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Optimal protocols for slowly driven quantum systems
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The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of
driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols
for classical systems driven in finite time, we construct a general framework for optimizing the average information
entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite
metric correspond to protocols that minimize the average information entropy production in finite time. We use
this framework to explicitly compute the optimal entropy production for a simple two-state quantum system
coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.
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I. INTRODUCTION

Though a unifying set of principles describing all known
nonequilibrium phenomena remains undiscovered, many
recent developments have illuminated the thermodynamic
behavior of small-scale systems. For instance, fluctuation
theorems valid far from equilibrium have been developed
in the classical setting [1–13] as well as in the quantum
regime [14–22].

An area of nonequilibrium thermodynamics of particular
interest concerns the operation of small-scale information pro-
cessing systems. The interplay between information as a phys-
ical quantity and thermodynamics has a rich history [23–25].

The physics of information processing is of particular
relevance considering the rapid development of information
technology and the inevitable approach to computational limits
imposed by physical law [26,27]. Optimization schemes for
small-scale information processing occurring in finite time
will be needed to develop technology capable of approaching
those limits [28,29].

Current research has uncovered techniques to optimize ther-
modynamic quantities arising in small-scale systems designed
to store and erase classical information [30–33], including the
derivation of a refined second law [32]. This research couples
with the progress made on the general problem of predicting
optimal protocols to drive classical systems between stationary
states with minimal dissipation [33–41].

In parallel with classical developments, a greater under-
standing of optimal processes in the nonequilibrium quan-
tum regime and the efficiency of quantum engines has
been achieved [42–46]. The success of a recently proposed
linear-response framework for optimal driving of microscopic
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classical systems [34] calls out for an extension to quantum
systems.

In the geometric formulation of [34], a generalized inverse
diffusion tensor induces a Riemannian manifold structure
on the space of parameters, and optimal protocols trace
out geodesics of this inverse diffusion tensor. This geo-
metric framework is subsequently developed and exploited
in [33], [35], and [36].

In this paper, we extend this work to provide a geometric
framework for computing control protocols optimizing the
average information entropy production [14]. The production
of entropy is intimately related to the overall performance
of thermodynamic devices by, in some sense, quantifying
irreversibility and providing a bound on the availability of
useful work. Entropy production also provides a useful tool in
the analysis of nonequilibrium effects.

By twice measuring the density operator of a system inter-
acting with a thermal reservoir at the beginning and end of the
protocol, the average information entropy production may be
defined and shown to satisfy a fluctuation theorem [14]. While
there is still debate about the best way to define thermodynamic
quantities along quantum trajectories, this approach provides
an avenue for experimental observation [14]. Fortunately, this
formalism holds for open quantum systems driven arbitrarily
far from equilibrium.

We begin by constructing a general positive semidefinite
tensor on the space of control parameters for the quantum
system interacting with the thermal reservoir. We assume that
the dynamics of the system are described by a master equation
of the Lindblad form, arising from an adiabatic, rotating-wave
approximation in a sense we make concrete below [47].

With the general tensor in hand, we compute optimal
protocols for a simple two-state system coupled to a thermal
bath of bosonic oscillators. The system Hamiltonian may
be interpreted as describing a spin- 1

2 particle coupled to a
time-dependent magnetic field with components in the y

and z directions. This system has applications in quantum
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annealing [47,48]. For this simple system, we demonstrate
the existence of null directions of the metric tensor, which
correspond to directions in parameter space in which there
is no overall change in information entropy. We derive
an approximate expression for the optimal overall entropy
production.

II. THE QUANTUM TENSOR

Our model consists of two distinct components: the system
under our control and a large collection of quantum degrees of
freedom acting as the thermal reservoir. Together, the system
and the bath degrees of freedom evolve unitarily according to
the von Neumann equation ∂tρtot = − i

�
[Ĥtot,ρtot], where

Ĥtot = Ĥsys(t) + ĤB + g
∑

α

Aα ⊗ Bα. (1)

The operator Ĥsys(t) is the system Hamiltonian acting in the
Hilbert space of system states, while ĤB is the Hamiltonian for
the bath degrees of freedom. The interaction term g

∑
α Aα ⊗

Bα consists of a (weak) coupling g and Hermitian operators
Aα and Bα operating on the system and bath Hilbert spaces,
respectively.

We are only interested in the time evolution of the density
operator of the system, denoted ρt , which can be obtained from
ρtot by tracing over the bath degrees of freedom. We follow
the construction of [47], which obtains a quantum Markovian
master equation governing ρt via an adiabatic, rotating-wave
approximation. Specifically, the derivation of Eq. (4) in [47]
utilizes the so-called “standard adiabatic approximation”

h

�2τ
� 1, (2)

where τ denotes the total evolution time, � ≡
mint ∈ [0,τ ] {ε1(t) − ε0(t)} is defined to be the minimum

ground-state energy gap of Ĥsys, and

h ≡ max
s ∈ [0,1]; a,b

|〈εa(s)|∂sĤsys(s)|εb(s)〉. (3)

Here, s = t/τ is a dimensionless measure of time. Though it is
possible to compute higher-order terms in 1/τ [47], we assume
that Eq. (4) adequately approximates the time evolution of the
quantum system over finite, but sufficiently long time scales.

Assuming a weak coupling g between the system and the
bath degrees of freedom, we have a master equation in the
Lindblad form,

∂tρt = − i

�
[Ĥt ,ρt ] + g2L(ρt ),

where

L(ρt ) =
∑
αβ

∑
ω

γαβ(ω)

(
Lω,β(t)ρtL

†
ω,α(t)

− 1

2
{L†

ω,α(t)Lω,β(t),ρt }
)

. (4)

Here, Ĥt ≡ Ĥsys(t) + g2ĤLS(t) consists of the system Hamil-
tonian Ĥsys(t) ≡ Ĥsys(λ(t)) and the Lamb shift Hamiltonian,
which arises through the coupling of the system with the
thermal reservoir.

Assume that the system Hamiltonian has time-dependent
eigenvalues εa(t) with time-dependent eigenkets |εa(t)〉. Then
the operators Lω,α(t) are defined by

Lω,α(t) ≡
∑

εb(t)−εa (t)=ω

Lab,α(t), (5)

with

Lab,α(t) ≡ 〈εa(t)|Aα|εb(t)〉|εa(t)〉〈εb(t)|. (6)

Furthermore,

ĤLS =
∑
αβ

∑
ω

L†
ω,α(t)Lω,β(t)Sαβ(ω), (7)

where both γαβ(ω) and Sαβ(ω) are Hermitian and can be
computed from the spectral-density matrix [47]. To ease
notation we suppress the time dependence of the Lindblad
operators Lω,α .

It is crucial to note that the time dependence of the terms
defining L arises only through the time dependence of the
spectrum and eigenkets of the system Hamiltonian. Therefore,
the time dependence of the Lindblad operator L stems from
the control parameters λ(t). If time appeared explicitly in the
terms defining L, we could not interpret the approximation
developed in this section as giving rise to a semidefinite metric
on the space of control parameters.

In what follows, we denote the control parameter protocol
by �. We assume the protocol to be sufficiently smooth as
to be twice-differentiable. The framework in the classical
setting is versatile and can handle situations in which jump
discontinuities are present [33]. Jump discontinuities at the
end points of the protocol commonly arise in optimal finite-
time driving processes of classical systems [31,32,39–41,49].
For simplicity we only admit twice-differentiable protocols,
though one could, in principle, extend this approach to
piecewise-continuous �.

By definition [14], the average information entropy is given
by

〈
I 〉� =
∫ τ

0
dtTr

{
∂tρ

[− ln ρ + ln ρ
eq
t

]}
, (8)

where

ρ
eq
t = e−βĤsys(λ(t))

Tr{e−βĤsys(λ(t))} (9)

is the equilibrium distribution defined by the instantaneous
control parameters λ(t) and β is related to the thermal
bath temperature by β = (kBT )−1, where kB is Boltzmann’s
constant. Using Eq. (4), we see that

〈
I 〉� =
∫ τ

0
dtTr

{
(−i[Ĥt ,ρt ] + g2L(ρt ))

(− ln ρt + ln ρ
eq
t

)}
= g2

∫ τ

0
dtTr

{
L(ρt )

(− ln ρt + ln ρ
eq
t

)}
, (10)

where τ represents the duration of the protocol. This equation
follows from the cyclic property of the trace:

The trace term involving − ln ρt and the commutator
vanishes because we may permute − ln ρt into the commutator
with ρt . As for the ρ

eq
t term, it too can be permuted

into the commutator and [Ĥsys,ρ
eq
t ] = 0, naturally. A little
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more work goes into showing that [ĤLS,ρ
eq
t ] = 0. Since

ρ
eq
t = e−βĤsys(λ(t))

Tr{e−βĤsys(λ(t))} by definition, it is sufficient to show that

[ĤLS,Ĥsys(λ(t))] = 0.
From Eq. (7), we need only establish that

[L†
ω,αLω,β,Ĥsys(λ(t))] = 0. First, note that

[Lω,β,Ĥsys] =
[ ∑

εb−εa=ω

〈εa|Âβ |εb〉|εa〉〈εb|,Ĥsys

]

=
∑

εb−εa=ω

〈εa|Âβ |εb〉[|εa〉〈εb|,Ĥsys]

=
∑

εb−εa=ω

〈εa|Âβ |εb〉(εb − εa)|εa〉〈εb|

= ωLω,β, (11)

where we have suppressed the time dependence for brevity.
This further implies that

[L†
ω,α,Ĥsys] = −([Lω,α,Ĥsys])

† = −ωL†
ω,α (12)

and so

[L†
ω,αLω,β,Ĥsys(λ(t))]

= L†
ω,α[Lω,β,Ĥsys(λ(t))] + [L†

ω,α,Ĥsys(λ(t))]Lω,β

= ωL†
ω,αLω,β − ωL†

ω,αLω,β

= 0, (13)

establishing our claim.
We see from Eq. (10) that the average information entropy

is proportional to g2. This seems reasonable since if g = 0,
then there would be no coupling between the system and the
bath. The system would then evolve in time unitarily and the
average entropy would vanish.

This observation allows us to drastically simplify the
mathematics since the expressions inside the integral need only
be kept to zeroth order in g2. In other words, we may compute
the evolution of ρt using only the von Neumann equation,

∂tρt = − i

�
[Ĥsys(t),ρt ]. (14)

We wish to approximate Eq (10) when the protocol duration
τ is large in the sense of Eq. (2). To achieve this end we utilize
the so-called derivative truncation method [33,35,36], which
assumes a specific form for the density operator in terms of
the equilibrium system density operator and the first-order
derivative of the protocol �:

ρt ≈ ρ
eq
t + δρλα

dλα

dt
. (15)

The Einstein summation convention is assumed here and
throughout for the index α, and the operator δρλα is Hermitian
and traceless.

Substituting Eq. (15) into the von Neumann equation,
Eq. (14), and ignoring derivative terms of order higher than
first, we obtain equations for the unknown operators δρλα

where α indexes the finite set of control parameters.
These equations are most conveniently expressed in terms

of the operator basis |ωa(t)〉〈ωb(t)|, where |ωa(t)〉 is an
eigenket of ρt with eigenvalue ωa . The convenience of this

choice arises in the time independence of the eigenvalues ωa ,
which can be illustrated by the following argument: As ρt

evolves according to Eq. (14), we must have

∂tTr
{
ρn

t

} = Tr

{
n

(
− i

�
[Ĥsys(t),ρt ]

)
ρn−1

t

}
= 0 (16)

for all positive integers n. Since the coefficients of the
characteristic polynomial of ρt can be expressed in terms of
combinations of traces of powers of ρt , it follows that the
spectrum is time independent; i.e.; ωa(t) = ωa(0) ≡ ωa .

It follows immediately that

∂tρt =
∑

a

ωa∂t

[|ωa(t)〉〈ωa(t)|] (17)

by the spectral theorem. Using the eigenket basis |ωa(t)〉
affords us a simple expression for ∂tρt : we need only compute
the time derivative of the projection operators since the
eigenvalues ωa are time independent. However, the (time-
dependent) energy eigenkets are more convenient for practical
applications and so we express all relevant quantities in terms
of this basis.

Using the derivative truncation approximation, we can
deduce the approximate eigenkets of ρt in terms of the energy
eigenkets:

|ωa〉 ≈ |εa〉 +
∑
b 
=a

(
Zt

e−βεa − e−βεb

)
〈εb|δρλα |εa〉|εb〉dλα

dt

≡ |εa〉 + (δ|ωa〉)λα

dλα

dt
. (18)

Furthermore, ωa ≈ e−βεa

Z
. This follows immediately from the

approximation, Eq. (15), and the definition of eigenkets.
The construction of the approximate eigenkets and eigen-

values forces the diagonal entries of δρλα in the energy eigenket
basis to vanish. This is consistent with the requirement of
positivity, as both ρt and ρ

eq
t are positive in Eq. (15), but the

term involving δρλα is sensitive to the rate of change of λα ,
which could be negative.

Using Eqs. (15) and (18), we see that

∂tρt ≈
∑

a

e−βεa

Zt

∂

∂λα

[|εa〉〈εa|
]dλα

dt
, (19)

and so we obtain the expansion of δρλα in the energy eigenket
operator basis,

δρλα =
∑
a 
=c

∑
b

(
�ie−βεb

εacZt

Tr{|εc〉〈εa|∂λα [|εb〉〈εb|]}
)

|εa〉〈εc|

=
∑
a 
=c

�i

εac

(
∂λαρ

eq
t

)
ac

|εa〉〈εc|, (20)

with εac ≡ εa − εc and (∂λαρeq)ac ≡ Tr{|εc〉〈εa|∂λαρ
eq
t }. Fur-

thermore, from Eq. (18) we have

(δ|ωa〉)λα =
∑
b 
=a

Zt

e−βεa − e−βεb

�i

εba

(
∂λαρ

eq
t

)
ba

|εb〉. (21)
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By constructing an explicit expression for δρλα we may now
construct a quadratic functional approximating 〈
I 〉�,

〈
I 〉� = g2
∫ τ

0
dtTr

{
L(ρt )

(− ln ρt + ln ρ
eq
t

)}

≈ g2
∫ τ

0
dt

dλβ

dt
Tr

{
L(δρλβ )

(− ln ρt + ln ρ
eq
t

)}
, (22)

which follows from L(ρeq
t ) = 0.

We compute the trace in the |ωa〉 basis in which − ln ρt is
diagonal. Since Tr{L(·)} = 0, we have

dλβ

dt
Tr{L(δρλβ )(− ln ρt )}

= dλβ

dt
Tr{L(δρλβ )(− ln ρt + ln Zt )}

≈ dλβ

dt
Tr

{
L(δρλβ )

(− ln ρ
eq
t

)}
+

∑
a

2βεa�{〈εa|L(δρλβ )δ(|ωa〉)λα }dλα

dt

dλβ

dt
. (23)

From this follows a useful expression for the entropy produc-
tion,

〈
I 〉� ≈ g2
∫ τ

0
dt

dλα

dt

dλβ

dt

∑
a

βεa�{〈εa|L(δρλβ )δ(|ωa〉)λα

+ 〈εa|L(δρλα )δ(|ωa〉)λβ }, (24)

after symmetrization in the α and β indices. We may write this
expression as

〈
I 〉� ≈ g2
∫ τ

0
dt

∑
jklm

dλα

dt

dλβ

dt
Ajklm

(
∂λαρ

eq
t

)
jk

(
∂λβ ρ

eq
t

)
lm

,

(25)
where the components of matrixA depend onL and the energy
eigenvalues and eigenkets. We include the explicit components
of A in the Appendix.

Equation (24) approximates the average information en-
tropy produced during a finite-time driving protocol of a
quantum system weakly coupled to a large thermal bath using
only quantities directly calculable from the time-dependent
system Hamiltonian and the Lindblad operators. We now use
Eq. (24) to explicitly compute the average information entropy
produced by driving a simple two-state model quantum system.

III. TWO-STATE MODEL SYSTEM

We apply Eq. (24) to a simple two-state system with system
Hamiltonian

Ĥsys = −�ωy(t)σy + �ωz(t)σz, (26)

where σy and σz are the Pauli spin matrices. Optimization
of such a system could potentially be useful in applications
such as quantum annealing [47,48]. We further assume that
the system is coupled to a thermal bath of bosonic oscillators
so that the full Hamiltonian is

Ĥtot = Ĥsys(t) + gσz ⊗ B̂ + ĤB, (27)

where ĤB = ∑
k ωkb

†
kbk , B̂ = ∑

k (b†k + bk), and g is a small
coupling constant.

It is convenient to work in an eigenbasis of σz represented
by the column vectors

|↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
. (28)

In this basis,

Ĥsys = �

(
ωz iωy

−iωy −ωz

)
. (29)

It is most convenient to express the control parameters in
polar form: β�ωz ≡ r cos(θ ), β�ωy ≡ r sin(θ ). In this form,
it is not hard to show that the eigenvalues of Ĥsys are ∓r with
eigenvectors

|−r〉 =
(−i sin (θ/2)

cos (θ/2)

)
, |r〉 =

(
i cos (θ/2)
sin (θ/2)

)
. (30)

For simplicity, we assume that r > 0 and 0 < θ < π
2 . A

straightforward calculation demonstrates that

L0 =
(

cos2(θ ) i cos(θ ) sin(θ )

−i cos(θ ) sin(θ ) − cos2(θ )

)
, (31)

L−2r =
(

1
2 sin2(θ ) −i cos2(θ/2) sin(θ )

−i sin2(θ/2) sin(θ ) − 1
2 sin2(θ )

)
, (32)

L2r =
(

1
2 sin2(θ ) i sin2(θ/2) sin(θ )

i cos2(θ/2) sin(θ ) − 1
2 sin2(θ )

)
(33)

are the operators defining L for this model system.
Choosing the bath oscillator frequencies ωk so that γ (0) ≡

γ0 and γ (±2r) = γ1e
±r for γ0,γ1 > 0 and setting � = 1, we

have from Eq. (24)

〈
I 〉� ≈ g2
∫ τ

0

[
γ0

(
x0 − 1

2

)
ln

(
x0

1−x0

)
2r2

cos2(θ )

+ γ1

(er − e−r ) ln
(

x0
1−x0

)
16r2

sin2(θ )

](
dθ

dt

)2

dt

≡
∫ τ

0
σ 2[θ (t)]

(
dθ

dt

)2

dt, (34)

where x0 = 1
1+e−2r .

While this functional is non-negative as expected from the
fluctuation theorem of [14], we see that it vanishes if θ is held
constant. If r is allowed to vary while θ is fixed, no information
entropy is generated on average. In terms of Riemannian
geometry, this means that the metric tensor possesses null
directions.

We apply the Euler-Lagrange equation to obtain the optimal
entropy production:

∂

∂θ
{σ 2[θ ]θ̇2} − d

dt

(
∂

∂θ̇
{σ 2[θ ]θ̇2}

)
= 0 (35)
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FIG. 1. (Color online) Plot of 〈
I 〉�opt/〈
I 〉�opt,0 where
〈
I 〉�opt,0 is the optimal average entropy for γ0 = 1, γ1 = 0.

implies that

θ̈ + σ ′[θ ]

σ [θ ]
θ̇2 = 0. (36)

Upon integration, we find

θ̇ = C

σ [θ ]
, C = 1

τ

∫ θf

θ0

σ [θ ]dθ. (37)

Therefore, the optimal average entropy is given by

〈
I 〉�opt ≈ 1

τ

( ∫ θf

θ0

σ [θ ]dθ

)2

. (38)

If we choose θ0 = 0, θf = π/2, then

〈
I 〉�opt ≈ g

τ

√
γ0

(
x0 − 1

2

)
ln

(
x0

1−x0

)
2r2

× EllipticE

(
1 − γ1(er + e−r )

8γ0

)
. (39)

Equation (39) exhibits the expected 1/τ behavior of the
optimal average entropy production. Figure 1 illustrates the
dependence of 〈
I 〉�opt on the constants γ0 and γ1. We see that
〈
I 〉�opt has a γ1 = constant profile described by

√
γ0. The

quantities γ0 and γ1 are related to the bosonic frequencies ωk of
the thermal bath [47] and are thereby related to the noise of the
quantum system. The bosonic frequencies consequently have
a relatively simple influence on the overall average entropy
production in the finite-time long-duration limit via Eq. (39).

IV. CONCLUSION

Using the formalism of [33–36], developed for classical
systems, we were able to construct a general approximation of
the average information entropy of a quantum system driven
in finite time in terms of a quadratic functional of velocities
in parameter space. This functional can be interpreted as

endowing parameter space with a semidefinite metric in which
optimal protocols are equivalent to geodesics. For a simple
two-state driven quantum system weakly coupled to a thermal
bosonic bath, we were able to derive an approximate expres-
sion for the average information entropy. This expression has
the characteristic 1/τ dependence with a coefficient compactly
expressed in terms of quantities related to the bosonic bath
oscillator frequencies.

Interestingly, in the simple two-state example studied here,
the quadratic functional approximation for 〈
I 〉� we derived
possesses null directions when expressed in terms of metric
geometry in the space of control parameters. In fact, for
this model system, changing r results in a shift of energies.
If r alone is changed, then it turns out that the system
density matrix evolves exactly without a change in the average
information entropy. Consequently, our solution contains a null
direction, which makes the quantum tensor not positive definite
but positive semidefinite. It seems likely that this behavior is
generic, though a proof is lacking.

It is gratifying that this framework allowed us to obtain a
general expression for the approximate entropy production in
driven nonequilibrium quantum systems, as well as a closed-
form solution for the minimum entropy production possible
for a specific system with relevance to quantum annealing.
We are encouraged by the success of this approach for this
simple system and we hope that this program will lead to
further insight into the optimization of quantum systems out
of equilibrium.
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APPENDIX

We record here the components of A appearing in Eq. (25)
for the convenience of the reader:

Ajklm

= 1

2

∑
b>a,d>c

�βZt

(e−βεb − e−βεa )εdc

× {−(δjdδkcδlbδma + δldδmcδjbδka)〈εa|L(|εd〉〈εc|)|εb〉
+ (δjcδkdδlbδma + δlcδmdδjbδka)〈εa|L(|εc〉〈εd |)|εb〉
+ (δjdδkcδlaδmb + δldδmcδjaδkb)〈εb|L(|εd〉〈εc|)|εa〉
− (δjcδkdδlaδmb + δlcδmdδjaδkb)〈εb|L(|εc〉〈εd |)|εa〉}.
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