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We introduce a novel type of locally driven systems made of two types of particles (or a polymer with two types
of monomers) subject to a chaotic drive with approximately white noise spectrum, but different intensity; in other
words, particles of different types are in contact with thermostats at different temperatures. We present complete
systematic statistical mechanics treatment starting from first principles. Although we consider only corrections
to the dilute limit due to pairwise collisions between particles, meaning we study a nonequilibrium analog of
the second virial approximation, we find that the system exhibits a surprisingly rich behavior. In particular, pair
correlation function of particles has an unusual quasi-Boltzmann structure governed by an effective temperature
distinct from that of any of the two thermostats. We also show that at sufficiently strong drive the uniformly
mixed system becomes unstable with respect to steady states consisting of phases enriched with different types
of particles. In the second virial approximation, we define nonequilibrium “chemical potentials” whose gradients
govern diffusion fluxes and a nonequilibrium “osmotic pressure,” which governs the mechanical stability of the
interface.
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I. INTRODUCTION

Paraphrasing Tolstoy [1], all equilibrium systems are
alike, each nonequilibrium system is out of equilibrium in
its own way. Of particular current interest is a variety of
nonequilibrium systems which are driven locally, such that
energy transduction occurs at the scale of the individual
components. Examples include bacterial swimmers [2,3], their
artificial models [4,5], molecular motors [6,7], and other
enzymatic systems performing local mechanical work [8] at
the expense of the free energy excess of supplied reagents
(e.g., ATP hydolysis). An instructive comparison can be
done with three-dimensional turbulence. In turbulence, the
system is driven globally, on the largest scale, and then
energy cascades down and dissipates locally. By contrast,
active systems are driven locally, and the question is how the
disorganized local drive can produce observable macroscopic
consequences on the largest scale, such as spontaneous flows
[9] or phase segregation [10–17]. The interest in such questions
is motivated by biological applications, but these studies shed
also light on fundamental statistical mechanics.

A useful classification of locally driven systems may be
based on symmetry, as an active drive may have a scalar
or vectorial character [18]. Bacterial swimmers, for instance,
have vectorial symmetry, as their activity takes the form of
force generation with a certain direction, even though the
direction randomizes after some reorientation time (by either
separate tumbling events [run-and-tumble particles (RTPs)] or
rotational diffusion [active Brownian particles (ABPs)]. The
classification as an “active system” is generally reserved for
vectorial activity. Purely scalar activity may be exemplified by
local chemical transformations, such as chromatin methylation
or acetylation, which amounts to local change of solvent
quality for the chromatin fiber viewed as a polymer.

Theoretical efforts in the field are mostly about vectorial
active particles at high concentrations, where all effects are

most pronounced, and the works are dominated by simulations,
including comprehensive ones [11,12,15,17,19]. Building on
numerical results, successful phenomenological theories were
developed, notably Ref. [20]. However, the field suffers
from a lack of analytically solvable microscopic models
and approaches enabling to develop physical insight into
how disorganized, incoherent local drive generates coherent
macroscopic behavior. The goal of the present paper is to offer
a class of locally driven systems allowing for such a systematic
treatment.

Specifically, we consider a suspension of two types of
particles, A and B, exposed to different heat baths with
temperatures TA � TB. Our main technical idea is to look at
systems of sufficiently low concentration, where we build up
the nonequilibrium analog of a second virial approximation,
considering only pair collisions between particles. This sys-
tem, even relatively dilute, is not only far from equilibrium, but
also locally driven in the sense that energy transduction occurs
at a local scale, with energy flowing from the hotter to the
colder reservoir via the local interactions between particles.
Although this system is rather simple, and does allow for
systematic theoretical treatment, our main result is that the
properties of this system are highly nontrivial. In particular,
we show that some statistical features of this nonequilibrium
system, such as pair correlation functions, are described by
an unusual quasi-Boltzmann distribution, governed by some
effective temperature not imposed by any thermostat, which
is a linear combination of TA and TB. Furthermore, this
leads directly to the phenomenon of activity-induced phase
segregation, in this purely scalar system having no directional
force generation or quorum sensing feedback mechanism.
Since all these results arise from a simple model and a
completely systematic treatment, which does not employ any
a priori analogies with the equilibrium case, our model could
be an instructive playground for physical intuition.
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Our treatment (with slight modification) may also apply
to a polymer chain, a copolymer with A- and B-type
monomers connected in a certain sequence. Such polymers
were considered in Ref. [21], with the idea to model spatial
segregation between eu- and hetero-chromatin, i.e., between
actively processed and almost silent parts of the genome in a
eukaryotic cell nucleus. It is argued in this paper that genes
which are being expressed and, therefore, subject to RNA
polymerization and other active processes, should be viewed
as active monomers, and silent genes as passive monomers.
The observed compartmentalization between the two kinds of
chromatin is then understood as an actively driven microphase
segregation [22]. Since active processes in this case are of
scalar character, if we neglect time-dependent correlations
between them, i.e., approximate them as a white noise, we
can view A and B monomers as exposed to two different
thermostats (which is what was done in the simulation of Ref.
[21]). While our work was already completed, we became
aware of Ref. [23] where the same model at high concentration
was examined by molecular dynamics simulations, and the
activity-driven phase segregation was indeed observed.

There are many examples of systems whose description
involves two distinct temperatures, ranging from plasmas
(see basics in, e.g., Ref. [24]), to spin glasses [25] and
heteropolymers [26]; other examples are given in Refs. [27–
30]. In all these works (with the notable exception of Ref. [30]),
the two temperatures are used to describe motions on vastly
different time scales. In our system, there is no such separation
of time scales, and our goal is to explore how the access to
two different heat baths enhances the tendency toward phase
segregation.

Our starting point is the overdamped Langevin equation

ζi ẋi = −∂iU + (2Tiζi)
1/2ξi(t), (1)

for every particle i in the system. Here xi indicates the position
of particle i (for brevity, we make no distinction between
particles in one or three dimensions). We assume that all forces
acting on a particle derive from a potential energy U , while
∂i is the derivative with respect to xi . The friction coefficient
for particle i is ζi , and ξi(t) is a standard zero mean and unit
variance Gaussian white noise, independent for all particles
i. Finally, Ti is the temperature (in energy units) of the heat
bath interacting with particle i; it is either TA or TB. A major
assumption of our model is that we ignore hydrodynamic
interactions (Rouse model), each particle experiencing a local
friction against an immobile solvent.

II. TWO PARTICLES

We first examine a system with only two particles, one A
and oneB. Equation (1) consists then of two coupled Langevin
equations. Dotsenko et al. [30] studied this problem when the
potential energy U (xA,xB) is a positive-definite quadratic form
of its two variables. We only assume here that U depends on
the distance between particles, r = xA − xB, i.e., U = uAB(r),
and consider mostly cases where uAB(r) vanishes at large r .
We derive a Langevin equation for the variable r , by combining
the two equations (1):

ζr ṙ = F (r) + (2ζrT )1/2ξr , (2)

where the relevant friction is ζr = ζAζB/(ζA + ζB) and the
relevant temperature is the mobility-weighted average T =
(ζBTA + ζATB)/(ζA + ζB). The definition of the effective
temperature T is dictated by the condition that the noise ξr (t)
is a zero mean, unit variance Gaussian white noise. It is always
between TA and TB. The Langevin equation (2) imposes that
the relative distance between particles, r , in a steady state is
Boltzmann distributed with temperature T , despite the fact that
the system is out of equilibrium:

P (r) = exp[−U (r)/T ]z−1; (3)

z is here the “partition sum” ensuring normalization. Equation
(3) is the central technical result of this work. See also
Appendix A regarding the enhancement of the joint diffusion
of two particles when TA �= TB.

III. FOKKER-PLANCK EQUATION, CURRENTS, AND
VIOLATION OF DETAILED BALANCE

The Langevin equations (1) can be recast as a Fokker-
Planck equation for the joint probability distribution of the
coordinates of all particles P ({x}) and the corresponding
currents Ji :

Ṗ = −
∑

i

∂iJi, Ji = −∂iU P/ζi − Ti∂iP/ζi . (4)

At steady state for two particles, the probability P (r) depends
only on the distance r = xA − xB. Then ∂AP = −∂BP , as well
as ∂AU = −∂BU . Furthermore, under these conditions, there
is no current in the direction of r = xA − xB, which means
JA − JB = 0, or

(−∂AU/ζA + ∂BU/ζB) − (TA∂AP/ζA − TB∂BP/ζB) = 0.

This leads back to the Boltzmann distribution with the average
temperature (3). Now compute the current JA:

JA = JB = TA − TB
TAζB + TBζA

P (r)∂AU. (5)

As expected, it vanishes for an equilibrium system (TA = TB),
where detailed balance is obeyed. However, if TA �= TB,
detailed balance is violated. For instance, if the system is
one-dimensional, its configuration space (xA,xB) is a two-
dimensional plane, and there are current loops in this plane as
shown in Fig. 1. Physically, Eq. (5) suggests that these current
loops are such that the passive particle moves, on average,
in the direction of the force acting on them, while the active
particle moves in the direction opposite to the force acting on
them.

IV. POWER TRANSFER

As pointed out above, energy is transferred everywhere
from the “hot heat bath” to the “cold” bath, or from the
energy source of active motion to the surrounding passive
medium. The transferred power fromA toB is the average w =
〈−ẋB∂BU 〉. The velocity is ẋB = JB/P , while the average
involves an integration with a weight P . Therefore, w =
− ∫

JB∂BU dxA dxB, leading to

wA→B = TA − TB
TAζB + TBζA

∫
[∂ru

AB(r)]2 e−uAB(r)/T

z
dr. (6)
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FIG. 1. (Color online) Field of currents. For illustration pur-
poses, the interaction potential is chosen in the form u(r) = 1/(r2 +
1), and the temperatures are TA = 1 and TB = 0.5. In the main
figure, the arrows are the current vectors with components JA =
(−1 + TA

T
)e−u(r)/T ∂ru/ζ and JB = (1 − TB

T
)e−u(r)/T ∂ru/ζ [assuming

for illustration ζA = ζB; see Eq. (4)]. In the enlarged window, the
drift current (upward and to the left arrows, corresponding to the first
terms in the expressions for JA and JB) and the diffusion current
(downward and to the right arrows, corresponding to the second
terms in the expressions of the currents) are shown separately; unlike
for equilibrium systems, they are not collinear, indicating a detailed
balance violation. Their vector sum gives rise to the nonpotential
current field.

As expected, this power transfer from A to B vanishes at
equilibrium (TB = TA), but it is strictly positive if TA > TB.

To understand the meaning of the result (6), consider a
three-dimensional system and a repulsive potential U with
amplitude U0 and spatial scale b. The integral in Eq. (6) is then
estimated as (U0/b)2b3/L3, with L3 the box volume (which
enters in z); assuming for simplicity ζA = ζB = ζ , the result
can be rearranged as

w ∼ [b(T /ζ )/L3]
[
(TA − TB)U 2

0 /T
2]

. (7)

The first factor in the square brackets is the inverse Smolu-
chowski collision time between two particles, and the second
factor gives an estimate of the energy transferred during one
“collision.”

V. MANY PARTICLES

Consider now a system of Ni particles i (i,j = A,B). The
Fokker-Planck equation (4) is generalized for any number
of particles. Integrating the Fokker-Planck equation over all
coordinates except for one, we derive a diffusion equation for
the single-particle probability for every particle species:

∂pA
1 (r)

∂t
= NA

ζA
∂r

[∫
∂uAA

∂r
pAA

2 (r,r′)dr′
]

+NB
ζB

∂r

[∫
∂uAB

∂r
pAB

2 (r,r′)dr′
]

+ TA
ζA

∇2
r pA

1 (r).

(8)

A similar equation is obtained for pB
1 (r). These equations

for single-particle probabilities include the pair probabilities
p2. By integrating the multiparticle Fokker-Planck equation
over all coordinates except for two, we derive equations for
p2, which include the three-body correlations p3, and then
a hierarchy of equations (see details about this hierarchy in
Appendix B). However, if the density is small enough, we can
ignore all terms involving p3, thus obtaining a closed equation
for p2. Consistent with the two-particle system, we obtain in
this approximation

p
ij

2 (r,r′) = pi
1(r)pj

1 (r′) exp[−uij (r − r′)/Tij ], (9)

where i,j = A,B. The effective temperatures entering these
expressions are different for the three types of interactions:
TAA = TA, TBB = TB, and TAB = T .

It is important to note that these distributions form only as
a result of an averaging over many collisions happening in the
system under steady state conditions (similar in this respect to
an equilibrium system).

Inserting the approximation (9) into Eqs. (8) and intro-
ducing the concentrations ci(r) = Nip

i
1(r), we obtain closed

equations for the concentrations:

∂ci(r)

∂t
= 1

ζi

∂

∂r

(
ci ∂μi

∂r

)
. (10)

These equations look like regular diffusion equations, but they
are governed by nonequilibrium analogs of chemical potentials
(see detailed derivation of nonequilibrium chemical potentials
in the Appendix C):

μA = TA ln cA + TABAcA + T BABcB (11)

and a similar equation for μB. The virial coefficients
are defined each with its own temperature, as Bij =∫

[1 − e−uij (r)/Tij ]d3r.
Nonequilibrium chemical potentials, as quantities whose

gradients determine fluxes, were discussed in Ref. [20]. It
was shown that, unlike its equilibrium counterpart, a nonequi-
librium chemical potential, cannot in general be obtained as
a derivative of a free energy. This is what makes our case
interesting, because our nonequilibrium chemical potentials
μA and μB are in fact the partial derivatives μi = ∂f

∂ci of a
function, which looks like a two-temperature free energy (per
unit volume):

f = TAcA ln(cA/e) + TBcB ln(cB/e)

+ (1/2)TABAc2
A + (1/2)TBBBc2

B + T BABcAcB. (12)

Furthermore, in a very similar manner, we could also consider
the case of finite range interaction potentials, when spatial
gradient terms are present in the effective free energy, as in
Ref. [20], but chemical potentials are still the derivatives of
this free energy.

VI. INSTABILITY OF THE UNIFORM STATE
AND “SPINODAL”

Suppose that cA0 and cB0 are the averaged spatially uniform
concentrations of the two components. By introducing space-
dependent perturbations ci(r) = ci

0 + δci(r), we perform a
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FIG. 2. (Color online) Main figure: Triangular phase diagram,
for a three-component system of A + B + solvent; for every point
in the triangle (exemplified by a star), the volume fractions of A and
B particles are given by the distances to the triangle sides, while the
volume fraction of the solvent 1 − φA − φB is the distance to the
bottom of the triangle. The symmetric line is the “spinodal” Eq. (13);
below this line, the uniformly mixed state is unstable. For this figure,
we used the parameters β = BAB/

√
BABB = 2.95 (an instability

in an equilibrium system requires β > 3), TA/TB = 3 (which is
sufficient to open an instability region). The asymmetric curve
is a constant osmotic pressure line (14) pBABB/BABT = 0.493,
assuming BA = BB; this line crosses the instability region thus
indicating the possibility of two coexisting phases. Left inset: Lines
of constant pressure (14). Right inset: Level lines of the left-hand side
of formula (13).

linear stability analysis. It shows that an instability occurs
macroscopically under the condition

φA
1 + φA

φB
1 + φB

>
TATB

T

BABB

B2
AB

, (13)

where we have defined the volume fractions ciBi = φi . In
general, the virial coefficients depend on temperature in a
complex way. A simple limit that we study in the following
corresponds to purely excluded volume interaction potentials
such that the B do not depend on temperature.

In the plane φA and φB, the nonequilibrium “spinodal
line” (13) is a hyperbola (see Fig. 2). The contrast between
temperatures favors instability; it works in the same direction
as contrast between interactions. But this instability, to have a
physical meaning, must occur at φA + φB < 1. For instance,
consider the most symmetric case of identical particles in
all respects except driven by different temperatures: ζA =
ζB, BA = BB = BAB . In this case the spinodal line is in
the physical range φA + φB < 1 if the ratio of the two
temperatures is outside the range 17 − 12

√
2 ≈ 0.029 < TA

TB
<

17 + 12
√

2 ≈ 34 (A more general discussion of the instability
condition driven by a contrast of temperatures, frictions, and
interactions is given in Appendix D). Thus, a numerically
large temperature contrast is required to achieve an instability
by temperature difference alone. This is roughly consistent
with numerical observation of Ganai et al. [21], who used
TA/TB = 20.

VII. PRESSURE AND “BINODAL”

To address not only the loss of stability of the uniformly
mixed state, but also the steady state phase segregation, in
addition to nonequilibrium chemical potentials we also need
a nonequilibrium equivalent of the osmotic pressure. Given
that nonequilibrium chemical potentials are the derivatives
of a “quasi-free energy” (12), we can expect the analog of
osmotic pressure to be given by the Gibbs-Duhem formula
p = cAμA + cBμB − f , yielding

p = TAcA + TBcB

+ (1/2)TABAc2
A + (1/2)TBBBc2

B + T BABcAcB. (14)

We have directly derived this result in two independent ways,
first, by computing the force exerted on the wall by replacing
the wall by a potential ramp (not necessarily the same for both
particle species), and second by relating the pressure to the
pair correlation function in the bulk [31,32]. Since we do not
consider nonspherical particles, which can experience a torque
upon interactions with the wall, the complications studied in
recent works [33–35] do not play any role, and, indeed, the
two derivations (details of both derivations are presented in
Appendix E) yield identical results (14). This result means that
the densities of two coexisting phases at steady state are found
by the Maxwell common tangent construction based upon
the quasi-free energy function (12). Although we derive here
this result to the second virial approximation and for spatially
uniform states only, it is possible to derive, in a similar way, the
nonlocal corrections to the effective free energy. Based on that,
we argue that our results remain correct more generally as long
as the range of interaction potential between particles and/or
their sizes remain microscopic, while all the complications
discussed in Refs. [20,34,35] and having to do with nonlocal
dependence of fluxes on densities and their derivatives are
governed by finite particle sizes.

The calculation of the dissipation (6) can be generalized to
the dissipation per unit volume of the solution:

w = cAcB
TA − TB

TAζB + TBζA

∫ (
∂uAB

∂r

)2

e− uAB (r)
T d3r. (15)

It shows that in a phase-separated system the dissipation
mostly happens around the phase boundary. Interestingly, a
more detailed derivation of the dissipated power shows that,
in a system with pairwise interactions only, the dissipated
power can be expressed in terms of the two- and three-body
correlation functions only, as shown in Appendix F.

VIII. CONCLUSION AND DISCUSSION

Although this is not our main thrust, it is interesting to
discuss the implications of our approach for mixtures of
passive particles and more “traditional” polar active particles,
such as RTPs or ABPs [10]. One of our important results
is that the virial corrections to the dilute limit might be
interesting. In dilute systems, the reorientation time of one
swimmer is much smaller than the time between collisions:
τr � τc. Then the particle trajectory between collisions is that
of a random walk, characterized by an effective diffusivity.
We can then identify TB = T with the ambient temperature
while TA − TB � v2

0τrζ/6 is related to the level of activity
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measured by the swimming speed v0. The collision time
is estimated by the Smoluchowski formula, leading to the
condition τr � τc conveniently formulated in terms of the
Péclet number v0τr/b ≡ Pe � 1/

√
φ, b being the particle size.

In this limit, the behavior of swimmers between collisions is
correctly described by the two-temperature model.

Whether multiple collisions for swimmers average to
build up an effective Boltzmann distribution (3) remains an
open question. It is certainly true for repulsive interparticle
potentials in three dimensions, but it might require further
scrutiny for other cases.

Returning to our other results, one may want to have a
qualitative feel for the existence of the phase segregation.
It is best given by considering a large temperature contrast,
TA � TB; for the sake of the argument, we consider the case
where TB = 0, when B particles do not move at all unless
pushed by A particles. Assuming also for simplicity purely
repulsive, excluded volume interactions, if two (or several) B
particles come close enough to one another, then they cannot
part, leading to aggregation and assembly of B particles in a
separate B-rich phase under these nonequilibrium conditions.

The idea to replace local active drive with some “active
temperature” was discussed many times in the biophysical
context; see, for example, Ref. [36]. With all the known
drawbacks [37], it remains attractive because of its simplicity.
Nevertheless, previous works treated specific and rather
complex models. By contrast, our simple model is reduced
to bare essentials. In this sense, a mixture of particles exposed
to different thermostats which we examined represents a
peculiar class of active systems: peculiar in the sense that each
component would not be active on its own, while the mixture
is active. Despite all the limitations, we believe that the theory
developed here is useful because it is physically transparent
and may be instructive as a source of physical intuition for
these highly unusual driven systems.
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APPENDIX A: TWO PARTICLES: “CENTER
OF FRICTION” DIFFUSION

In the main text, we analyzed the relative motion of two
particles A and B by looking at the variable r = xA − xB.
It is interesting to find also how the presence of two distinct
temperatures affects their joint diffusion in space. To do so, it
is convenient to define their joint coordinate R in such a way
that the noises in r and R are statistically independent. This is
achieved by choosing

R = ζATB
ζATB + ζBTA

xA + ζBTA
ζATB + ζBTA

xB. (A1)

Then the Langevin equation for R reads

(ζA + ζB)Ṙ = TB−TA
T

F (r) +
√

2(ζA + ζB) TATB
T

ξR(t), (A2)

where ξR(t) is a zero mean unit variance Gaussian
white noise (independent of ξr , as stated), and T =
(ζATB + ζBTA)/(ζA + ζB) was defined in the main text. In an
equilibrium system, at TA = TB, the interparticle force F (r)
does not couple to the joint motion. Not so out of equilibrium:
since on average the force F (r) vanishes (by symmetry),
〈F (r)〉 = 0, the F (r) term provides an additional noise driving
the diffusion of the variable R. Of course, it is not a white
noise, so that the dynamics of R is not a simple diffusion on
time scales shorter or comparable to the correlation time of
r . But on longer time scales R undergoes simple diffusion,
with a diffusion coefficient which can be directly read out of
the Langevin equation (A2), because F [r(t)] is statistically
independent from ξR(t):

DR = TATB
ζATB + ζBTA

+ 1

2

(
TA − TB

ζATB + ζBTA

)2

(F 2)ω=0; (A3)

here the power the spectrum of the force F (r) at zero frequency
is

(F 2)ω=0 =
∫ ∞

−∞
〈F [r(t)]F [r(t + τ )]〉dτ. (A4)

In order to find the power spectrum of the force, we Fourier
transform the Langevin equation for r [Eq. (2) of the main
text]:

Fω = ıωζrrω − (2ζrT )1/2ξω. (A5)

Then multiplying it by the complex conjugate and assuming
[ωFω]ω=0 = 0, we obtain (F 2)ω=0 = 2ζrT . This yields

DR = TATB
ζATB + ζBTA

+ 1

2

(TA − TB)2

ζATB + ζBTA

ζAζB

(ζA + ζB)2 . (A6)

We see that the difference in temperatures, independently of
the sign, enhances the joint diffusion.

It is also instructive to write the Fokker-Planck equation in
terms of the variables r and R:

∂tP = −
[
ζA + ζB
ζAζB

]
∂r (F (r)P ) −

[
TB − TA

ζATB + ζBTA

]
F (r)∂RP

+
[
ζATB + ζBTA

ζAζB

]
∂2
r P +

[
TATB

ζATB + ζBTA

]
∂2
RP.

(A7)

Here the right-hand side has explicitly the form of a divergence
and can be written as

∂tP = −∂rJr − ∂RJR, (A8)

where the components of the flux are

Jr =
[
ζA + ζB
ζAζB

]
F (r)P −

[
ζATB + ζBTA

ζAζB

]
∂rP, (A9a)

JR =
[

TB − TA
ζATB + ζBTA

]
F (r)P −

[
TATB

ζATB + ζBTA

]
∂RP.

(A9b)
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APPENDIX B: HIERARCHY OF EQUATIONS FOR THE
CORRELATION FUNCTIONS

1. Notations, definitions, and symmetries

As stated in the main text, we operate with a multidi-
mensional Fokker-Planck equation for the probability density
P as a function of the positions of all the particles in the
system. More specifically, consider a system of NA particles
A and NB particlesB; their coordinates are rA1 ,rA2 , . . . ,rANA

and
rB1 ,rB2 , . . . ,rBNB

. The potential energy includes single-particle
potentials and pairwise additive interactions:

U
(
rA1 ,rA2 , . . . ,rANA

; rB1 ,rB2 , . . . ,rBNB

)
=

NA∑
i

uA
1

(
rAi

) +
NB∑
j

uB
1

(
rAj

) + 1

2

NA∑
i �=j

uAA
(
rAi − rAj

)

+
NA∑
i

NB∑
j

uAB
(
rAi − rBj

) + 1

2

NB∑
i �=j

uBB
(
rBi − rBj

)
. (B1)

The probability density P is also a function of all the
coordinates: P = P (rA1 ,rA2 , . . . ,rANA

; rB1 ,rB2 , . . . ,rBNB
). It is nor-

malized:∫
P

(
rA1 ,rA2 , . . . ,rANA

; rB1 ,rB2 , . . . ,rBNB

)
d{r} = 1. (B2)

Define single-particle probability densities, two-particle prob-
ability densities, etc., as

pA
1 (r) =

∫
δ
(
rAi − r

)
P ({r})d{r}, (B3a)

pB
1 (r) =

∫
δ
(
rBi − r

)
P ({r})d{r}, (B3b)

pAA
2 (r,r′) =

∫
δ
(
rAi − r

)
δ
(
rAj − r′)P ({r})d{r}, (B3c)

pBB
2 (r,r′) =

∫
δ
(
rBi − r

)
δ
(
rBj − r′)P ({r})d{r}, (B3d)

pAB
2 (r,r′) =

∫
δ
(
rAi − r

)
δ
(
rBj − r′)P ({r})d{r}. (B3e)

There are four types of three-particle densities:
pAAA

3 (r,r′,r′′), pAAB
3 (r,r′,r′′), pABB

3 (r,r′,r′′), pBBB
3 (r,r′,r′′).

All these densities are independent of i and j etc.; i.e., the
probability density is the same for every particle of a given
species.

There are several normalization and symmetry properties
(X ,Y = A,B):

∫
pX

1 (r) dr = 1, (B4a)

pXX
2 (r,r′) = pXX

2 (r′,r), (B4b)

pXY
2 (r,r′) = pYX

2 (r′,r), (B4c)∫
pXY

2 (r,r′) dr dr′ = 1, (B4d)

∫
pXY

2 (r,r′) dr′ = pX
1 (r), (B4e)∫

pXY
2 (r,r′) dr = pY

1 (r′). (B4f)

2. Fokker-Planck equations for the densities

Integrating out all variables except for one, or except for
two, etc., we obtain the following dynamic equations for the
densities:

∂pA
1 (r)

∂t
= TA

ζA
∇2

r pA
1 (r) + 1

ζA
∂r

[
∂uA

1 (r)

∂r
pA

1 (r)

]

+ NA − 1

ζA
∂r

[∫
∂uAA(r,r′)

∂r
pAA

2 (r,r′)dr′
]

+ NB
ζB

∂r

[∫
∂uAB(r,r′)

∂r
pAB

2 (r,r′)dr′
]
. (B5)

A similar equation is obtained for pB
1 (r), which is not given

for brevity. For large numbers of particles, we can replace
NA − 1 � NA:

∂pAA
2 (r,r′)
∂t

= TA
ζA

(∇2
r + ∇2

r′
)
pAA

2 (r,r′)

+ 1

ζA
∂r

[
∂uA

1 (r)

∂r
pAA

2 (r,r′)
]

+ 1

ζA
∂r

[
∂uAA(r,r′)

∂r
pAA

2 (r,r′)
]

+NA
ζA

∂r

[∫
∂uAA(r,r′′)

∂r
pAAA

3 (r,r′,r′′) dr′′
]

+NB
ζA

∂r

[∫
∂uAB(r,r′′)

∂r
pAAB

3 (r,r′,r′′) dr′′
]

+ 1

ζA
∂r′

[
∂uA

1 (r′)
∂r′ pAA

2 (r,r′)
]

+ 1

ζA
∂r′

[
∂uAA(r,r′)

∂r′ pAA
2 (r,r′)

]

+NA
ζA

∂r′

[∫
∂uAA(r′,r′′)

∂r′ pAAA
3 (r,r′,r′′) dr′′

]

+NB
ζA

∂r′

[∫
∂uAB(r′,r′′)

∂r′ pAAB
3 (r,r′,r′′) dr′′

]
.

(B6)

A similar equation (not given here) is obtained for pBB
2 . But

the equation for the mixed probability deserves to be written:

∂pAB
2 (r,r′)
∂t

=
(

TA
ζA

∇2
r + TB

ζB
∇2

r′

)
pAB

2 (r,r′)

+ 1

ζA
∂r

[
∂uA

1 (r)

∂r
pAB

2 (r,r′)
]

+ 1

ζA
∂r

[
∂uAB(r,r′)

∂r
pAB

2 (r,r′)
]

+NA
ζA

∂r

[∫
∂uAA(r,r′′)

∂r
pABA

3 (r,r′,r′′) dr′′
]
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+NB
ζA

∂r

[∫
∂uAB(r,r′′)

∂r
pABB

3 (r,r′,r′′) dr′′
]

+ 1

ζB
∂r′

[
∂uB

1 (r′)
∂r′ pAB

2 (r,r′)
]

+ 1

ζB
∂r′

[
∂uAB(r,r′)

∂r′ pAB
2 (r,r′)

]

+NA
ζB

∂r′

[∫
∂uBA(r′,r′′)

∂r′ pABA
3 (r,r′,r′′) dr′′

]

+NB
ζB

∂r′

[∫
∂uBB(r′,r′′)

∂r′ pABB
3 (r,r′,r′′) dr′′

]
.

(B7)

The equations for p3 involve p4, and so on, ad infinitum.
If the density is small enough, we can neglect all triple

collisions, i.e., directly discard all terms involving p3. Indeed,
given the normalization, any term containing p2 in Eq. (B6)
or (B6) is of order 1/V 2, while every term containing p3

is of order N/V 3. This, of course, simplifies the equations
quite dramatically and reduces them essentially to what we
obtained for the case of two particles. Omitting the single-
particle potential terms, we obtain

∂pAA
2 (r,r′)
∂t

= TA
ζA

(∇2
r + ∇2

r′
)
pAA

2 (r,r′)

+ 1

ζA
∂r

[
∂uAA(r,r′)

∂r
pAA

2 (r,r′)
]

+ 1

ζA
∂r′

[
∂uAA(r,r′)

∂r′ pAA
2 (r,r′)

]
(B8)

(and a similar equation for pBB
2 ),

∂pAB
2 (r,r′)
∂t

=
(

TA
ζA

∇2
r + TB

ζB
∇2

r′

)
pAB

2 (r,r′)

+ 1

ζA
∂r

[
∂uAB(r,r′)

∂r
pAB

2 (r,r′)
]

+ 1

ζB
∂r′

[
∂uAB(r,r′)

∂r′ pAB
2 (r,r′)

]
. (B9)

These equations are simple enough to guess the solution based
on our knowledge of the two-particle case:

pAA
2 (r,r′) = pA

1 (r)pA
1 (r′) exp

[
−uAA(r − r′)

TA

]
, (B10a)

pBB
2 (r,r′) = pB

1 (r)pB
1 (r′) exp

[
−uBB(r − r′)

TB

]
, (B10b)

pAB
2 (r,r′) = pA

1 (r)pB
1 (r′) exp

[
−uAB(r − r′)

T

]
. (B10c)

Of course, the central feature of this result is the appearance
of the average temperature, as defined in the main text

T = ζATB + ζBTA
ζA + ζB

. (B11)

In order to obtain the result (9), we look for a solution of the
form pXY

2 (r,r′) = qXY (r,r′) exp [−βuXY (r,r′)], plug it into

Eq. (B8) or (B9), and discover, that in the remaining equation
for q, the variables separate, meaning that q factorizes into a
factor that depends only on r and a factor that depends only
on r′.

APPENDIX C: DIFFUSION EQUATIONS AND
NONEQUILIBRIUM CHEMICAL POTENTIALS

Plugging the ansatz (9) [(B10)] into Eqs. (8) [(B5)], we
obtain closed results for the densities. This involves the integral∫

∂uAA(r,r′)
∂r

pA
1 (r′)e− uAA(r,r′)

TA dr′, (C1)

which can be integrated by parts. Finally, we obtain equations
that look like diffusion equations for a regular system in contact
with a thermostat,

∂cA(r)

∂t
= 1

ζA

∂

∂r

(
cA

∂μA
∂r

)
, (C2a)

∂cB(r)

∂t
= 1

ζB

∂

∂r

(
cB

∂μB
∂r

)
, (C2b)

but these equations contain nonequilibrium chemical po-
tentials, as stated in the main text [Eq. (11)].

1. Linear stability analysis

Suppose that cA0 and cB0 are the averaged spatially uni-
form concentrations of both components. By introducing
small space-dependent perturbations cA(r) = cA0 + δcA(r)
and cB(r) = cB0 + δcB(r), we perform a linear stability analysis
in the standard way:

∂δcA

∂t
= 1

ζA
∇2

[(
TA + TAcA0 BA

)
δcA + (

T cA0 BAB

)
δcB

]
∂δcB

∂t
= 1

ζB
∇2

[(
T cB0 BAB

)
δcA + (

TB + TBcB0 BB
)
δcB

]
. (C3)

This shows that an instability occurs (at q = 0, i.e., macro-
scopically) under the condition that the determinant of this
matrix vanishes; i.e., the system is unstable if

cA0 cB0 T
2
B2
AB > TATB

(
1 + cA0 BA

)(
1 + cB0 BB

)
. (C4)

At the instability, the unstable combination (eigenvector whose
eigenvalue flips sign) is

δcA(r)ζA√
TABAcA0

(
1 + BAcA0

) − δcB(r)ζB√
TBBBcB0

(
1 + BBcB0

) . (C5)

In the plane (cA0 , cB0 ), the spinodal line (C4) is a hyperbola
(Fig. 3). A better way to represent it is to use a triangular
phase diagram as given in Fig. 2.

APPENDIX D: NONEQUILIBRIUM “SPINODAL” LINE
FOR ATHERMAL PARTICLES

The dimensionless parameters of the system are as follows:
(1) Contrast of excluded volumes,

β = BAB√
BABB

. (D1)
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FIG. 3. (Color online) Spinodal line (C4), shown for one par-
ticular choice of parameters (TA/TB,ζA/ζB,BABB/B2

AB ). Physical
meaning has only region φA + φB < 1, the instability region within
this region is shaded.

(2) Contrast of temperatures,

τ = TA − TB
TA + TB

; −1 < τ < 1. (D2)

(3) Contrast of frictions,

κ = ζA − ζB
ζA + ζB

; −1 < κ < 1. (D3)

The condition that the spinodal exists within the physical
range φA + φB < 1 reads

4κ2τ 2 − 4κτ + 1

1 − τ 2
β2 > 9. (D4)

This condition is presented graphically in two different ways,
in Fig. 4 in the form of a three-dimensional surface and in

FIG. 4. (Color online) Instability exists above this surface; see
condition (D4).
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FIG. 5. (Color online) For every κ , instability exists above the
line, according to Eqs. (D4).

Fig. 5 as an array of two-dimensional plots. Beautifully, the
contrast of frictions κ becomes irrelevant for the equilibrium
system, when τ = 0.

APPENDIX E: NONEQUILIBRIUM OSMOTIC PRESSURE
AND “BINODAL”

To address the steady state phase segregation, in addition
to the nonequilibrium chemical potentials we also need to
define a nonequilibrium osmotic pressure. We derive it in two
different ways.

1. Derivation 1

To find the osmotic pressure, imagine that the system
“feels” single-particle potentials uA

1 (r) and uB
1 (r) such that

they are both like a box, except that one wall of this box has a
(not necessarily very) sharp potential “ramp” in the direction,
perpendicular to the wall: u

A,B
1 (r) = fA,Bx, as shown in

Fig. 6. In this case, the pressure is found according to

p = fA

∫ ∞

0
cA(x) dx + fB

∫ ∞

0
cB(x) dx, (E1)

because every particle A present in the ramp area exerts on the
wall the force fA, and similarly forB. We emphasize that this is
actually an osmotic pressure, in the sense that the ramp poten-
tials u

A,B
1 (r) = fA,Bx act only on the A and B particles while

the solvent penetrates everywhere completely freely. This
means that our ramp potentials represent an osmotic piston.

x

u1(x)
fAx

fBx
Bulk 

volume

FIG. 6. (Color online) Ramp potential used to calculate pressure.
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A similar expression for the osmotic pressure was also
used in Ref. [34], where it is derived from the expression of
the Helmhotz partition sum, i.e., from equilibrium statistical
mechanics. We feel necessary to emphasize that Eq. (E1) is
derived on purely mechanical grounds, and it has nothing to
do with thermodynamic equilibrium. As such, it is perfectly
applicable to our present problem.

To find the steady state concentration profile in the presence
of ramp potentials, we slightly generalize the diffusion Eqs.
(10) and (C2) by including the external potentials u1:

μA → μA + uA
1 and μB → μB + uB

1 . (E2)

At steady state, the concentration profile must be such that
μ + u1 = const for both the A and B components. This can
be written as

cA(r) = CAe
− uA1

TA

[
1 + cA(r)BA + cB(r)BAB

T

TA

]
, (E3a)

cB(r) = CBe
− uB1

TB

[
1 + cB(r)BB + cA(r)BAB

T

TB

]
. (E3b)

Here CA and CB are normalization factors. To make things
simple, we assume that the “ramps” are not too shallow, such
that the normalization integral is dominated by the bulk volume
V where both ramp potentials vanish. Given that the virial
terms in the chemical potentials are the corrections to the ideal
gas, we solve iteratively and get

cA(r) = NA
V

e
− uA1

TA

[
1 + NA

V
BA

(
1 − e

− uA1
TA

)

+ NB
V

BAB

T

TA

(
1 − e

− uB1
TB

)]
(E4)

and similarly for cB(r). Note that the result does not depend on
the ramp forces fA and fB, which do not have to be identical.

2. Derivation 2

Our starting point of the second derivation is the kinetic
expression of the pressure

p = pideal − N

6V

〈∑
i �=j

rij · ∂rij
u
(
rij

)〉
. (E5)

Sometimes it is called Irving-Kirkwood formula [31,32]. As
in the first derivation, the important point is that this equation
follows from pure mechanics and does not make any assump-
tion related to equilibrium statistical mechanics. In terms of
pair distributions p

ij

2 the Irving-Kirkwood formula reads

p = pideal − N2
A

6

∫
r12 · ∂r12u

AA(r12)pAA
2 (r1,r2)

−NANB
3

∫
r12 · ∂r12u

AB(r12)pAB
2 (r1,r2)

−N2
B

6

∫
r12 · ∂r12u

BB(r12)pBB
2 (r1,r2). (E6)

Using the ansatz (9, 9) for p2, and integrating by parts (and
remembering that ∇ · r = 3), we obtain the same result as
before for the osmotic pressure.

APPENDIX F: POWER TRANSFER

In the main text, we outlined the derivation of the power
transfer in the cases of either two particles or many particles
with only pairwise collisions. Here we establish a more general
result which suggests that the power transfer is expressed in
terms of only pair and triple correlation functions (but not
higher order ones). Consider the work performed by all forces
per unit time on all A particles, which is also the power
received by A particles:

W =
NA∑
i

∫
∂U

∂rAi

[
TA
ζA

∂P

∂rAi
+ ∂U

∂rAi

P

ζA

]
d{r}, (F1)

with U = U ({rAj },{rBk }) the total potential energy of the
system. In the integral (F1), the first factor is the force which
acts on particle Ai due to all other particles, while the second
factor (in square brackets) is the current, i.e., the velocity
of the particle Ai multiplied by the probability density P .
Thus, the integral (F1) is the average power transfer to one
particle Ai . By symmetry, it is independent of i, so that the
summation over i reduces to a factor NA. As long as the inter-
action potentials are pairwise additive (B1), the force is also
a sum:

∂U

∂rAi
=

NA∑
j �=i

∂uAA
(
rAi − rAj

)
∂rAi

+
NB∑
k

∂uAB
(
rAi − rBk

)
∂rAi

. (F2)

The first term is the force acting on particle Ai due to other
A particles, by symmetry this term vanishes on average in the
sum over A particles. And the second term, which is the due
to B particles on A particles, yields

W = NATA
ζA

∫
∂uAB(r − r′)

∂r
× ∂pAB

2 (r,r′)
∂r

d3rd3r′

+NA
ζA

∫ [
∂uAB(r − r′)

∂r

]2

pAB
2 (r,r′)d3rd3r′

+N2
A

ζA

∫
∂uAB(r − r′)

∂r
× ∂uAA(r − r′′)

∂r
pABA

3 (r,r′,r′′)

× d3rd3r′d3r′′

+NANB
ζA

∫
∂uAB(r − r′)

∂r
× ∂uAB(r − r′′)

∂r
pABB

3

× (r,r′,r′′)d3rd3r′d3r′′. (F3)

Neglecting the three-body collisions (terms with p3), and using
the known expression (9) for p2, we return to the result given
in the main text.

Here, we emphasize once again that, as long as interaction
potentials are pairwise additive, as in Eq. (B1), Eq. (F3) is
exact.
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[6] F. Jülicher, A. Ajdari, and J. Prost, Modeling molecular motors,
Rev. Mod. Phys. 69, 1269 (1997).

[7] C. Bustamante, D. Keller, and G. Oster, The physics of molecular
motors, Accounts Chem. Res. 34, 412 (2001).

[8] A. S. Mikhailov and R. Kapral, Hydrodynamic collective effects
of active protein machines in solution and lipid bilayers, Proc.
Natl. Acad. Sci. USA 112, E3639 (2015).

[9] M. Marchetti, J.-F. Joanny, S. Ramaswamy, T. Liverpool, J.
Prost, M. Rao, and R. A. Simha, Hydrodynamics of soft active
matter, Rev. Mod. Phys. 85, 1143 (2013).

[10] M. E. Cates and J. Tailleur, When are active Brownian particles
and run-and-tumble particles equivalent? Consequences for
motility-induced phase separation, Eur. Phys. Lett. 101, 20010
(2013).

[11] Y. Fily and M. C. Marchetti, Athermal Phase Separation of
Self-Propelled Particles with No Alignment, Phys. Rev. Lett.
108, 235702 (2012).

[12] S. R. McCandlish, A. Baskaran, and M. F. Hagan, Spontaneous
segregation of self-propelled particles with different motilities,
Soft Matter 8, 2527 (2012).

[13] J. Stenhammar, A. Tiribocchi, R. J. Allen, D. Marenduzzo, and
M. E.Cates, Continuum Theory of Phase Separation Kinetics for
Active Brownian Particles, Phys. Rev. Lett. 111, 145702 (2013).

[14] Y. Fily, A. Baskaran, and M. F. Hagan, Dynamics of self-
propelled particles under strong confinement, Soft Matter 10,
5609 (2014).

[15] Y. Fily, S. Henkes, and M. C. Marchetti, Freezing and phase
separation of self-propelled disks, Soft Matter 10, 2132 (2014).

[16] X. Yang, M. L. Manning, and M. C. Marchetti, Aggregation and
segregation of confined active particles, Soft Matter 10, 6477
(2014).

[17] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E.
Cates, Activity-Induced Phase Separation and Self-Assembly
in Mixtures of Active and Passive Particles, Phys. Rev. Lett.
114, 018301 (2015).

[18] R. Bruinsma, A. Grosberg, Y. Rabin, and A. Zidovska, Chro-
matin hydrodynamics, Biophys. J. 106, 1871 (2014).

[19] A. Awazu, Segregation and phase inversion of strongly and
weakly fluctuating Brownian particle mixtures and a chain of
such particle mixtures in spherical containers, Phys. Rev. E 90,
042308 (2014).

[20] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen,
D. Marenduzzo, and M. E. Cates, Scalar φ4 field theory
for active-particle phase separation, Nature Comm. 5, 4351
(2014).

[21] N. Ganai, S. Sengupta, and G. I. Menon, Chromosome posi-
tioning from activity-based segregation, Nucleic Acids Res. 42,
4145 (2014).

[22] F. S. Bates and G. H. Fredrickson, Block copolymers—Designer
soft materials, Phys. Today 52, 32 (1999).

[23] S. N. Weber, C. A. Weber, and E. Frey, Binary mixtures of
particles with different diffusivities demix, arXiv:1505.00525
(2015).

[24] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Course
of Theoretical Physics, Vol. 10 (Butterworth-Heinemann, New
York, 2002).

[25] V. S. Dotsenko, Introduction to the Theory of Spin Glasses and
Neural Networks (World Scientific, Singapore, 1994).

[26] V. S. Pande, A. Y. Grosberg, and T. Tanaka, Heteropolymer
freezing and design: Towards physical models of protein folding,
Rev. Mod. Phys. 72, 259 (2000).

[27] R. Exartier and L. Peliti, A simple system with two temperatures,
Phys. Lett. A 261, 94 (1999).

[28] A. V. Chertovich, E. N. Govorun, V. A. Ivanov, P. G. Khalatur,
and A. R. Khokhlov, Conformation-dependent sequence design:
Evolutionary approach, Eur. Phys. J. E 13, 15 (2004).

[29] A. Crisanti, A. Puglisi, and D. Villamaina, Nonequilibrium and
information: The role of cross correlations, Phys. Rev. E 85,
061127 (2012).

[30] V. Dotsenko, A. Maciołek, O. Vasilyev, and G. Oshanin, Two-
temperature Langevin dynamics in a parabolic potential, Phys.
Rev. E 87, 062130 (2013).

[31] J. H. Irving and J. G. Kirkwood, The statistical mechanical the-
ory of transport processes. IV. The equations of hydrodynamics,
J. Chem. Phys. 18, 817 (1950).

[32] J.-L. Barrat and J.-P. Hansen, Basic Concepts for Simple and
Complex Liquids (Cambridge University Press, Cambridge,
2003).

[33] S. C. Takatori, W. Yan, and J. F. Brady, Swim Pressure: Stress
Generation in Active Matter, Phys. Rev. Lett. 113, 028103
(2014).

[34] A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri, M.
Kardar, and J. Tailleur, Pressure is not a state function for generic
active fluids, Nat. Phys. 11, 673 (2015).

[35] A. P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri,
M. E. Cates, and J. Tailleur, Pressure and Phase Equilibria
in Interacting Active Brownian Spheres, Phys. Rev. Lett. 114,
198301 (2015).

[36] K. Gowrishankar, S. Ghosh, S. Saha, R. C., S. Mayor, and
M. Rao, Active remodeling of cortical actin regulates spatiotem-
poral organization of cell surface molecules, Cell 149, 1353
(2012).

[37] L. F. Cugliandolo, The effective temperature, J. Phys. A 44,
483001 (2011).

032118-10

http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1140/epjst/e2012-01529-y
http://dx.doi.org/10.1103/PhysRevLett.100.218103
http://dx.doi.org/10.1103/PhysRevLett.100.218103
http://dx.doi.org/10.1103/PhysRevLett.100.218103
http://dx.doi.org/10.1103/PhysRevLett.100.218103
http://dx.doi.org/10.1126/science.1230020
http://dx.doi.org/10.1126/science.1230020
http://dx.doi.org/10.1126/science.1230020
http://dx.doi.org/10.1126/science.1230020
http://dx.doi.org/10.1098/rsta.2013.0372
http://dx.doi.org/10.1098/rsta.2013.0372
http://dx.doi.org/10.1098/rsta.2013.0372
http://dx.doi.org/10.1098/rsta.2013.0372
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1103/RevModPhys.69.1269
http://dx.doi.org/10.1021/ar0001719
http://dx.doi.org/10.1021/ar0001719
http://dx.doi.org/10.1021/ar0001719
http://dx.doi.org/10.1021/ar0001719
http://dx.doi.org/10.1073/pnas.1506825112
http://dx.doi.org/10.1073/pnas.1506825112
http://dx.doi.org/10.1073/pnas.1506825112
http://dx.doi.org/10.1073/pnas.1506825112
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1103/RevModPhys.85.1143
http://dx.doi.org/10.1209/0295-5075/101/20010
http://dx.doi.org/10.1209/0295-5075/101/20010
http://dx.doi.org/10.1209/0295-5075/101/20010
http://dx.doi.org/10.1209/0295-5075/101/20010
http://dx.doi.org/10.1103/PhysRevLett.108.235702
http://dx.doi.org/10.1103/PhysRevLett.108.235702
http://dx.doi.org/10.1103/PhysRevLett.108.235702
http://dx.doi.org/10.1103/PhysRevLett.108.235702
http://dx.doi.org/10.1039/c2sm06960a
http://dx.doi.org/10.1039/c2sm06960a
http://dx.doi.org/10.1039/c2sm06960a
http://dx.doi.org/10.1039/c2sm06960a
http://dx.doi.org/10.1103/PhysRevLett.111.145702
http://dx.doi.org/10.1103/PhysRevLett.111.145702
http://dx.doi.org/10.1103/PhysRevLett.111.145702
http://dx.doi.org/10.1103/PhysRevLett.111.145702
http://dx.doi.org/10.1039/C4SM00975D
http://dx.doi.org/10.1039/C4SM00975D
http://dx.doi.org/10.1039/C4SM00975D
http://dx.doi.org/10.1039/C4SM00975D
http://dx.doi.org/10.1039/C3SM52469H
http://dx.doi.org/10.1039/C3SM52469H
http://dx.doi.org/10.1039/C3SM52469H
http://dx.doi.org/10.1039/C3SM52469H
http://dx.doi.org/10.1039/C4SM00927D
http://dx.doi.org/10.1039/C4SM00927D
http://dx.doi.org/10.1039/C4SM00927D
http://dx.doi.org/10.1039/C4SM00927D
http://dx.doi.org/10.1103/PhysRevLett.114.018301
http://dx.doi.org/10.1103/PhysRevLett.114.018301
http://dx.doi.org/10.1103/PhysRevLett.114.018301
http://dx.doi.org/10.1103/PhysRevLett.114.018301
http://dx.doi.org/10.1016/j.bpj.2014.03.038
http://dx.doi.org/10.1016/j.bpj.2014.03.038
http://dx.doi.org/10.1016/j.bpj.2014.03.038
http://dx.doi.org/10.1016/j.bpj.2014.03.038
http://dx.doi.org/10.1103/PhysRevE.90.042308
http://dx.doi.org/10.1103/PhysRevE.90.042308
http://dx.doi.org/10.1103/PhysRevE.90.042308
http://dx.doi.org/10.1103/PhysRevE.90.042308
http://dx.doi.org/10.1038/ncomms5351
http://dx.doi.org/10.1038/ncomms5351
http://dx.doi.org/10.1038/ncomms5351
http://dx.doi.org/10.1038/ncomms5351
http://dx.doi.org/10.1093/nar/gkt1417
http://dx.doi.org/10.1093/nar/gkt1417
http://dx.doi.org/10.1093/nar/gkt1417
http://dx.doi.org/10.1093/nar/gkt1417
http://dx.doi.org/10.1063/1.882522
http://dx.doi.org/10.1063/1.882522
http://dx.doi.org/10.1063/1.882522
http://dx.doi.org/10.1063/1.882522
http://arxiv.org/abs/arXiv:1505.00525
http://dx.doi.org/10.1103/RevModPhys.72.259
http://dx.doi.org/10.1103/RevModPhys.72.259
http://dx.doi.org/10.1103/RevModPhys.72.259
http://dx.doi.org/10.1103/RevModPhys.72.259
http://dx.doi.org/10.1016/S0375-9601(99)00606-4
http://dx.doi.org/10.1016/S0375-9601(99)00606-4
http://dx.doi.org/10.1016/S0375-9601(99)00606-4
http://dx.doi.org/10.1016/S0375-9601(99)00606-4
http://dx.doi.org/10.1140/epje/e2004-00036-1
http://dx.doi.org/10.1140/epje/e2004-00036-1
http://dx.doi.org/10.1140/epje/e2004-00036-1
http://dx.doi.org/10.1140/epje/e2004-00036-1
http://dx.doi.org/10.1103/PhysRevE.85.061127
http://dx.doi.org/10.1103/PhysRevE.85.061127
http://dx.doi.org/10.1103/PhysRevE.85.061127
http://dx.doi.org/10.1103/PhysRevE.85.061127
http://dx.doi.org/10.1103/PhysRevE.87.062130
http://dx.doi.org/10.1103/PhysRevE.87.062130
http://dx.doi.org/10.1103/PhysRevE.87.062130
http://dx.doi.org/10.1103/PhysRevE.87.062130
http://dx.doi.org/10.1063/1.1747782
http://dx.doi.org/10.1063/1.1747782
http://dx.doi.org/10.1063/1.1747782
http://dx.doi.org/10.1063/1.1747782
http://dx.doi.org/10.1103/PhysRevLett.113.028103
http://dx.doi.org/10.1103/PhysRevLett.113.028103
http://dx.doi.org/10.1103/PhysRevLett.113.028103
http://dx.doi.org/10.1103/PhysRevLett.113.028103
http://dx.doi.org/10.1038/nphys3377
http://dx.doi.org/10.1038/nphys3377
http://dx.doi.org/10.1038/nphys3377
http://dx.doi.org/10.1038/nphys3377
http://dx.doi.org/10.1103/PhysRevLett.114.198301
http://dx.doi.org/10.1103/PhysRevLett.114.198301
http://dx.doi.org/10.1103/PhysRevLett.114.198301
http://dx.doi.org/10.1103/PhysRevLett.114.198301
http://dx.doi.org/10.1016/j.cell.2012.05.008
http://dx.doi.org/10.1016/j.cell.2012.05.008
http://dx.doi.org/10.1016/j.cell.2012.05.008
http://dx.doi.org/10.1016/j.cell.2012.05.008
http://dx.doi.org/10.1088/1751-8113/44/48/483001
http://dx.doi.org/10.1088/1751-8113/44/48/483001
http://dx.doi.org/10.1088/1751-8113/44/48/483001
http://dx.doi.org/10.1088/1751-8113/44/48/483001



