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Phase diagrams of a spin-1 Ising system with competing short- and long-range interactions
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We have studied the phase diagrams of the one-dimensional spin-1 Blume-Capel model with anisotropy
constant D, in which equivalent-neighbor ferromagnetic interactions of strength −J are superimposed on nearest-
neighbor antiferromagnetic interactions of strength K . A rich critical behavior is found due to the competing
interactions. At zero temperature two ordered phases exist in the D/J -K/J plane, namely the ferromagnetic
(F) and the antiferromagnetic one (AF). For lower values of D/J (D/J < 0.25) these two ordered phases are
separated by the point Kc = 0.25J . For 0.25 < D/J � 0.50, the paramagnetic phase P emerges in a region
separated between the lines determined by D/J = 0.5 − K/J and D/J = K/J . For D/J > 0.5, only phases
AF and F exist and are separated by a line given by D/J = K/J . At finite temperatures, we found that the
ferromagnetic region of the phase diagram in the kBT /J -D/J plane is enriched by another ferromagnetic phase
F

′
above a first-order line for 0.195 < K/J < 0.250. This first-order line, which separates phases F and F

′
,

begins at a coexistence point, where phases F, F
′
, and P coexist, and ends at an ordered critical point. Similarly,

we found that the phase F
′

is present in the phase diagram in the kBT /J -K/J plane for 0.228 < D/J < 0.286.
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I. INTRODUCTION

The systems with competing interactions are very chal-
lenging and of great theoretical interest due to their unusual
properties [1–5]. For instance, a spin-1/2 Ising model with
competing short-range and long-range interactions was used
by Kardar [6] to study the crossover from Ising to mean-
field criticality, which is a critical phenomenon not only of
theoretical interest but also experimental [7]. This particular
classical spin system of variables σi = ±1 is represented by
the following Hamiltonian:

HNK = − J

2N

∑
(i,j )

σiσj + K
∑
〈i,j〉

σiσj − H
∑

i

σi, (1)

where the first sum contains all spin pairs coupled by the
positive constant J . The constant J is divided by N to ensure
the extensivity [8]. These are called equivalent-neighbor inter-
actions or mean-field interactions. The second sum depends on
the dimensionality, because the interactions are only between
nearest neighbors. Thus, the parameters K and J denote the
short- and long-range interactions, respectively, and H is the
external field.

When K > 0 and J > 0, it emerges a competition between
the antiferromagnetic and ferromagnetic couplings. This has
been called the Nagle-Kardar (NK) model [9–13]. It is
interesting to note that on Bravais lattices any weak equivalent-
neighbor interaction changes the nature of the criticality from
Ising to mean field [14,15]. However, on the Cayley tree a
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different phenomenon is found. The infinite-range interaction
breaks the universality of the system. Also, in the absence of
nearest-neighbor interactions, all spins are equivalent, but the
addition of them places the spins in the hierarquical structure
of the Cayley tree and it breaks the translational invariance. So
the competition between short- and long-range interactions
is like a competition between interactions that break the
translational invariance and those that preserve it. Kardar and
Kaufman found that the reduction of translational invariance
(by increasing the strength of the nearest-neighbor couplings)
had on the critical behavior the same effect of lowering the
spatial dimensionality in Bravais lattices [16].

The one-dimensional case, in zero field, was first solved
by Nagle [17], where it was found two ferromagnetic phase
transition temperatures. It has been reported, in this case, that
the model suffers of ensemble inequivalence and ergodicity
breaking [12]. At zero temperature (the ground state), the
ferromagnetic phase is present for K/J < 0.25 and then the
antiferromagnetic phase for K/J > 0.25. In the canonical
ensemble the model exhibits a tricritical point in the frontier
separating the ferromagnetic and paramagnetic phases in the
T/J -K/J plane. However, no long-range antiferromagnetic
order exists for finite temperatures, though it is present in
higher dimensions (d � 2), when K is less than a critical
value KAF

c , as shown by Kardar [6].
In order to investigate spin models subject to this type of

competition, we investigate in this paper the one-dimensional
spin-1 Blume-Capel model [18,19] with competing interac-
tions. This model and its generalization, the Blume-Emery-
Griffiths model (BEG), have been proposed to describe the
λ transition in 4He-3He mixtures [20] as well as ordering
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in a binary alloy. For dimensions d � 2, the main feature of
its phase diagram is the existence of a tricritical point in the
plane of temperature versus anisotropy parameter, as has been
proved throughout many studies [21–28]. On the other hand,
when the spins of the model interact with antiferromagnetic
nearest-neighbor couplings, no magnetic order appears at finite
temperatures for the one-dimensional case [29], unless an
external field is applied to induce the magnetization [30].

The work is organized as follows: In Sec. II we analyze
the Blume-Capel model with competing short- and long-range
interactions in order to observe how the phase diagram is
sensible to the balance of the competing influences. In Sec. III,
we discuss the results of the phase diagrams in the kBT /J -D/J

and kBT /J -K/J planes and the ground-state phase diagrams
in the K/J -D/J plane. Section IV is reserved for summarizing
and conclusions.

II. MODEL AND METHOD

Recently, Dauxois et al. have analyzed models with short-
and long-range interactions [31]. In this work was studied the
phase diagram of two different Hamiltonians with competing
local, nearest-neighbor, and mean-field couplings. We can
classify interactions between elementary constituents of matter
according to the characteristic potential between two bodies.
According to some works in the literature [17,32–34], if this
decays at large distance with an exponent that is bigger than
the spatial dimension, one speaks of short-range interactions;
otherwise interactions are of long range.

Through the years materials that exhibit these char-
acteristics have been studied. For example, Chernyi and
coworkers [35] studied the kinetics of a magnetiza-
tion process in quasi-one-dimensional Ising superanti-
ferromagnet named trimethylammonium cobalt chloride
[(CH3)3NH]CoCl3 · 2H2O (CoTAC) belonging to a wide series
of organometallic compounds with general chemical formula
[(CH3)3MX3]CoCl3 · 2H2O (M = Mn, Co, Ni, Fe, and X =
Br, Cl). In the 1970s the effect of a longitudinal field in
the Ising antiferromagnet on an anisotropic simple cubic (sc)
lattice was studied. The experimental example is the compound
(C2H5NH3)2CuCl4 [36].

One of the attractive points in investigating the properties
of (C2H5NH3)2CuCl4 is that as a consequence of the anti-
ferromagnetic interlayer coupling we may obtain quantitative
information about the anisotropy and the exchange coupling
JAF by investigating the field dependence of the susceptibility
for T < Tc. In previous papers [37–40] it has been reported
that the Cu compounds of general formula CnH2n+1NH3CuX4,
where n = 1, 2, 3, 4, 5, 6, 10 and X = Cl or Br, can be
considered as consisting of nearly isolated magnetic layers.

Compounds of type (CnH2n+1NH3)2CuCl4 have been stud-
ied in Refs. [41–43], where the interest was in the observation
of intrinsic localized modes. These compounds, organized
in a face centered orthorombic crystal, are layered spin
strutures, in which the weak magnetic interlayer interaction
is antiferromagnetic, between the Cu2+ layers, for n > 1 and
ferromagnetic for n = 1. In the ferromagnetic case we have the
compound (CH3NH3)2CuCl4, called bis(Methylammonium)
tetrachloro-copper [44].

Based on the previous discussions we are interested in
improving the study of spin Hamiltonians with competing
interactions. Accordingly, we consider a spin-1 chain with
long-range and short-range competing interactions, described
by the Hamiltonian:

H = − J

2N

(
N∑

i=1

Si

)2

+ K

N∑
i=1

SiSi+1 + D

N∑
i=1

S2
i , (2)

where Si = −1,0,1,∀i, and N is the number of spins. As
in the NK model, the first term contains the equivalent-
neighbor (long-range) interactions and is responsible for the
ferromagnetic order if J > 0. The second term represents the
energy of a linear chain of coupled spins interacting between
nearest neighbors. In this paper we choose K > 0 to create
a competition between short-range and long-range couplings.
The third term is the anisotropy term with constant D.

For K = 0, we recover the most simple version of the
Blume-Capel model [18,19,22]. The results indicate the
existence of a phase transition from the high-temperature dis-
ordered paramagnetic (P) phase to the low-temperature or-
dered ferromagnetic (F) phase at a transition temperature
Tc(D) that depends on the values of the anisotropy parameter
D. In the limit D → −∞ one recovers the two-state Ising
model with Si = ±1. By increasing D, we have a decrease
of Tc(D). At zero temperatures, there is a first-transition point
δc = Dc/J = 1/2, such that for δ > δc the system exhibits
no magnetic order. For δ < δc, one has a first-order transition
line, where two different phases coexist (F and P phases).
This coexisting line meets the continuous transition line at
a tricritical point (TCP). The TCP found for the model (2)
for K = 0 is located at δt = log(4)/3 and kBT /J = 1/3.
In the absence of long-range interactions (J = 0), model
(2) can be solved by using the matrix transfer technique
(see Appendix A), where the system presents no long-range
order, i.e., at finite temperatures (T > 0) the magnetization
is null (m = 0). Therefore, the competition between the J

(long-range) and K (short-range) interaction tends to cause
the appearance of new critical points in the phase diagrams.

In order to study the present model at finite temperatures
(T > 0), we begin by determining the expression of the
partition function Z in the canonical ensemble [45], defined
by:

Z =
∑
{Si }

e
βJ

2N
(
∑N

i=1 Si )2
N∏

i=1

e−βKSiSi+1− βD

2 (S2
i +S2

i+1), (3)

where β = 1
kBT

, kB is the Boltzmann constant, T is
the absolute temperature of the system, and

∑
{Si } ≡∑1

S1=−1

∑1
S2=−1 · · ·∑1

SN=−1 indicates a sum over all spin
configurations. Using the Hubbbard-Stratonovich transforma-
tion [46,47] in order to reformulate the system of interacting
spins into a system in which they are decoupled, obtaining:

Z =
√

NβJ

2π

∫ ∞

−∞

⎧⎨
⎩e− 1

2 βNJx2
∑
{Si }

N∏
i=1

eβH̃i

⎫⎬
⎭dx, (4)

where H̃i = 1
2Jx(Si + Si+1) − KSiSi+1 − 1

2D(S2
i + S2

i+1).
So the partition function can be calculated by using the
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transfer matrix technique that is given by:

Z =
√

NβJ

2π

∫ ∞

−∞

{
e− 1

2 βNJx2
Tr{WN }}dx. (5)

This method was used to study the plateau magnetization
behavior [30] and to obtain the exact solution of the poly-
merization problem on the equivalent-neighbor lattice [48]. In
the thermodynamic limit (N → ∞) the free energy per spin
(free-energy density) is given by (for more details see the
Appendix):

f (m) = 1

2
Jm2 − 1

β
log[λmax(m)] (6)

where λmax(m) is the maximum eigenvalue expressed in the
Appendix. It is important to emphasize that at the equilibrium,
the magnetization m minimizes the free-energy density in
Eq. (6) for given values of T , D, and K . So the magnetization
can be obtained by equating the partial derivative of the free
energy to zero, so:

m = ψ(m), (7)

where ψ(m) is an expression to be discussed in the Appendix.
Furthermore, due to the fact that the Hamiltonian is symmetric
under spin reversal in the absence of external field, the
free-energy density f can be expanded in even powers of the
magnetization. Thus, close to an order-disorder continuous
phase transition the Landau expansion of f [45] is given by:

f (m) 	 f0 + Am2 + Bm4 + Cm6 + O(M8), (8)

where f0 = f (0), and the coefficients A,B,C, . . . depend
on T , K , and D. The second-order frontiers are ob-
tained by imposing A(T ,K,D) = 0, with the conditions
B(T ,K,D) > 0 and C(T ,K,D) > 0. The tricritical point is
found when A(T ,K,D) = B(T ,K,D) = 0, with the condition
C(T ,K,D) > 0.

On the other hand, the first-order frontiers can be obtained
by Maxwell constructions. In order to avoid metastable states,
all solutions obtained were checked to confirm the free-energy
minimization. In the following sections we present numerical
results for the order parameters and phase diagrams of the
model, at both zero and finite temperatures.

The points that appear in our analysis [49] are the
following: (i) tricritical points, which signal the encounter
of a continuous frontier with a first-order transition;
(ii) an ordered critical point, which corresponds to an isolated
critical point terminating a first-order line that separates two
distinct ordered phases; and (iii) a triple point, signaling the
encounter of three first-order critical frontiers. In the phase
diagrams we use distinct symbols for the critical points and
frontiers, described as follows: continuous (second-order)
critical frontier (continuous line), first-order frontier (dotted
line), tricritical point: (black circle), ordered critical point
(black asterisk), triple point (empty triangle), and five-phase
coexistence point (empty diamond).

0 0.25 0.5
K/J

0

0.25

0.5

0.75

D
/J

F AF

P
T = 0

FIG. 1. Ground-state phase diagram in the D/J -K/J plane. The
three first-order lines meet at a triple point represented by the empty
triangle.

III. RESULTS

A. Ground state

Due to the fact that the second term of free energy
E − T S vanishes when T = 0, we have to determine the
spin configurations which minimize the energy E of the
Hamiltonian given in Eq. (2), in order to obtain the frontiers
in the D/J -K/J plane. So we proceed as follows: The
ferromagnetic phase F occurs when all spins point upward
(Si = 1,∀i) or downward (Si = −1,∀i), and then it has
the energy per spin εF = EF/N = −J/2 + K + D. For the
antiferromagnetic state AF consisting of alternate signs of
nearest-neighbor spins, the first term of the Hamiltonian gives
a vanishing contribution to the energy, so the energy per spin
of this phase is εAF = −K + D. Hence, by imposing εF = εAF
we obtain the transition point K/J = 1/4, which separates the
F and AF phases. So we may note that the anisotropy constant
D has no influence in the criticality while 0 < D/J < 1/4.
On the other hand, for higher values of D(D/J > 1/4) the
magnetic orderings must disappear, so all spins take the value

0 0.1 0.2 0.3 0.4 0.5 0.6
D/J

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k B
T/

J

K/J = 0

K/J = 0.15

F P

FIG. 2. The phase diagram in the kBT /J -D/J plane corre-
sponding to two values of K/J . For K = 0, we can observe the
well-known frontier of the Blume-Capel model with ferromagnetic
equivalent-neighbor interactions. For K/J = 0.15, we may note that
the nature of the frontier is still preserved though the ferromagnetic
region is reduced.
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
D/J

0

0.1

0.2

0.3

0.4

0.5

k B
T/

J

K/J = 0.18(a)

F P

0 0.1 0.2 0.3 0.4 0.5
kBT/J

0

0.2

0.4

0.6

0.8

1

1.2

m

D/J = 0.05
D/J = 0.25
D/J = 0.31
K/J = 0.18

(b)

Δm = 0.309

FIG. 3. (a) Phase diagram in the plane of dimensionless variables kT /J versus D/J for K/J = 0.18, in which the frontier separating
phases F and P is composed by three lines, two of first-order and one of second-order limited by two tricritical points; (b) the magnetization
curve, plotted for three representative values of D/J , for which the magnetization curve crosses three different points of the frontier shown
in (a). We observe that for D/J = 0.05 and D/J = 0.31, the magnetization curves fall discontinuously from m 
= 0 to zero, whereas, for
D/J = 0.25, the magnetization falls continuously to zero.

Si = 0 to minimize the energy E. Thus the system will be
in the disordered phase P, with energy per spin εP = 0.
Accordingly, by imposing εF = εP and εAF = εP, we obtain
the frontiers F-P and AF-P, determined by the first-order lines
D/J = 1/2 − K/J and D/J = K/J , respectively. In Fig. 1
we show these results in the phase diagram in the D/J -K/J

plane for the interval 0 � K/J < 1/2.

B. Phase diagram at finite temperatures

At finite temperatures the short-range couplings K of the
spin chain cannot establish a spontaneous antiferromagnetic
order. However, a ferromagnetic order (m 
= 0) can be estab-
lished below to a critical temperature, due to the presence
of the equivalent-neighbor interactions −J . Nevertheless, the
ferromagnetic order is limited by the values of the parameters
K and D, as shown in Fig. 1. So we begin this section by
analyzing how the antiferromagnetic couplings K affect the
critical behavior of the Blume-Capel model with ferromagnetic
equivalent-neighbor interactions.

To this end, we investigate the phase diagrams of the
present model in the kBT /J -D/J plane by scanning them
for different values of K/J . So for a given value of K/J ,

we obtained the phase diagram in the kBT /J -D/J plane as
follows: We first sought the points belonging to a first- or a
second-order frontier separating phases with m 
= 0 and m = 0
by means of a computational algorithm which detects the
points (D/J,kBT /J ) where the magnetization given in Eq. (7)
changes from m 
= 0 and m = 0. If the frontier is of first order,
then there is a discontinuous change of m, while if the frontier
is of second order, the magnetization changes continuously.
The accuracy in this detection is ±	m, where |	m| = 0.001.
Of course, whether a point (D/J,kBT /J ) belongs to a first-
or second-order line, one must confirm it by observing the
behavior of the free-energy density f versus the magnetization
m [see Eq. (6)] at that point or for points around it. For instance,
if, for a given value of K/J , a frontier point (D/J,kBT /J )
belongs to a first-order frontier, then the curve of f/J versus
m plotted for those values of K/J , D/J , and kBT /J will
show at least two different values of |m|, m1 and m2, that
minimizes f/J , such that f (m1) = f (m2). It means that the
point (D/J,kBT /J ) in the kBT /J -D/J plane belongs to a
frontier at which two phases coexist. Of course, the first-order
frontiers can be obtained numerically by solving simultaneous
nonlinear equations [see Eqs. (6) and (7)]. Thus, in order
to determine the points (D/J,kBT /J ) of a first-order line

-0.4 -0.2 0 0.2 0.4
m

-0.3572

-0.3571

-0.357

-0.3569

f/J

K/J = 0.18

D/J = 0.05

kBT/J = 0.33667

(a)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
m

-0.1516

-0.1512

-0.1508

-0.1504

-0.15

f/J

(b) K/J = 0.18

D/J = 0.25

kBT/J = 0.251

-1 -0.5 0 0.5 1m
-0.03

-0.02

-0.01

0

0.01

f/J

K/J = 0.18

D/J = 0.31

kBT/J = 0.1204

(c)

FIG. 4. The free-energy density f plotted as a function of the magnetization, for K/J = 0.18, in units of J . In (a), (b), and (c) the minima of
f correspond to the critical points where the magnetization curves fall to zero in Fig. 3(b). In (a) the minima coexist for the critical temperature
at which the magnetization curve, plotted for D/J = 0.05, suffers a discontinuous fall. In (b) f presents one minimum for m = 0, for the
critical temperature at which the magnetization curve, plotted for D/J = 0.25 in Fig. 3(b), falls continuously to zero. In (c) the minima coexist
for the critical temperature at which the magnetization curve, plotted for D/J = 0.31, suffers a discontinuous fall.
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0.122 0.124 0.126 0.128 0.13
kBT/J

0

0.25

0.5

0.75

1

m

D/J = 0.2908
D/J = 0.2912
D/J = 0.2913

K/J = 0.195

FIG. 5. Three magnetization curves plotted for three different
values of D/J for K/J = 0.195. The curves plotted for D/J =
0.2908 and D/J = 0.2913 suffer one discontinuous fall from m 
=
0 to m = 0. However, for an intermediate value, such as D/J =
0.2912J , the magnetization suffers two discontinuous falls. The first
one is from m = m1 to m = m2, and the second one is from m 
= 0
to m = 0. Therefore, a second ferromagnetic phase F

′
is present in a

small region of D/J for temperatures close to a F
′
-P frontier of first

order.

separating phases with m 
= 0 and m = 0, for a given value of
K/J , we have to solve the following simultaneous equations:

f (m) = f (0) (9)

and

m = ψ(m), (10)

where ψ(m) is discussed in the Appendix. Similarly, to
obtain first-order frontiers where two ferromagnetic phases

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
D/J

0

0.1

0.2

0.3

0.4

k B
T/

J

F

P

F1

K/J = 0.20

FIG. 6. Phase diagram for K/J = 0.20. The intermediate
second-order line limited by two tricritical points has been reduced
[compare it with that of Fig. 3(a)]. The point, represented by the
empty diamond, is a point where two ferromagnetic phases F and
F

′
coexist with the phase P. This point gives rise to a coexistent

line where phases F and F
′

coexist. This frontier line finishes at an
ordered critical point. However, for this value of K/J , the length of
this coexistent line is still too short to be observed for this scale of
D/J , but it grows as K/J increases. This can be seen in Fig. 7 for a
greater value of K/J .

0 0.05 0.1 0.15 0.2 0.25 0.3
D/J

0

0.05

0.1

0.15

0.2

0.25

k B
T/

J

F

F1
P K/J = 0.23

FIG. 7. Phase diagram for K/J = 0.23. There is no second-order
criticality, as expected for K/J > 0.204. A rich critical behavior is
shown due to the presence of two ferromagnetic phases F and F

′

separated by a first-order frontier. This frontier begins at a coexistent
point represented by an empty diamond, where phases F, F

′
, and P

coexist, and it finishes at an ordered critical point represented by an
asterisk.

m = m1 and m = m2 coexist, their points (D/J ; kBT /J ) can
be obtained numerically by solving simultaneously

f (m1) = f (m2), (11a)

m1 = ψ(m1), (11b)

and

m2 = ψ(m2). (12)

The second-order frontiers were also obtained by following
the Landau’s criteria exposed in the preceding section. It
is important to avoid spurious solutions, so we plotted the
function f/J versus m [see Eq. (6)] to check if the free-energy
density was minimized.

Now we will show the results at finite temperatures. In
Fig. 2 we show two frontiers separating the ferromagnetic and
the paramagnetic phases obtained for two different values of
K/J . We may observe that though the ferromagnetic region
is reduced by increasing K , the typical topology of the phase
diagram of the Blume-Capel model [18,50] is preserved for
lower values of K .

However, for K/J > 0.17 we observe that the second-order
frontier is being reduced when K increases, and it is replaced
by a first-order one, as shown in Fig. 3(a). In this figure is shown
the phase diagram for K/J = 0.18. The frontier that separates
the F and P phases is now a line containing two tricritical
points limiting the second-order line. The new tricritical point
came from the left as K/J increases from K/J = 0.17, so
it appears at the vertical axis (D/J = 0) for K/J 	 0.17.
Then, for K/J = 0.17, the second-order line begins to be
reduced in the kBT /J -D/J plane. In the Fig. 3(b) we show
the magnetization curves for K/J = 0.18, plotted for three
representative values of D.

These curves were obtained numerically by solving Eq. (7),
and are intended to show how the magnetization curve
as a function of the temperature behaves when crossing
the three different transitions in the phase diagram shown
in Fig. 3(a). Thus, for D/J = 0.05, D/J = 0.25, and
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0.23 0.24 0.25 0.26 0.27 0.28
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P K/J = 0.23(a)

0.05 0.075 0.1 0.125 0.15
kBT/J

0

0.2

0.4
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1.4

m

D/J = 0.230
D/J = 0.250
D/J = 0.268

K/J = 0.23(b)

FIG. 8. (a) Phase diagram in the plane of dimensionless variables kT /J versus D/J for K/J = 0.18, in which the frontier separating
phases F and P is composed by three lines, two of first-order and one of second-order limited by two tricritical points; (b) the magnetization
curve, plotted for three representative values of D/J , for which the magnetization curve crosses three different points of the frontier shown
in (a). We observe that for D/J = 0.05 and D/J = 0.31, the magnetization curves fall discontinuously from m 
= 0 to zero, whereas, for
D/J = 0.25, the magnetization falls continuously to zero.

D/J = 0.31 the magnetization curve falls down to zero
at kBT /J = 0.33667 ± 0.00001, kBT /J = 0.2510 ± 0.0002,
and kBT /J = 0.1204 ± 0.0001, respectively. The accuracies
of these temperatures were obtained by scanning the free-
energy density (see Fig. 4). Accordingly, for D/J = 0.05, the
magnetization curve crosses the first-order frontier on the left
[see Fig. 3(a)] at the critical temperature kBT /J ≈ 0.33667,
as shown by the jump discontinuity between the nonzero
and zero magnetization (	m = 0.309). For D/J = 0.25, the
magnetization curve crosses continuously the intermediate
second-order transition in Fig. 3(a) at the critical temperature
kBT /J ≈ 0.251, and for D/J = 0.31, the magnetization
curve crosses discontinously the first-order frontier on the right
at kBT /J ≈ 0.1204.

In order to confirm the information given in Fig. 3(a), we
present the free-energy density versus the magnetization in
Fig. 4 plotted for K/J = 0.18, corresponding to the frontier
points (D/J,kBT /J ) intercepted by the magnetization curves
shown in Fig. 3(a). So in Fig. 4(a) we observe that two
symmetrical values of the magnetization ±m minimize the free
energy at the same level as m = 0 does. This is a signal of a
first-order phase transition, in which phases F and P coexist for
the definite values K/J = 0.18, D/J = 0.05, and kBT /J ≈

0.33667 [see the magnetization curve in Fig. 3(b) plotted for
D/J = 0.05]. Furthermore, we may observe that phases F and
P are separated by a very small energy barrier (	f ∼ 10−5).
This characterizes the critical points of the first-order line on
the left shown in Fig. 3(a). On the contrary, the free-energy
density in Fig. 4(c), which belongs to a point of the first-order
line on the right, shows that the coexistent phases F and P are
separated by a greater free-energy wall (	f ∼ 10−3). On the
other hand, in Fig. 4(b) we plotted the free-energy density for
D/J = 0.25 and kBT /J ≈ 0.251, which gives us information
of the nature of frontier point where the magnetization curve in
Fig. 3(b) crosses the second-order frontier for D/J = 0.25. Of
course, this confirms the second-order criticality of the points
of the intermediate line limited by the two tricritical points in
Fig. 3(a).

Nevertheless, we observed that this intermediate second-
order line disappears in the kBT /J -D/J plane for K/J ≈
0.204. Accordingly, the ferromagnetic zone is limited only
by a first-order frontier when K/J > 0.204. On the other
hand, before the disappearing of this second-order line a
second ferromagnetic phase F

′
emerges in a small region of

the ferromagnetic zone of the phase diagram. This happens
because a first-order line separating phases F and F

′
emerges

-1.5 -1 -0.5 0 0.5 1 1.5
m

-0.02

-0.01

0

0.01

0.02

f/J

K/J = 0.23
D/J = 0.2623

kBT/J = 0.0777

(a)

-1 -0.5 0 0.5 1
m

-0.026

-0.024

-0.022

-0.02

-0.018

f/J

K/J = 0.23
D/J = 0.25

kBT/J = 0.0935

(b)

FIG. 9. The free-energy density plotted as a function of the magnetization for K/J = 0.23. In (a), the mimima of f/J are at the coexistent
point represented by the empty diamond shown in Figs. 7 and 8(a). In (b), the minima are at a point belonging to the F-F

′
frontier that appeared

in Figs. 7 and 8(a).
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0 0.05 0.1 0.15 0.2 0.25
K/J

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
k B

T/
J

F

P

(1) D/J = 0.0
(2) D/J = 0.2

(1)

(2)
AF

FIG. 10. Frontiers separating the ferromagnetic and the nonfer-
romagnetic region, plotted for D/J = 0.0 and D/J = 0.2. At zero
temperature, the critical value K/J = 0.25 divides phases F and AF.

from a coexistent point where phases F, F
′
, and P coexist. This

begins to happen for K/J � 0.195. In Fig. 5 the magnetization
curves plotted for three different values of D/J show that,
for K/J = 0.195, a second ferromagnetic phase F

′
appears

in a very small interval, 0.2908 < D/J < 0.2913(	D =
0.0005J ). This is for temperatures which are between the
first-order frontiers F − F

′
and F

′ − P.
In Fig. 6, we show the phase diagram for K/J = 0.20,

where we may observe that the length of the intermediate
second-order line has been reduced, so the two tricritical
points are closer. Also, we may see the coexistent point
represented by the empty diamond, which gives rise to the
F-F

′
line. For greater values of K/J , the ferromagnetic region

of phase F
′

is increased. For the sake of visualization, we
show in Fig. 7 the phase diagram for K/J = 0.23, where we
clearly see a first-order frontier separating two ferromagnetic
phases. Now we can observe that this frontier begins at the
coexistent point represented by the empty diamond and ends
at a ordered critical point represented by the asterisk. We can
also note that in this phase diagram the second-order frontier
is absent because it disappeared for K/J ≈ 0.204, when the
two first-order lines met themselves.

We now concentrate our analysis on describing the most
complex region of the phase diagram shown in Fig. 8. Thus,
in Fig. 8(a) we show the phase diagram for K/J = 0.23, in

the interval 0.23 < D/J < 0.28, to better visualize the most
interesting region. So in Fig. 8(b) three different magnetization
curves were plotted to confirm the critical behavior in the
interval shown in Fig. 8(b). For D/J = 0.23 and D/J =
0.268, the magnetization curves cross the F-P frontier. We
note that each one presents only one discontinuous fall.
However, for D/J = 0.25, the magnetization curve presents
two discontinuous falls because it crosses the F-F

′
and F

′
-P

frontiers.
For completeness, we show in Fig. 9(a) the minima of

the free-energy density at the coexistent point at which the
first-order F-F

′
line begins [see the empty diamond in Figs. 7

and 8(a)]. We can observe there the simultaneous coexistence
of phases F, F

′
, and P . In Fig. 9(b), the minima of the free-

energy density are at a point of the F-F
′
frontier where phases

F and F
′

coexist. Finally, for D/J > 0.5, no magnetic order
exists at finite temperatures.

Before finishing this section we analyze how the anisotropy
constant affects the phase transition frontiers separating the
region where m 
= 0 and m = 0. To this end we obtained
the phase diagram of the present model in the kBT /J -K/J

plane for different values of the anisotropy parameter D

by following the same methodology above. Accordingly,
we found essentially three different topologies. The first
topology is shown in Fig. 10 where we plotted two frontiers
separating the ferromagnetic and the nonferromagnetic region
for D/J = 0 and D/J = 0.2. In this topology a critical point
is present. The critical temperature for K = 0 decreases as
D/J increases. The first-order lines ends at K/J = 0.25 at
zero temperature.

The second topology begins to appear for D/J = 0.229,
where the second ferromagnetic phase F

′
is now present due

to the appearance of a second first-order critical line separating
phases F and F

′
. This line, of course, is similar to that seen in

the kBT /J -D/J plane, beginning at a multicritical point and
ending at an ordered critical point. Thus, we show in Fig. 11 the
phase diagram for two different values of D/J , in which the
phase F

′
is present. In Fig. 11(a) we show the most complex

case of this second topology, obtained for D/J = 0.25, in
which the first-order line ends at the triple point (at T = 0)
represented by the empty triangle shown in Fig. 1. In Fig. 11(b)
the essential form of the phase diagram is still preserved;
however, the antiferromagnetic phase AF is no longer present
at T = 0. Indeed, the phase AF does not appear in the plane

0.175 0.2 0.225 0.25 0.275
K/J

0

0.05

0.1

0.15

0.2

0.25

k B
T/

J

D/J = 0.25

F

P

AF

F1

(a)

0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24
K/J

0

0.05

0.1

0.15

0.2

0.25

0.3

k B
T/

J

(b)

F

P D/J = 0.27

F1

P

FIG. 11. (a) A portion of the most complex phase diagrams in the plane of dimensionless variables kT /J versus K/J for D/J = 0.25;
(b) the relevant portion of the phase diagram for D/J = 0.27.
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kBT /J -K/J , when D/J > 0.25, and is replaced by phase
P. Thus, the first-order line separating phases F and P ends
now at K/J = 0.5 − D/J , for 0.25 < D/J < 0.5, which is
in agreement with the phase diagram depicted in Fig. 1.

For D/J = 0.286, the second first-order frontier causing
the appearance of phase F

′
is no longer present, so the

ferromagnetic region is again filled only by phase F. So
the validity of the second topology is for 0.228 < D/J <

0.286. Thus, for D/J > 0.286, the phase diagram recovers
the essential form of the first topology, where there is one
tricritical point dividing the second- and the first-order critical
lines, and phases F and P are the only ones which are
present. Nevertheless, the second-order frontier disappears for
D/J = 0.462, as shown in Fig. 11, where we plotted three
different frontiers separating phases F and P, corresponding to
three different values of D/J . There we may observe that the
trictritical point, represented by the letter Q, is at the vertical
axis for D/J = 0.462. Therefore, the phase diagram has only
a first-order line for 0.462 < D/J < 0.5, as shown by the
frontier plotted for the representative value D/J = 0.49. This
is the third topology found. Of course, no magnetic order is
present for D/J � 0.5 (see also Fig. 1). For D < 0, the phase
diagram is qualitatively similar to the NK model, with the
presence of a tricritical point depending on the value of D,
where in the limit D → −∞ we found the same results of
Refs. [9–12].

IV. CONCLUSIONS

In summary, we have investigated the critical behavior
of the one-dimensional Blume-Capel model with equivalent-
neighbor interactions −J/N and nearest-neighbor interactions
K . At zero temperature, the phase diagram in the D/J -K/J

plane exhibits two ordered phases, the ferromagnetic F and
the antiferromagnetic AF phases, separated by a vertical
frontier given by K/J = 0.25, for 0 � D/J � 0.25. The
paramagnetic phase, denoted by P, is present when D/J >

0.5 − K/J , for 0 � K/J � 0.25, and when D/J > K/J , for
K/J > 0.25 (see Fig. 1).

At finite temperatures (T > 0), no spontaneous antiferro-
magnetic order is present as expected for a one-dimensional
chain of spins. Nevertheless, due to the presence of the
equivalent-neighbor ferromagnetic couplings, there exists
spontaneous ferromagnetic order for finite temperatures.
However, in the kBT /J -D/J plane, its existence is limited
by the values of K/J in the interval 0 � K/J < 0.25. For
0 � K/J � 0.17, the qualitative aspect of the Blume-Capel
model remains the same (see Fig. 2). In this case 0.17 <

K/J � 0.205, a second tricritical point appears in the frontier
dividing the ferromagnetic and the paramagnetic region [see
Fig. 3(a)]. These tricritical points approach themselves as
K/J increases. Thus, the second-order line disappears, for
K/J ≈ 0.205, when the two tricritical points meet at the same
position.

Accordingly, the whole ferromagnetic-paramagnetic fron-
tier is of first order when 0.205 < K/J � 0.25. Also, it was
noted that the ferromagnetic region is enriched by the presence
of a second ferromagnetic phase F

′
for 0.195 < K/J < 0.250.

Nevertheless, the phase F
′
is located in a small region limited

by a first-order line separating the phases F and F
′

and the

0 0.05 0.1 0.15
K/J

0

0.1

0.2

0.3

0.4

0.5

k B
T/

J

(3) D/J = 0.490

(1) D/J = 0.400
(2) D/J = 0.462

(1)(2)(3)

Q

FIG. 12. Frontiers in the plane kBT /J -K/J separating phases F
and P, plotted for three different values of D/J . The ferromagnetic
region is reduced as D increases. So no ferromagnetic order is present
for D/J � 0.5. Note that the tricritical point, represented by the letter
Q, is at the vertical axis for D/J = 0.462. Its coordinates are Q =
(0.00; 0.33). Thus, for 0.462 < D/J < 0.500, the ferromagnetic
region is enclosed only by a first-order line.

first-order line separating phases F
′

and P [see Fig. (7)]. So
the frontier F-F

′
begins at a multicritical point where phases

F, F
′
, and P coexist, and it ends at an ordered critical point,

finishing the coexistence of phases F and F
′
. On the other hand,

we analyzed the influence of the anisotropy parameter in the
phase diagram in the kBT /J -K/J plane.

In this plane the topology of the phase diagram changes
according to the value the D. The frontier separating the
ferromagnetic and the paramagnetic phase contains a tricritical
point for 0 < D/J � 0.462, but for 0.462 < D/J < 0.500
this frontier is only of first-order (see Fig. 12). It can also be
observed the presence of the second ferromagnetic phase F

′

when 0.228 < D/J < 0.286. The richest topology is found
for D/J = 0.25, where four multicritical points appear [see
Fig. 11(a)]. This topology is somewhat similar of that found in
the phase diagram of two interacting spin-1/2 systems subject
to a random field [51]. For D < 0, the phase diagram in
the kBT /J -K/J plane is qualitatively similar to the result
of Kardar [6] (D → −∞).

Based on a previous study on the spin-1/2 case [6], we
believe that the model analyzed in this paper will present a
richer critical behavior when implemented in two- and three-
dimensional lattices. This opens the possibility for further
studies, where we can find experimental data to compare
with the theoretical results. Furthermore, another relevant
improvement study would be to control the competition
through the value of an exponent α by considering each spin
interaction in the first term of the Hamiltonian given in Eq. (2),
as Jij = J/rα

ij . So we could observe, through Monte Carlo
simulations, how the topology of the phase diagrams changes
with α.
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APPENDIX: HUBBARD-STRATONOVICH
TRANSFORMATION FOR THE ISING MODEL

In this Appendix we show briefly how the Hubbard-
Stratonovich transformation and the saddle-point method work
to get the free-energy density and the magnetization of the Ising
model. The Hamiltonian of this model is as follows:

H = − J

2N

(
N∑

i=1

Si

)2

−
N∑

i=1

H′
i(Si), (A1)

where Si = −S . . . S is a spin variable at site i, N is the number
of spins, andH′

i(Si) is some spin Hamiltonian containing short-
range interactions in one dimension. For example, in this work
we use

H′
i(Si) = KSiSi+1 + D

2

[
S2

i + S2
i+1

]− H

2
(Si + Si+1), (A2)

where K is the nearest-neighbor interaction, D is the
anisotropy parameter, and H the magnetic field. The canonical
partition function for the general Hamiltonian is given by

Z =
∑
{Si }

e
βJ

2N
(
∑N

i=1 Si )2
N∏

i=1

e−βH′
i . (A3)

In order to decouple the interaction between the spins {Si} in
the first term of the exponential above, we use the Hubbard-
Stratonovich transformation, which is expressed by

exp

{
ax2

2N

}
=
√

Na

2π

∫ ∞

−∞
e− Nay2

2 +axydy. (A4)

Accordingly, the partition function is now expressed by the
following integral:

Z =
√

NβJ

2π

∫ ∞

∞
e−Nβg(y)dy, (A5)

with

g(y) = J

2
y2 − 1

βN
log[z(y)] (A6)

and

z(y) =
∑
{Si }

N∏
i=1

eβ(JySi − H′
i). (A7)

Note that the partial partition function (A7) can be obtained
by using the matrix transfer method, where for the case of
short-range Hamiltonian (2) with spin S = 1(Si = −1,0,1) an
analytic solution is found and for S > 1, it can only be found
numerically.

The idea of the saddle-point method is to approximate the
integral above by expanding the function g(y) very close to
its minimum y0, because the negative exponential function is
rapidly decreasing. So only the first three terms in the Taylor
expansion of g(y) are considered:

g(y) = g(y0) + g′(y0) + 1
2g′′(y0)(y − y0)2 + . . . . (A8)

Before evaluating the integral, we may note that the first
derivative is zero due to the fact that g′(y0) is null at its
minimum. Also, after equating the explicit expression of g′(y0)
to zero, we get an expression for the point y0. Now the integral

of the partition function is a Gaussian integral which can be
easily evaluated:∫ ∞

−∞
e−Nβg(y)dy 	 e−Nβg(y0)

∫ ∞

−∞
e− Nβ

2 g′′(y0)(y−y0)2
dy

=
√

2π

Nβg′′(y0)
e−Nβg(y0), (A9)

where g′′(y0) > 0, because y0 is a minimum point. Thus, the
partition function for a finite number of spins is approximately
given by:

Z 	
√

J

βg′′(y0)
e−Nβg(y0). (A10)

In order to obtain the free-energy density we must take the
following limit:

f = − lim
N→∞

{
log Z

Nβ

}
= lim

N→∞

{
g(y0) − 1

2βN
log

[
g′′(y0)

J

]}
= g(y0), (A11)

where g(y0) corresponds to f (y0) in Eq. (6) in the thermody-
namic limit (N → ∞). Therefore, the free-energy density is a
function of y0,

f = g(y0) = 1

2
Jy2

0 − 1

β
log[z(y0)]. (A12)

Finally, we can show that y0 is the magnetization per spin
by taking the limit of the partial derivative of f with respect
to the field H , when H tends to zero. Consequently, the
magnetization per spin is the value of y at which the function
g(y) reaches its minimum.

In order to illustrate the above method, we use the
Hamiltonian (2) for the spin S = 1 case; therefore, the partial
partition function (A7) is written in the form

z(y) =
∑
{Si }

e
β(H+Jy)

2 (Si+Si+1)−βKSiSi+1− βD

2 [S2
i +S2

i+1]. (A13)

Using the transfer matrix technique, the Eq. (A13) can be
rewritten as

z(y) =
1∑

Si=−1

〈Si |WN |Si〉 = Tr{WN } = λN
1 + λN

2 + λN
3 ,

(A14)
with

W =

⎡
⎢⎣e−β(H+Jy+K+D) e− β

2 (H+Jy+D) eβ(K−D)

e− β

2 (H+Jy+D) 1 e
β

2 (H+Jy−D)

eβ(K−D) e
β

2 (H+Jy−D) eβ(H+Jy−K−D)

⎤
⎥⎦.

(A15)

where {λi,i = 1,2,3} are the eigenvalues of the matrix W in
Eq. (A15). Considering that λ1 = λmax > λ2 > λ3 (maximum
eigenvalue), and substituting Eq. (A14) in Eq. (A12), we obtain
the following expression for the free-energy density:

f (y0) = Jy2
0

2
− 1

β
log[λmax(y0)], (A16)
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where

λmax = −A

3
+ 2

√
Q cos

(
θ

3

)
, (A17)

A = Tr{W } = 1 + 2e−β(K+D) cosh[β(H+Jy)], (A18)

B = 2e−βD cosh[β(H + Jy)] + e−β(D+H+Jy)

+ 2e−2βD sinh(2βK) − 2e−β(K+D) cosh[β(H + Jy)],

(A19)

Q = A + 3B

9
, (A20)

C = det(W ), (A21)

R = 9AB − 27C − 2A3

54
, (A22)

θ = cos−1

[
C

Q3/2

]
. (A23)

The magnetization m = y0 is obtained by minimizing the
free-energy density in Eq. (A16), i.e., ( ∂f

∂y
)y=y0 , where the

expression for m is given by

m = 1

βJ

{
∂ log[λmax(y)]

∂y

}
y=y0=m

≡ ψ(m). (A24)

The results presented in this Appendix, can be applied for
other values of the spin S, such that S > 1, including more
interactions (next-nearest neighbors, etc.).
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