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Full statistics of energy conservation in two-time measurement protocols

Tristan Benoist,1,2 Vojkan Jakšić,1 Annalisa Panati,1,3 Yan Pautrat,4 and Claude-Alain Pillet3
1Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, H3A 2K6, Canada
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The first law of thermodynamics states that the average total energy current between different reservoirs
vanishes at large times. In this paper we examine this fact at the level of the full statistics of two-time measurement
protocols, also known as the Full Counting Statistics. Under very general conditions, we establish a tight form
of the first law asserting that the fluctuations of the total energy current computed from the energy variation
distribution are exponentially suppressed in the large time limit. We illustrate this general result using two
examples: the Anderson impurity model and a two-dimensional spin lattice model.
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I. INTRODUCTION

Recent technical advances in the control of nanoscale
systems have enabled the experimental study of out-of-
equilibrium thermodynamics in the quantum regime [1–9].
These new experiments allow for the assessment of fluctua-
tions in addition to the mean heat and particle currents, thus
leading to a renewed theoretical investigation of the related
quantum thermodynamic laws.

One of the basic questions in this context concerns the
energy flow between two initially isolated large systems A and
B. The purpose of this paper is to study some consequences of
energy conservation on the statistical properties of this flow.

By the first law, the average work performed by the
interaction coupling the two systems is equal to the average
heating of the combined system:

�Wt = �Qt = �QA
t + �QB

t .

In the case of a sudden switching on and off of the interaction
V , the average heating is given by

�Qt = −〈V 〉t + 〈V 〉0, (1)

where 〈 · 〉t denotes the expectation with respect to a suitable
system state at time t . Whenever V is bounded, (1) gives

lim
t→∞

�Qt

t
= 0. (2)

The individual energy currents �Q
A/B
t /t are also expected to

reach steady values JA/B . They satisfy JA = −JB and are
nonvanishing for systems out of equilibrium.

This note concerns the statistical character of the first law
related to the thermodynamics of open quantum systems at the
mesoscopic scale. Our main result is a refinement of relation
(2). It states that the fluctuations of the total energy current are
exponentially suppressed in the large time limit.

The nature of work in quantum physics is more subtle
than in classical physics [10]. Lesovik and Levitov introduced
the concept of the Full Counting Statistics (FCS) in the
study of charge transport [11]. The use of the FCS in the
definition of work in quantum physics appeared in the works
of Kurchan and Tasaki on the extension of the fluctuation

relations to quantum systems [12,13]. The emerging idea is
that in quantum mechanics work should not be understood as
an observable. Instead, the work performed during a given time
period is identified with the energy variation �E observed in
a repeated measurement protocol where the system energy
is measured at the beginning and at the end of the period.
The distribution of the measured energy variation, Pt (�E),
is the work FCS [14]. This change of perspective opened a
whole new area of research [15,16]. In particular, it allowed for
the extension of the fluctuation relations to quantum systems
[12,13,15–18].

The fluctuation relations are intimately related to the second
law of thermodynamics and have been extensively studied
[12,13,15–20]. Regarding the first law, the well-known identity

Et (�E) = �Qt

and (2) give

lim
t→∞Et

(
�E

t

)
= 0, (3)

where Et denotes the expectation with respect to the FCS
distributionPt [10,18]. In this paper we sharpen (3) by showing
that, under very general conditions, the exponential moment

Et (e
αm|�E|)

remains bounded as t → ∞ where the constant αm > 0 is a
measure of the regularity of the interaction V [see (5) below].

Until recently, the first law and energy conservation in the
FCS setting have received little attention in the literature. In
the case where A and B are thermal reservoirs, the FCS of
the total energy current was previously studied theoretically
in Ref. [21]. References [22,23] concern the FCS of energy
transfer in the thermalization process of a finite-level quantum
system in contact with a thermal bath, a problem which is
radically different from the one considered here. We also
emphasize that here we are interested in only the FCS of
the total energy, and not in the FCS of the individual energy
variations �EA/B .
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II. EXPONENTIAL SUPPRESSION OF FLUCTUATIONS

We start with a system described by a finite-dimensional
Hilbert space H(L) where the superscript L refers to the size of
the system. Taking L → ∞ corresponds to the thermodynamic
limit. The limiting objects will be denoted without the
superscript. Let H (L) = H

(L)
A + H

(L)
B be the Hamiltonian of

the joint but noninteracting system A + B. The evolution
between the two measurements of H (L) is generated by H

(L)
V =

H (L) + V (L), where V (L) denotes the interaction coupling A

and B. The initial state is described by the density matrix ρ(L).
Let P (L)

e denote the projection on the eigenspace associated
to the eigenvalue e in the spectrum sp(H (L)). The measure-
ment of H (L) at initial time t = 0 gives e with probability
tr(P (L)

e ρ(L)). After the measurement the system is in the
projected state

P (L)
e ρ(L)P (L)

e

/
tr
(
P (L)

e ρ(L)).
The second measurement of H (L) at a later time t gives e′ with
probability

tr
(
P

(L)
e′ e−itH

(L)
V P (L)

e ρ(L)P (L)
e eitH

(L)
V

)/
tr
(
P (L)

e ρ(L)
)
.

It follows that the probability of observing the energy variation
�E in this measurement protocol is

P(L)
t (�E) =

∑
e′−e=�E

tr
(
P

(L)
e′ e−itH

(L)
V P (L)

e ρ(L)P (L)
e eitH

(L)
V

)
.

The moment generating function of the FCS P(L)
t is

χ
(L)
t (α) =

∫
R

eα�E dP(L)
t (�E)

= tr
(
eαH (L)

e−itH
(L)
V e−αH (L)

ρ̃(L)eitH
(L)
V

)
,

where

ρ̃(L) =
∑

e∈sp(H (L))

P (L)
e ρ(L)P (L)

e .

We assume that for α purely imaginary, the limit

lim
L→∞

χ
(L)
t (α) = χt (α) (4)

exists and is a continuous function of α. This assumption is
harmless and easy to verify in most concrete models of physical
interest. By Levy’s continuity theorem [24], (4) implies
that the thermodynamic limit limL→∞ P(L)

t = Pt exists. The
probability distribution Pt is the FCS of the thermodynamic
system.

Let

R(L)(α) = 2|α| max
−1�s�1

∥∥es α
2 H (L)

V (L)e−s α
2 H (L)∥∥

and

R(α) = sup
L

R(L)(α).

Note that R(α) takes values in [0,∞] and is an even func-
tion. Moreover, R(α) � R(α′) if α � α′ � 0. Our regularity
condition is that there exists αm > 0 such that

R(αm) < ∞. (5)

We emphasize that (5) is the only regularity assumption
we require and that no further hypothesis on the dynamical
behavior of the system is needed. We also make no assumptions
on the initial state of the system.

Our main result is the following strengthening of (3):
Theorem. For all t > 0,

Et (e
αm|�E|) � 2eR(αm). (6)

An immediate consequence of this result and Chebyshev’s
inequality [24] is that for any ε > 0,

Pt

( |�E|
t

� ε

)
� 2e−tεαm+R(αm). (7)

Note that if R(α) < ∞ for all α, then

Pt

( |�E|
t

� ε

)
� 2eR(C/ε)−Ct (8)

for any C > 0.
The estimates (7) and (8) can be interpreted in terms of the

large deviation theory [25] (see Ref. [26]). For example, (8)
implies that the large deviation rate function of the random
variable |�E|/t satisfies I (s) = ∞ for s �= 0, and that the
large deviations are completely suppressed in the large time
limit.

The main novelty of our proof is the derivation of a time-
independent bound for χ

(L)
t inspired by the bounds proposed

in Ref. [21]. The derivation is based on two well-known
inequalities. The first is

tr(XY ) � ‖X‖tr(Y ),

which holds for any two non-negative matrices X,Y . The
second states that for any two self-adjoint matrices T ,S,

‖eT +Se−T ‖ � emax0�s�1 ‖esT Se−sT ‖. (9)

To prove this inequality, let �(s) = es(T +S)e−sT . Then one has

∂s�(s) = �(s)esT Se−sT , �(0) = I.

Using

‖∂s�(s)‖ � ‖�(s)‖‖esT Se−sT ‖
and Gronwall’s inequality we obtain (9). The bound (9) is
similar but unrelated to the bound (3.10) of Ref. [27].

The proof of (6) proceeds as follows. For α real we set

X = e− α
2 H

(L)
V eαH (L)

e− α
2 H

(L)
V

and

Y = e−itH (L)
V e

α
2 H

(L)
V e− α

2 H (L)
ρ̃(L)e− α

2 H (L)
e

α
2 H

(L)
V eitH (L)

V

(note that ρ̃(L) and H (L) commute). Observe that

χ
(L)
t (α) = tr(XY )

and that X,Y are non-negative matrices. We then use the first
inequality to derive the estimate

χ
(L)
t (α) � ‖X‖tr(Y ),

where

‖X‖ = ∥∥e− α
2 H

(L)
V e

α
2 H (L)∥∥2
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and

tr(Y ) = tr
(
e

α
2 H

(L)
V e− α

2 H (L)
ρ̃(L)e− α

2 H (L)
e

α
2 H

(L)
V

)
.

The cyclicity of the trace gives

tr(Y ) = tr
(
e− α

2 H (L)
eαH

(L)
V e− α

2 H (L)
ρ̃(L)

)
.

Applying the first inequality once again and using that
tr(ρ̃(L)) = 1, we derive

tr(Y ) �
∥∥e

α
2 H

(L)
V e− α

2 H (L)∥∥2
.

Hence

χ
(L)
t (α) �

∥∥e− α
2 H

(L)
V e

α
2 H (L)∥∥2∥∥e

α
2 H

(L)
V e− α

2 H (L)∥∥2
.

Using the second inequality with

T = ∓α

2
H (L), S = ∓α

2
V (L),

we obtain

χ
(L)
t (α) � eR(L)(α).

The regularity assumption (5), the existence of the limit (4)
for purely imaginary α, and Vitali’s convergence theorem (see
Appendix B in Ref. [18]) give that for all complex α with real
part Re(α) in (−αm,αm), the limit limL→∞ χ

(L)
t (α) = χt (α)

exists. Moreover, for such α,

χt (α) =
∫
R

eα�EdPt (�E)

and

|χt (α)| � eR[Re(α)].

It follows that

|χt (±αm)| � eR(αm).

The last estimate gives

Et (e
αm|�E|) � χt (−αm) + χt (αm) � 2eR(αm),

and the theorem follows.

III. SPIN-FERMION MODELS

Electronic transport through a one-dimensional lattice
containing a single magnetic impurity is a typical problem
involving bounded interactions. The Anderson model [28,29]
commonly used to study this question is a specific example
of a general class of spin-fermion models to which our main
theorem applies.

The study of the FCS of charge transport through the
impurities in such models is an active field of research [30–34].
We emphasize, however, that here we are concerned with only
the statistics of the total energy.

The impurity is described by a quantum dot supporting four
different eigenstates: empty, occupied by a single electron with
either spin up or spin down, or occupied by two electrons with
opposite spins. The remaining parts of the lattice, regarded as
fermionic (e.g., left and right) reservoirs at different chemical
potentials, are described in the tight binding approximation.

Here the subsystem A is the left side of the lattice together
with the impurity. The lattice right side is the subsystem B.

The operator c∗
l/r,σ (x) (cl/r,σ (x)) creates (annihilates) an

electron with spin σ at the lattice site x of the left (x < 0)/right
(x > 0) reservoir. Similarly, the operator d∗

σ (dσ ) creates
(annihilates) and electron with spin σ in the dot. The an-
ticommutation relations {cl/r,σ (x),c∗

l/r,σ ′ (x ′)} = δx,x ′δσ,σ ′ and
{dσ ,d∗

σ ′ } = δσ,σ ′ hold while the c operators commute with the d

operators. We use the shorthand cl/r,σ (φ) = ∑
x φ(x)cl/r,σ (x).

The reservoir Hamiltonians are

Hl =
∑

σ=±;x,x′<0
|x−x′ |=1

c∗
l,σ (x)cl,σ (x ′),

with a similar expression for Hr . Let hl/r be the discrete
Laplacian of the left or right part of the lattice. Since hl/r

is a bounded operator,

eαHl/r cl/r,σ (φ)e−αHl/r = cl/r,σ (eαhl/r φ)

for all real α. In particular, for all α,

‖eαHl/r cl/r,σ (φ)e−αHl/r ‖ < ∞. (10)

The total Hamiltonian is

H = HS + Hl + Hr,

where HS = ε
∑

σ d∗
σ dσ + Ud∗

+d+d∗
−d− is the Hamiltonian of

the dot. Regarding the subdivision in A/B subsystem, we have
HA = Hl + HS and HB = Hr . The coupling of the conduction
electrons with the dot is described by

V =
∑

σ

{d∗
σ [cl,σ (vl,σ ) + cr,σ (vr,σ )] + H.c.}

for some coupling functions vl/r,σ (x). In the context of the
Anderson model, the superscript L refers to the confinement of
the reservoirs to the finite part of the lattice defined by |x| � L.
Such confinement is necessary to allow for a meaningful
definition of the repeated measurement protocol leading to
the FCS. The limit L → ∞ restores the extended reservoirs.
It follows from relation (10) that R(α) is finite for all α,
and that our theorem holds for all αm > 0. Hence we have
inequality (8):

Pt

( |�E|
t

� ε

)
� 2eR(C/ε)−Ct

for any ε > 0 and any C > 0.
We also note that one can consider instead the FCS of

H ′ = Hl + Hr by setting V ′ = HS + V . Then H ′
A = Hl and

H ′
B = Hr . One then obtains the same result by replacing �E

with �E′. The energy of the impurity is irrelevant in the large
time limit.

IV. SPIN SYSTEMS

Another popular class of models involving bounded interac-
tions are locally interacting spin systems. In Ref. [26] we prove
that, under general conditions, our theorem applies to locally
interacting spin systems in arbitrary dimension. Moreover, for
one-dimensional spin systems with finite range interactions,
Araki’s results [35] give that R(α) < ∞ for all α and hence
that our theorem holds for all αm > 0. We restrict ourselves to
the description of a simple example.
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A B

FIG. 1. (Color online) A partitioned finite spin system A + B.
Solid lines represent the nearest neighbor coupling J and dashed
lines the interaction Kx,y between the two subsystems.

Consider a two-dimensional square lattice of 1
2 spins. Let

�L ⊂ Z2 be the finite sublattice of size 2L × 2L. We denote
by �±

L its left or right half. Subsystems A and B are the spins
in �−

L and �+
L , respectively (see Fig. 1).

The system Hilbert space isH(L) = ⊗
x∈�L

C2. The Hamil-
tonian is that of an XY-spin model where the spins on �−

L do
not interact with that on �+

L :[36]

H (L) = H (L,−) + H (L,+),

with

H (L,±) = −J

2

∑
x,y nearest

neighbors in �
±
L

(
σ (1)

x σ (1)
y + σ (2)

x σ (2)
y

)
,

where J is a coupling constant. The interaction is

V (L) = −1

2

∑
x∈�−

L ,y∈�+
L

Kx,y

(
σ (1)

x σ (1)
y + σ (2)

x σ (2)
y

)
,

where

Kx,y = ε

1 + x2
2

if x = (0,x2) ∈ �−
L and y = (1,x2) ∈ �+

L and Kx,y = 0 oth-
erwise. The boundary between the two halves of the lattice is
between the lines x1 = 0 and x1 = 1. Note that the interaction
intensity decreases as one moves away from (0,0). An
assumption of this type is necessary if V (L) is to remain
bounded in the thermodynamic limit L → ∞.

For this model one can show that there exists αm > 0 such
that (5) holds and that our theorem applies. Hence we have

inequality (7):

Pt

( |�E|
t

� ε

)
� 2e−tεαm+R(αm)

for any ε > 0.

V. DISCUSSION

Under a general condition on the regularity of the inter-
action evolution in imaginary time, we have proven a sharp
form of the first law of thermodynamics for the FCS of energy
variation.

Our result holds for any initial state of the system. If
one assumes that systems A and B are initially in thermal
equilibrium at temperatures TA and TB , then the suppression
of the fluctuations of the total energy current can be also proven
by following the arguments of Ref. [21].

Under additional assumptions it is possible to deal with
cases where several reservoirs drive the joint system towards a
nonequilibrium steady state and to derive properties of the joint
distribution of the energy variations in each part of the system.
A more strict condition on R(α) allows for the generalization
of a symmetry of the limiting cumulant generating function
proposed in Ref. [21]. Combined with time reversal invariance
this leads to Onsager’s reciprocity relations. We investigate
these topics in Ref. [26].

In the present note we have limited ourselves to bounded
interactions. The case of unbounded interactions (an example
is the spin-boson model) is more technical and requires
a separate analysis based on an application of Ruelle’s
quantum transfer operators [18]. Although the physical picture
emerging from this analysis is of an independent interest, the
final results are much less general than in the case of bounded
interactions [37,38].
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