−(t/t0)β], where β probably goes to zero at small vacancy
densities in contradiction with previous studies in which β was
believed to converge to a finite value. The difference arises
because the previous results were obtained in systems that
were not in equilibrium, while our simulations are performed
in equilibrium.

The general relation between the culling and the persistence
times may also hold in other models, including continuum
models, and in experiments. Since the m = 1 Fredrickson-
Andersen and Kob-Andersen models represent normal gas
or liquid, while the m = 2 models and the spiral model
represent glassy behavior, the exponent γ is a measure for
the “glassiness” of a system. It would be interesting to
check whether this relation holds also for other measures
of relaxation, such as the autocorrelation function, with the
same value of γ . Also, it would be interesting to study the
relation between the culling and the persistence in the three-
dimensional extension of the spiral model [19], in which there
is a decoupling between structure and the dynamics, i.e., the
density above which permanently jammed structures appear is
lower than the density above which the long time self-diffusion
stops.
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APPENDIX: EXACT EXPRESSION FOR P(t) IN THE
ONE-DIMENSIONAL m = 1 KA MODEL

Here we derive an exact expression for the persistence
function in the one-dimensional m = 1 KA model using the
approximation of noninteracting diffusing vacancies. Consider
a one-dimensional lattice of length 2L + 1 with (2L + 1)v
vacancies. We are interested in the limit L → ∞, and
implicitly we take this limit during the derivation whenever
there is no singularity. The persistence function, P (t), is the
probability that none of these diffusing vacancies reached the
origin until time t . Since we assume that the vacancies are
noninteracting, it is enough to compute the probability that a
single vacancy did not reach the origin until time t , Q(t), and
from that we can obtain P (t) = [Q(t)]v·(2L+1).

At each time step δ, there is a probability δ that the vacancy
tries to move, and if it does there is an equal probability to move
either to the left or to the right. Without loss of generality, we
may assume that this vacancy is at site k0 > 0 at time t = 0.
The evolution equation for the probability vk(t) that at time t

the vacancy was at site k reads

vk(t + δ) = (1 − δ)vk(t) + δ

2
[vk+1(t) + vk−1(t)] (A1)

for k � 2, and

v1(t + δ) = (1 − δ)v1(t) + δ

2
v2(t) (A2)

for k = 1, since if the vacancy reached the site k = 0, the
process stops. In the limit δ → 0 this transforms to the
differential equations

dvk

dt
= −vk + 1

2
(vk+1 + vk−1),

dv1

dt
= −v1 + 1

2
v2. (A3)

The general solution to the first differential equation is [66]

vk = e−t

∞∑
l=−∞

AlIl−k(t), (A4)

where In(t) is the modified Bessel function of the first kind.
Setting the general solution in the equation for k = 1 yields

∞∑
l=−∞

AlIl−k(t) = 0. (A5)

Using the relation In(t) = I−n(t), we find that

Al = −A−l . (A6)

Imposing the initial condition vk(0) = δk,k0 and using In(0) =
δn,0 yields

Ak = δk,k0 − δk,−k0 . (A7)

Hence,

vk(t) = e−t [Ik−k0 (t) − Ik+k0 (t)]. (A8)

The probability that the vacancy did not reach the origin
until time t , given that it started from k0, is

Q1(k0,t) =
∞∑

k=1

vk(t) = e−t

[
Ik0 (t) + I0(t) + 2

k0−1∑
k=1

Ik(t)

]
.

(A9)

Averaging over all initial states yields

Q(t) = 1

L

L∑
k0=1

Q1(k0,t)

= 1

L

⎡
⎣1

2
− e−t I0(t)

2
+ Le−t I0(t) + 2e−t

L∑
k0=1

k0−1∑
k=1

Ik(t)

⎤
⎦,

(A10)
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where we used

∞∑
n=1

In(t) = et

2
− I0(t)

2
. (A11)

To calculate the last sum, we change the order of summation
such that

L∑
k0=1

k0−1∑
k=1

Ik(t) =
∞∑

k=1

L∑
k0=k+1

Ik(t)

=
∞∑

k=1

(L − k)Ik(t) = L

2
(et − I0) −

∞∑
k=1

kIk(t),

(A12)

where we used Eq. (A11).
We now use the relation

kIk(t) = t

2
[Ik−1(t) − Ik+1(t)] (A13)

and find that
∞∑

k=1

kIk(t) = t

2
[I0(t) + I1(t)]. (A14)

Therefore, by combining Eqs. (A10), (A12), and (A14), we
find that

Q(t) = 1 + 1

2L
{1 − e−t I0(t) − te−t [I0(t) + I1(t)]} (A15)

and thus the persistence function is given by

P (t) = lim
L→∞

[Q(t)]v(2L+1)

= exp ( − v{e−t I0(t) − 1 + te−t [I0(t) + I1(t)]}).
(A16)

For t � 1 the persistence function behaves as exp (−vt),
and for t 	 1 it behaves as

P (t 	 1) ≈ exp

(
−v

√
2t

π

)
. (A17)
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