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Nonequilibrium physics encompasses a broad range of natural and synthetic small-scale systems. Optimizing
transitions of such systems will be crucial for the development of nanoscale technologies and may reveal the
physical principles underlying biological processes at the molecular level. Recent work has demonstrated that
when a thermodynamic system is driven away from equilibrium then the space of controllable parameters has a
Riemannian geometry induced by a generalized inverse diffusion tensor. We derive a simple, compact expression
for the inverse diffusion tensor that depends solely on equilibrium information for a broad class of potentials. We
use this formula to compute the minimal dissipation for two model systems relevant to small-scale information
processing and biological molecular motors. In the first model, we optimally erase a single classical bit of
information modeled by an overdamped particle in a smooth double-well potential. In the second model, we find
the minimal dissipation of a simple molecular motor model coupled to an optical trap. In both models, we find
that the minimal dissipation for the optimal protocol of duration t is proportional to 1/7, as expected, though the
dissipation for the erasure model takes a different form than what we found previously for a similar system.
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I. INTRODUCTION

A complete set of principles describing physical phenom-
ena far from equilibrium remains elusive. However, consider-
able progress has been made in the study of nonequilibrium
processes in recent times. Fluctuation theorems relating the
probability of an increase to that of a comparable decrease
in entropy during a finite time period have been derived
[1-5] and experimentally verified [6-9]. Considerations of
Maxwell’s demon and Landauer’s principle have led to a
better understanding of the thermodynamic role of information
[10-12], and new fundamental relationships valid for systems
far from equilibrium such as the Jarzynski equality have
provided deep insights into thermodynamic quantities such
as entropy [13—-16]. More recently it has been appreciated
that these nonequilibrium relationships are closely related to
pioneering work by Bochkov and Kuzovlev [17-25].

Recent work has also shed light on the general problem
of computing optimal protocols that minimize dissipation
while driving small-scale systems between stationary states
[26-33]. Optimization schemes for finite-time thermodynamic
processes will be needed for technological applications in
which energetic efficiency is paramount [34,35]. This will be
particularly relevant in the decades to come as computational
demands approach physical limits.

It may also be the case that evolution sculpted molecular
machines such as kinesin and Fo — F; ATP-ase to operate
far from equilibrium while maximizing efficiency [36]. Thus,
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optimization schemes for nonequilibrium transitions also have
the potential to unlock physical principles underlying the
function of biological systems on the molecular level.

A promising approach utilizes a linear-response framework
in which a generalized inverse diffusion tensor induces a
Riemannian manifold structure on the space of parameters
[26]. Optimal protocols are geodesics of this geometry. This
idea is developed further in Ref. [27], where the machinery
of Riemannian geometry is exploited to find explicit optimal
protocols for a paradigmatic colloidal particle model, and
in Ref. [37], where optimal finite-time erasure protocols are
computed for a simple classical bit model. An extension of
this framework to transitions between nonequilibrium steady
states is established in Ref. [28].

This framework builds on earlier investigations into ther-
modynamic metrics by including the dynamics of the driven
system. For macroscopic systems, the properties of optimal
driving processes have been investigated using thermodynamic
length, a natural measure of the distance between pairs of
equilibrium thermodynamics states [38—43], with extensions
to microscopic systems involving a metric of Fisher informa-
tion [44,45]. Slow transitions between nonequilibrium steady
states have also been studied in terms of thermodynamic metric
structure [46].

In Ref. [27], the method to calculate the inverse diffusion
tensor components relied on the (continuous) potential being
harmonic. In this paper, we demonstrate how the inverse
diffusion tensor may be computed for a more general class of
potentials in terms of the equilibrium probability distribution.
Our starting point will be the Fokker-Planck equation [47],
which we assume fully describes the physics of the system.
Furthermore, we show that the inverse diffusion tensor arises
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naturally through an expansion in temporal derivatives in this
general setting.

We use this construction to compute minimal dissipation
for two model systems of physical interest. First, we consider
a one-dimensional system modeling the storage and erasure
of a single classical bit of information [37,48,49]. The erasure
of information results in energy dissipation according to the
Landauer principle. Minimizing this dissipation (equivalently,
maximizing erasure efficiency) will likely prove critical to
the development of future small-scale information processing
devices. The first model system consists of an overdamped
colloidal particle diffusing under the influence of a continuous
double-well potential with a large central barrier stabilizing the
memory. If the particle is found to the left (right) of the origin,
the memory value is 1 (0). We seek the most efficient protocol
altering the shape of the confining potential so that the particle
will be found to the right of the origin with overwhelming
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FIG. 1. (Color online) Continuous erasure protocol. The left-
hand well of the double-well potential merges with the right and
the central barrier lowers simultaneously as A decreases from 2 to 0.
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probability, thus setting the memory value to 0 and erasing the
single bit of classical information originally encoded by the
system.

The erasure cycle consists of a continuous stage in which the
wells merge and the central barrier is lowered. A reset stage
in which the potential returns instantaneously to its original
state and leaves the final probability distribution undisturbed
completes the erasure cycle (see Fig. 1). The inverse diffusion
tensor predicts optimal erasure cycles in the long duration
limit.

The second model system consists of an overdamped
colloidal particle diffusing in one dimension while coupled to
aratchet potential and an optical trap. In this simplified model,
the coordinate of the diffusing particle may be identified with
a mechanical state variable of a molecular motor [50] and
the thermal bath consists of the huge number of irrelevant
degrees of freedom of the liquid surrounding the motor as
well as the internal degrees of freedom of the motor itself
and the structures with which it interacts. We suppose that
our simplistic molecular motor couples to an optical trap. The
inverse diffusion tensor framework predicts the optimal time
course for the optical trap center, which represents an external
drive for this simple molecular machine.

II. THE INVERSE DIFFUSION TENSOR

For a physical system at equilibrium in contact with a
thermal bath, the probability distribution over microstates x
is given by the canonical ensemble

Peq(x,4) = exp BF(A) — E(x,4)], ey

where 8 = (kgT)~! is the inverse temperature in natural units,
F(X) is the free energy, and E(x,A) is the system energy as a
function of the microstate x and a collection of experimentally
controllable parameters A.

In equilibrium, the thermodynamic state of the system
(the probability distribution over microstates) is completely
specified by values of the control parameters, but out of equi-
librium the system’s probability distribution over microstates
fundamentally depends on the history of the control parameters
A, which we denote by the control parameter protocol A.
We assume the protocol to be sufficiently smooth to be
twice-differentiable.

The average excess power exerted by the external agent on
the system, over and above the average power on a system at
equilibrium, is [27]

dx’
B(t0)Pex(t0) = — I ~(6X)A- 2
t f
Here X = —% are the forces conjugate to the control

parameters A, and §X(f) = X (f) — (X)) is the deviation
of X(#y) from its current equilibrium value.
Applying linear response theory [47],

Iy

(8X(10)) A %/ x(to — 1) - [Mto) — A1, (3)

—00

where x;;(t) = —dZixj(t")(t)/dt represents the response of
conjugate force X; at time ¢ to a perturbation in control
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parameter A/ at time zero, and
() = (X (008 Xi () )

For protocols that vary sufficiently slowly [26], the resulting
mean excess power is

daz’ di
B(to)Pex(to) ~ [?]m ¢ (A (1)) - [EL, ®)

for inverse diffusion tensor
o0
Gij E/ dt' (8X ;(0)8X;(t"))r)» (6)
0

or, more conveniently,

Gij :/0 dt'(9,;(0)95: (")) (7

where ¢(x,A) = —In peq(x, ).
We assume our system consists of an overdamped colloidal
particle obeying the stochastic equation of motion,

X = —%BXU(x(t),t) + F(1), (8)
for Gaussian white noise F () satisfying
2

(F(1)) =0, (FOF(t)) = —&(t — ). €))
By

Here, y is the Cartesian friction coefficient and U (x,t) is a
generic potential growing unbounded as |x| — oo at a rate to
be specified shortly.

The components in Eq. (7) may be readily computed if
Eq. (8) is linear or, equivalently, the potential is harmonic [27].
The linearity of Eq. (8) allows us to write general solutions
as a linear combination of a homogeneous piece dependent
only on the initial conditions and a particular piece dependent
on the Gaussian noise. Such a decomposition allows for a
straightforward calculation of the time correlation functions
appearing in Eq. (7) as demonstrated in Ref. [27].

For more general potentials, such a decomposition is
impossible and so a different approach must be found to
compute Eq. (7). We will find the equivalent statistical
description in terms of the Fokker-Planck equation,

ap = D[0(BU'(x,0)p) + 8}p] = —3,G,  (10)

convenient, where p(x,f) is the position probability density,
G(x,t) is the probability current, and D is the diffusion
coefficient.

We set out to compute a general expression for the inverse
diffusion tensor of a driven system obeying overdamped
dynamics. Using the method of Laplace transform [51], we
succeeded in writing the components of the tensor entirely
in terms of the equilibrium probability distribution p.q and
cumulative distribution function ITeg:

L T 0 Teg (6, M) Teg(x,A)
g”(k)_D/oodx[ Peq(x, 1) ] (b

We assume that the potential satisfies U(x,A) — 00 as
|x] — oo.Note that the construction also applies for reflecting-
wall boundary conditions.
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The inverse diffusion tensor components are given by

*) = /oodt’ i ) %9 () (12)
Gy) = 0 N O g
where ¢(x,A) = —In peq(x,A) and peq(x,A) is the equilibrium
distribution.
We rewrite Eq. (12) as

Eij(l)=/ dt/[/ dxopeq(x0,A)0; ¢ (x0,1)
0 —00

X (/oo dxp(x,t’;xo)ayd)(x,)»))], (13)

o0
where p(x,t;x0) satisfies Eq. (10) with initial condition
p(x,t = 0;x0) = 6x .5, and p(x,t;x9) — 0 for |x| — oo. For
simplicity, define

m;(t) = /00 dxp(x,1;x0)0, $(x, 1), (14)

(o]

so that
Cij(l)Zf depeq(xO,l)Bx.@(xO,X)/ di'm;(t). (15)
oo 0

Note that we have suppressed the dependence of m; on xy and
A for convenience. We evaluate |, Ooo dt'm;(t") by computing the
Laplace transform,

mi(s) = f di'mi(te ™", (16)
0
and taking the limit as s — 0.
Integrating by parts,
*©  dm; i
/ dt' (e = sini(s) — mi(0). (17)
0 dar’

Note that m;(00) vanishes since lim; _, o 0(x,1; X0) = Peq(x,A);
i.e., the system comes to a stationary state after a sufficiently
long time has elapsed. By definition of m;,

m?(t):/ dx0;p(x,t;%0)0,: P (x, ). (18)

o]

In terms of the probability current G(x,t),
mi(0) — [ dxd,G(x,5)d:p(x,X)

N

1i(s) = 19)

Therefore, to compute ri1;(s), we need the Laplace transform
of the probability current.

The Fokker-Planck equation may be used to derive an
equation for the probability current:

3G(x,1) = D[BU'(x, M3, G(x,1) + 3;G(x,0)].  (20)
Taking the Laplace transform of both sides, we have
sG(x,s) — G(x,0) = D[BU'(x,1)3,G(x,s) + 3:G(x,5)],
21

which follows from lim;_, o G(x,tA) = 0. Multiplying both
sides by s and defining H(x,s) = sG(x,s),

sH(x,s) — sG(x,0) = D[BU'(x,\)d, H(x,s) + d; H(x,s)].
(22)
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We may obtain a solution to Eq. (22) by expanding H(x,s)
as a series in s. If we define H(x,s) = Ho(x) + sH{(x) + - - -,
then

0 = BU'(x,\)Hj(x) + HJ (x), (23)
Hy(x) — G(x,0) = D[BU'(x,M)d, H(x) + 3; Hi(x)], (24)

Hi_1(x) = D[BU'(x,1)d, H(x) + 8] Hi(x)], (25)

follow from substituting the expansion into Eq. (22) and
comparing the coefficients of powers of s on both sides. The
boundary conditions on the probability current must also be
satisfied by H; for each k.

We see that these differential equations may be solved
iteratively. Fortunately, it turns out that only H,(x) is needed
for our purposes as a short calculation using Eq. (19) shows
that

/ dt'm;(t") = —/ dx0, Hy(x)05: p(x,A). (26)
0 —00

For potentials that grow unbounded as |x| — oo, the
probability current must vanish in the limit of large |x|. With
these boundary conditions it is not difficult to show

1 > x ,
Hy(x) = —|— dx e PUGL) dx' ePUEM
D —0 a

x (0(x" — x0) — Heq(x/v)\-))> eq(x,2)

x x'
+/ dx’' e—ﬁU(x',l)/ dx// eﬂU(x”,X)
a

x (0(x" — xo) — l'leq(X”,l))}, 27)

where 6 denotes the Heaviside function and ITeq(x,A) =
ffoo dx’peq(x’,X) is the equilibrium cumulative distribution
function. Here, a is an arbitrary real constant. Surprisingly,
H,(x) is independent of @ and we will have occasion to choose
different convenient values for computational purposes.

From this result we see that the inverse diffusion tensor has
the compact form

GijA) = / dv(x,x' x")[ U DZUERUREA)

x Bud(x, 1), p(x" 1)1, (28)

where we have used the shorthand

1 o0 x x’
/dv(x,x’,x”) — — / dx / dx’ / dx”.
DZQ) J_o a o0

(29)

This expression may be further simplified by observing that

/ dx" 8, p(x" Ve PUE"Y = _7(0)9,i Teg(x',1)  (30)

—00

and

i, Ve PUEN = —Z (M) 3y peg(x,1), €2y
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which follow from the definition of the nonequilibrium
potential ¢. These expressions may be used to rewrite
Eq. (28) as

70 [~

G =-=2 [ i [ax peg:1)

—00

X / dx PV My, Heq(x’,k):| (32)

a

or
Z) [
GijA) = ——— dx | 0,(9;i Tleq(x,1))
D J
x / dxleﬂU(x,’l)a)\j Heq(x/’x)il. (33)
a
If

Jim 8 Teg(x. ) / dx'ePV Dy, ey (x' ) =0,  (34)

then

1 [ 05 [Meq(x,X)0;,; [Teq(x,A
[ BT
D J Peq(X,X)

which is our desired result. Equation (35) allows us to bypass
the need for computing correlation functions in order to find
the inverse diffusion tensor as it is based solely on equilibrium
information. We will now explore an alternate approach to
deriving this formula, and then we will apply it to two specific
systems of interest.

], (35)

III. DERIVATIVE TRUNCATION APPROXIMATION

We relied on linear response theory to arrive at Eq. (11).
However, the inverse diffusion tensor arises naturally from a
first-order expansion in temporal derivatives of the control
parameters as noted in Ref. [27] for harmonic potentials.
Assuming the probability distribution p(x,7) may be well
approximated by

dA
Pp(x,1) X peg(x,A(1)) + G(x,A(1)) - e (36)

where G is determined by the Fokker-Planck equation, we
provide an alternative construction of the inverse diffusion
tensor via the so-called “derivative truncation” argument [27].

Referring to Eq. (10), we assume the nonequilibrium
probability density has the approximate form

d\!
P(x,1) R peq(x,A(1)) + zgi(x,k(t)), 37

where G;(x,X) is to be determined. Substituting this expression
into Eq. (10) and neglecting higher-order derivatives, we see

Ipea(x,d) D[i(a(ﬂU(x,l))

82
a)\,i 9y 9x gi(xﬂl‘)> + ng(x5x)}
(38)

Furthermore, since both p(x,f) and peq(x,A) are normalized
probability distributions, we have the constraint

/00 dxG;(x,A) = 0. (39)

]
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We may systematically integrate Eq. (38) to obtain a solution
that also satisfies Eq. (39) and appropriate boundary condi-
tions. For our purposes, a more expedient way of arriving at
the solution is to simply state a candidate and demonstrate that
it satisfies the necessary requirements.

Our candidate is

Gj(x, ) = — (0 Ha(x; X, X005 §(X0,A))eq - (40)

Here, H, is defined by Egs. (23), (24), and (25) and appro-
priate boundary conditions as dictated by the physics of the
problem. The average (:)eq,x applies to the variable xy and is
defined in terms of the stationary state probability distribution
characterized by A.

We can quickly establish Eq. (39). Bringing the integral
f fooo dx inside of the stationary state average in Eq. (40), we see
that ffooo dxd, Hy(x; A,xo) vanishes by the fundamental theo-
rem of calculus in the case of an unbounded potential at +-oc.

Substituting Eq. (40) into Eq. (38), we see that we must
prove

apeq(x A)

Y = —Da[{(BU'(x,1)0; H>(x; X, x0)

+ 0y Ha(x3X,%0))059(x0,1))eqr ). (41)
From Eq. (25) follows
D[BU’(x,A)dx Ha(x; X,x0) + 0, Ha(x; A, x0)] = Hi(x;A,x0),
(42)
J

) dnJ
<ﬁ( <>)> ~— |

) [*

dt J_«

di’

dt

_dn 3¢
= <|:/ dt/ dx,o(x,t,xo)—(x X(t))i|8,\/¢(x0,k(t))>

S
~dr

Therefore, we see that the derivative truncation approximation
reproduces the inverse diffusion tensor for general potentials
in the overdamped regime [compare with Eq. (7)].

We note that an expression similar to our Eq. (11) appears in
Ref. [52] in which the authors consider anisotropic Langevin
dynamics in two dimensions. A separation of time scales gives
rise to slow dynamics for one of the system coordinates, which
can be accurately modeled using a Markovian description with
a position-dependent friction. This friction in turn is related to
the time integral of an autocorrelation function similar to the
one used here to define the inverse diffusion tensor. A possible
direction for future work would be to investigate potential
connections between the two results.

——<[ / dxd H (M0, 0) % x(r))]ak,¢(xo,x(r))>
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and so we must show

0Peq(x,1) -

Ty —(0x H1(x3X,X0)0;) (X0, 4)) g, - (43)

For unbounded-potential boundary conditions, H;(x;A,xo) =
0(x — xo) + Meq(x,A). Therefore,

(0x Hy (x5 A, X0)83) (X0, M))eqr = (Bx,x0 0 P(X0,1))eq - (44)

The second term vanishes since peq(x,A) is independent of xq
and (9, ¢ (xg,L))eq,r = 0. Moreover,

(SX,X(] a}\f(b(anx))eq 2 = Peq0niP = —05i Peqs (45)

establishing the claim.

We are now in a position to relate this derivative truncation
approximation to the inverse diffusion tensor approximation.
Recall that

T dxT 0
(Y)p = f dt [d—} <—¢(x<t))> (46)
0 t

where

<a—)‘f’l( (r>)> = /_ dxp(r.t) ¢(x A, (@7)

Using the derivative truncation approximation,

dxg (. x(r))—¢(x A1)

d
dx (3, H(x: x(r),xo)aw-¢(xo,x(t))>eq,x<t)8—§(x,x<r>)

eq.A(r)

eq.A(1)

dt'(3,: (1), $(0))eqn(r)- (48)

IV. THE ERASURE MODEL

We consider the following model to represent a single clas-
sical bit of information: an overdamped Brownian colloidal
particle diffusing in a one-dimensional double-well potential
in contact with a thermal bath of temperature 7' [48,49]. The
wells are initially separated by a potential barrier whose height
is much larger than the energy scale 8~' = kT set by thermal
fluctuations, ensuring stability of memory. Explicitly, we may
write the potential as
o e—a(x—1+k)

1+ e—a(x—l+A))2

a(x—1)
+ (1 + ea(x—l))2:|’
(49)

Uk, ) = —%log[
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where x is a dimensionless spatial coordinate and o > 1.
Initially, A = 2 and there are two distinct wells and a central
barrier with height governed by «. As A decreases to 0, the
barrier height diminishes and the left-hand well shifts to merge
with the right-hand well.

The system is prepared so that the particle has equal
probability of being found in either well. This may be achieved,
for example, by selecting the initial position of the particle
to be at the midpoint of the potential barrier and waiting a
sufficiently long relaxation period [48]. After this relaxation
period has elapsed the particle has equal probability of being
located to the left or right of the origin. If the particle is found
to the left (right) of the origin, the memory value is defined to
be 1 (0).

We are primarily interested in optimizing finite-time erasure
efficiency over cyclic protocols for the classical single bit
model described above. In Ref. [37], constraining the initial
and final probability distributions forced the optimal protocols
to have jump discontinuities at the end points. This was to be
expected based on experience with optimization in the context
of stochastic thermodynamics in general [31-33,53,54] and
erasure efficiency in particular [55,56]. These jump discontinu-
ities warrant caution when defining thermodynamic quantities
such as the average dissipated heat [37,54].

When classical information is being erased, the difference
in Shannon entropies of the final and initial probability
distributions must satisfy AS = Sy — S; < 0, which would
allow us to define the erasure efficiency € = —AS/(kp(B0)a)
as the ratio of this decrease in Shannon entropy to the average
heat (Q), released into the thermal bath [57,58]. Taking
kg = 1, we see that

1

€= , (50)
1+ (As®) 4 /(—AS)

cye

where

(A5 ) pye = (BQ)ay +AS 61V

is the total average entropy production. Our goal will be
to minimize the total average entropy over protocols while
constraining AS. The constraint forces us to optimize over
protocols with jump discontinuities at the endpoints.

We may express the total average entropy in terms of the
initial and final probability distributions as well as the average
work done over the erasure stage of the cycle [37,53]:

(DS YAy = (BW) A — A;{dx/’['gU +inpl :) (52)

where t is the duration of the erasure stage. This follows from

<ﬁwnm;5&pu:nmxxm—ﬂuuxn (53)

Using the approximation Eq. (37), we see that

w ”Tdtk ‘”‘212’ 54
(B >Am~f0 ¢l (t)]<E) —n<Z—0>. (54)

During the first (erasure) stage, the initial equilibrium
distribution transitions to a final nonequilibrium distribution
in which the system is overwhelmingly more likely to have
memory value 0. In the second (reset) stage, A is brought
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instantaneously back to its original value while keeping the
particle probability distribution constant. No heat is generated
during this stage.

Using the calculus of variations, we seek the twice-

differentiable optimizer of fof dt{[)\(t)](‘;—?)2 for the erasure
stage of the cycle. By considering variations that vanish away
from the endpoints of the protocol, this optimizer satisfies the
Euler-Lagrange equation

dh ff} dz/t(2)/T 55)
dr RO
where A; and A, are determined by the constraints on the
probability distribution.
By definition,

AS = —/ dxp(x,r)lnp(x,t)+/ dxp(x,0)In p(x,0).
R R

(56)

Using Eq. (37), we can derive an approximate expression
for AS, which allows us to compute the endpoints of the
protocol. The average total entropy generated during the
optimal protocol is approximately

_ L dave@)
T

(As©Y 5 +01/7%). (57)

opt
Since we are neglecting terms of order 1/72 and higher, we
need only compute A; and Ay assuming p(x,1) & peq(x,A(2))
throughout the driving process. For simplicity, we assume that
Ai=2,1p=0.

From Eq. (35), we have

T _ -1 \/—_
(O = L{l 3 tan~" (4/2/[cosh(a)) 1])}. (58)
2D 2[cosh(aA) — 1]

The dependence of the leading order term of the optimal
total average entropy on « is displayed in Fig. 2. We note that
the leading order term grows as a function of @ and appears to
approach a limiting value close to 2 as « becomes very large.
In Ref. [37], a similar erasure model is considered. There, the
potential is piecewise constant with central barrier height and
“tilt” of the left-hand well as control parameters. The leading
order term of (As'),  for that model is given in terms of

opt

2r (‘f;mdz)z

1.9+

1.8 F

1 1 1 1 1 a
10 30 50 70 90

FIG. 2. (Color online) Dependence of the leading order term of
(As™) Ao ON @ for the erasure model given by Eq. (49). Note the
saturation at 2 as o becomes very large.
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the Hellinger distance between the initial and final probability
distributions:

4 pr(0) = PO + 41D — V(O (59)

Assuming the particle has overwhelming probability to be
located in the right-hand well after the erasure cycle, we
see that T({As'),,, A~ 2.343 for barrier heights of physical
relevance. (Compare with the current model’s saturation value
of T(As')a,, ~2.) In future work, it will be interesting
to explore whether there might be a common cause for the
intriguing similarity between the saturation values for the
leading order terms in the optimal average entropy production
for these two different erasure cycle models.

V. THE RATCHET MODEL

We consider an overdamped colloidal particle diffusing in
one dimension subject to optical trap confinement and a tilted
ratchet potential [S0]. Mathematically,

BU(x, M) = 3Bk(x — x0)* = BFx + BVog(x/D).  (60)

Here, [ is some characteristic length scale, F' is the “tilt” of
the ratchet, and V; is the magnitude of the ratchet potential.
Furthermore, we choose a single control parameter, namely
Xo, the position of the center of the optical trap.

The model possesses relative mathematical simplicity and
captures essential physics of chemical processes relevant to
the operation of cellular machinery. We view the following
as the first step toward applying the inverse diffusion ten-
sor framework to optimization of nonequilibrium processes
underlying the functionality of molecular motors and other
nanoscale biological machines.

If we consider an isothermal chemical reaction in the
presence of a catalyst protein (i.e., an enzyme), then the
reaction can be described by a single reaction coordinate,
cycling through a number of chemical states in the simplest
case [50]. A suitable working model is then an overdamped
Brownian particle (reaction coordinate) in the presence of
thermal fluctuations in a periodic potential. For this reason,
we select ¢(y) = sin(y).

If the concentrations of the reactants and products are away
from their equilibrium ratio, then the catalyst molecule will
loop through the chemical reaction cycle preferably in one

J

[0, e, [«
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direction [50]. In the corresponding ratchet model, the periodic
potential must be supplemented by a constant tilt, i.e., F.
Define

a=pki*,y=x/l, f=F/kl),

up(y,y0) = (v — y0)> — fy, €= Vo/(kl?),

so that BU(x,xo) = aluo(y,y0) + €p(y)]. Assuming the
strength of the optical trap far exceeds the strength of the
ratchet potential, € is a small parameter and we may apply
perturbation theory; i.e., we expand all quantities to first order
in € and discard higher order terms.

It is straightforward to show that

(61)

1

1 , )
Pea(yy0) ~ 7,/%e*i“<>*y°*f 11— ae(e(y) — (9)o)].

(62)
where the subscript “0” indicates an average with € = 0.
Using Eq. (35), we compute
12
$(yo) ~ 5(1 — 2ae(p")o). (63)

The equilibrium distribution for the ratchet model [Eq. (62)]
has cumulative distribution function

¥
Heq(ya))O) Z/ dy,peq(y/ay()) (64)
According to Ref. [59],
2 o0 2 1
e’ / e dz L ———— (65)

w + m 7
for w > 0. Since ¢ and all of its derivatives are bounded on R,
lim 9, Meq(v. y0) /0 "y P, Ty ) = 0. (66
A similar argument shows that
},EIPOO By, eq(y,y0) /Oy dy,eﬁU(’v/’yU)ayoHeq()’/,)’O) =0, (67)
and so we may apply Eq. (35) to compute the inverse diffusion

tensor.
Using Egs. (62) and (64), we see that

2 o r\2 Y 2y’ )2
~ 1 —{e‘5<)"y°‘f’ +a6<—(<p(y)— (@ho)e 20707 +2/ dy'(@'(y) = (¢')o)e 207 )} (68)

Peq 2m

From Eq. (35) we have

—0Q

12 © Y P 2 2
C(yo)%5{1+2066 / dy f dy'(@'(y) = (@)o)e 2070 / ,/?}. (69)

The integral may be evaluated using integration by parts.

Therefore, we have

12
¢(vo) & 5(1 — 2ae(9")o). (70)

(

For ¢(y) = sin(y) (which is mathematically similar to the
parametric quantron of Ref. [60]),

12 1
C(yo)%5[1+26 e sin(yo + f)]. (71)
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FIG. 3. (Color online) Dependence of minimal dissipation for
ratchet model on (scaled) tilt f where « = 1, € = 0.1, and yo(0) =0
and yy(t) = 2. Note that the minimal dissipation is a periodic function

of f.

Since

T d 2
e [ arcon (50 12
0 t
the minimal dissipation is
Yo(7) 2
dz/¢(2)
(BWer) Ay ~ Lsio I

(73)
T

We plot the dependence of this expression on f in Fig. 3, which
clearly illustrates the periodicity in the tilt. This periodicity
has a natural interpretation. A shift in the tilt f by 27 units
corresponds to an overall shift in the potential energy by a
constant amount and a horizontal translation upon completing
the square. Since constant shifts in the potential are physically
irrelevant, we would expect the optimal average excess work
to be insensitive to such a shift in the tilt.

VI. DISCUSSION

In this paper, we constructed a compact formula [Eq. (11)]
for the inverse diffusion tensor for a broad class of overdamped
dynamics. This is a powerful expression in part because the
inverse diffusion tensor components are expressed entirely in
terms of the equilibrium probability distribution, and we expect
it to increase the number of applications for this approach.

We applied this formula to calculate the optimal dissipation
for two model systems. In the first model, we considered the
erasure of a single classical bit of information. The system
modeling the storage and erasure of this bit consisted of a

PHYSICAL REVIEW E 92, 032117 (2015)

colloidal particle diffusing under Brownian dynamics in a
double-well potential. In the second model, we considered
a colloidal Brownian particle coupled to an optical trap and a
tilted ratchet potential. In both cases, the inverse diffusion
tensor allowed us to predict the optimal time course and
produced an explicit expression for the minimal dissipation.

Consistent with previous studies [37,55-57], we find that
the minimal dissipation for each model considered here obeys
the expected 1/t law. As with the erasure model we considered
previously [37], the coefficient multiplying the 1/t term is
fixed by the diffusion tensor, but it does not obviously take the
same functional form of the square of the Hellinger distance
between initial and final probability distributions. A direct
comparison between the two erasure models is challenging
given that the previous example was a discrete three state
system, whereas here our system is continuous. Yet, despite
these differences, we found a striking similarity between the
saturation values for large, physically relevant barrier heights.
It is possible that the saturation value for the optimal average
entropy produced during an erasure cycle possesses some
universality as a function of initial barrier height. Future work
will address this intriguing possibility.

Analyzing these erasure models in the regime of low to
moderate initial barrier height provides another interesting
avenue for future development. As described in Ref. [61],
characteristic time scales of dynamical systems driven by
noise—such as the relaxation time to a steady state—follow
from the moments of the transition time if a specific potential
[e.g., Eq. (49)] is assumed. It may be possible to apply the
framework of Refs. [61,62] to these erasure models especially
in light of the fact that the inverse diffusion tensor may be
used to compute the integral relaxation time for a broad class
of systems driven by noise [26].

We expect further study of these models to generate yet
more testable predictions for experiments in erasure similar to
the setup of Ref. [63] and the parametric quantron based on
the Josephson effect in superconductors as in Ref. [60].
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