
PHYSICAL REVIEW E 92, 032111 (2015)

Reductions and extensions in mesoscopic dynamics

Miroslav Grmela*
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Reduction of a mesoscopic level to a level with fewer details is made by the time evolution during which the
entropy increases. An extension of a mesoscopic level is a construction of a level with more details. In particular,
we discuss extensions in which extra state variables are found in the vector fields appearing on the level that
we want to extend. Reductions, extensions, and compatibility relations among them are formulated first in an
abstract setting and then illustrated in specific mesoscopic theories.
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I. INTRODUCTION

Macroscopic systems have always been investigated, both
experimentally and theoretically, on several levels that dif-
fer in the amount of details. Hydrodynamics, equilibrium
thermodynamics, and the Boltzmann kinetic theory of gases
are examples of such levels. Each level has evolved from a
particular physical insight and from an experience acquired in
a collection of experimental observations. The type of obser-
vations differs for different levels. The levels are autonomous
and each of them has its own domain of applicability. Among
all the levels there is one on which all details (provided we
remain inside the domain of classical physics) are taken into
account. The state variables on this level are position coor-
dinates and momenta of all (i.e., ∼1023) particles composing
the macroscopic systems, the time evolution equations are
Newton’s equations, and the complete dynamical information
consists of trajectories (experimentally observed or obtained
by solving the Newton equations) of all the particles. All other
levels ignore some details in order to provide a setting in
which the overall features seen in macroscopic and mesoscopic
experimental observations become recognizable. In the family
of levels, the one with more details will be called more
microscopic (or, equivalently, less macroscopic).

The most important discovery made in the investigation
of macroscopic systems is the maximum entropy principle
(MEP). According to this principle (that is, at least implicitly,
present already in the Gibbs formulation of thermodynamics
[1] but appearing first in a more general context in Ref. [2])
the ignored details influence the time evolution of the features
that are explicitly kept and observed (both experimentally
and theoretically) on a given level in such a way that the
time evolution is a reduction during which entropy reaches its
maximum allowed by constraints.

*miroslav.grmela@polymtl.ca

By reduction we mean a time evolution in which the macro-
scopic systems under investigation are approaching states
at which more macroscopic descriptions become applicable.
For instance, in the absence of external influences, the time
evolution brings eventually most macroscopic systems to states
at which the classical equilibrium thermodynamics is found
to describe well the observed behavior. External forces may
stop the reduction time evolution on an intermediate (called a
mesoscopic) level. For example, the force of gravitation and
temperature gradient, both imposed on a horizontal layer of a
fluid (such a system is called the Rayleigh-Bénard system),
stop the reduction on the level of fluid mechanics (recall
that the Rayleigh-Bénard system is indeed found to be well
described by the Boussinesq hydrodynamic equations and not
by the classical thermodynamics). We begin to investigate
the reduction in Sec. II by concentrating only on the entropy
maximization and ignoring the time evolution that creates it.
We call such a reduction a static reduction. In order to avoid a
possible misunderstanding, we recall that the word “reduction”
is often used in nonequilibrium statistical mechanics in a
more general context for any passage from a microscopic
or mesoscopic description to descriptions that ignore some
details (by making some kind of pattern-recognition process—
see Refs. [3,4] for examples of recent contributions to this
type of investigation). In this paper we see a reduction in a
more narrow sense as a process that is actually observed in the
time evolution of macroscopic systems.

Entropy is a new potential, of nonmechanical origin, that has
emerged in mesoscopic dynamics in order to deal with ignored
details. All entropies share a core of common properties but
otherwise they depend on the starting and the target levels
and also on the macroscopic system under consideration.
Both of these dependencies will be illustrated below. We can
see the entropy in two ways. Either we consider it as given
at the outset of the investigation and we look for the time
evolution that maximizes it or, inversely, we regard the time
evolution as given at the outset and look for the entropy that
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is maximized in it. In this paper we take mainly the former
viewpoint.

Now we explain the meaning of extension of a mesoscopic
theory. For a given mesoscopic level, we can attempt to
identify more microscopic levels that reduce to it. Such
theoretical construction leading from a mesoscopic level to
more microscopic levels that reduce to it is called an extension.
The extended models are needed if experimental observations
show that some of the details ignored on a chosen mesoscopic
level become important and cannot be therefore ignored. As
an example, we recall the extension from the classical fluid
mechanics to fluid mechanics of complex fluids (known as
rheology) that was motivated by the impossibility to predict
flows of melted plastic occurring in processing operations in
the plastics industry. The ignored details that have to be taken
into account in this case are some characterizations of the
internal (polymeric) structure of plastic melts. We shall discuss
several other examples of extension below.

An abstract equation expressing the mathematical struc-
ture that has been found to be common to a large class
of mesoscopic dynamical equations is called the general
equation for nonequilibrium reversible-irreversible coupling
(GENERIC) (see Sec. III D). By investigating its solutions, we
are uncovering new physics that it expresses. First, we note that
solutions to GENERIC represent always a reduction from an
(initial) mesoscopic level to another (target) mesoscopic level
involving fewer details. Second, we relate GENERIC to two
large subjects of classical nonequilibrium thermodynamics,
namely the dissipation thermodynamics [5–8] and extended
thermodynamics [9–12]. Third, we investigate modifications
of entropies corresponding to modifications of target levels in
the investigations of initial level → target level reductions.
The abstract formulations and investigations are illustrated on
a finite-dimensional toy example and in the context of several
well-established mesoscopic theories. In particular, we discuss
the reduction from Maxwell-Cattaneo heat transfer to Fourier
heat conduction.

In this paper we present a unified formulation of thermody-
namics that encompasses static reduction, dynamic reduction,
and extensions. It has been realized for a long time that in
mesoscopic dynamics there are in fact three potentials that
play a significant role. They are the energy, the entropy, and
the entropy production. The first generates the mechanical
time evolution and the remaining two enter the time evolution
caused by the incompleteness of the setting of mechanics.
Details that are ignored in mesoscopic descriptions still
influence the time evolution of the features that are chosen
to be explicitly followed. The influence is expressed in the
behavior of the entropy and the entropy production. Our main
objective is to throw a new light on the roles that these three
potentials play in reductions and extensions of mesoscopic
dynamical theories. The abstract formulation is illustrated on
a finite-dimensional toy example and in the context of several
well-established mesoscopic theories. In particular, we discuss
the reduction from Maxwell-Cattaneo heat transfer to Fourier
heat conduction.

Since we investigate macroscopic systems on several
different levels of description, we need a systematic notation.
Each level will be denoted by an Arabic numeral. The numeral,
in the subscript or the superscript in parenthesis, will then

signify the level denoted by the numeral. In the examples we
use, as much as possible, the traditional notation. Altogether,
we discuss three levels: Level 1 is a chosen mesoscopic level,
Level 0 is a level that is more macroscopic than Level 1, and
Level 2 is the level obtained from Level 1 by an extension. In
the examples, Level 0 is often, but not always, chosen to be
the level of the classical equilibrium thermodynamics.

II. STATIC REDUCTION: LEVEL 1 → LEVEL 0

In this section we extract from the equilibrium statistical
mechanics and the classical equilibrium thermodynamics a
mathematical structure that we shall call a static reduction.
Both of the equilibrium theories are its particular realizations.
Other realizations include passages between two general
levels, for instance, the passage between the level of kinetic
theory and the level of fluid mechanics. We begin with
the abstract mathematical formulation, and then its physical
content is gradually revealed in examples provided in Sec. II A.

The state variables on Level 1 will be denoted by the
symbol x1 ∈ M1, and by M1 we denote the Level 1 state space.
Similarly, on Level 0 we have x0 ∈ M0. Now we define the
static reduction from Level 1 to Level 0.

We begin with a function S(1→0) : M1 → R on Level 1 and
with a mapping �(1→0) : M1 → M0 relating state variables on
Level 1 to state variables on Level 0. This mapping is onto
but typically not one-to-one. We look for a function S(0←1) :
M0 → R that is an image of S(1→0) under the mapping �(1→0).
We call S(1→0) an entropy on Level 1 addressing its relation
to Level 0 and S(0←1) an entropy on Level 0 that is reduced
from S(1→0) by the mapping �(1→0). Both entropies depend
on both levels. In our notation we express this dependence by
upper indices (1 → 0) and (0 ← 1). The first numeral denotes
always the level on which the entropy is defined [i.e., S(1→0)

is a function of x1 and S(0←1) is a function of x0].
We shall find S(0←1) by use of the MEP. According to

this principle, S(0←1) is a maximum of S(1→0) subject to
the constraint �(1→0). Hereafter, we assume that S(1→0) is
a sufficiently regular and concave function of x1. We make the
passage M1 → M0 in two steps as follows.

Step 1. We introduce a function

�(1→0)(x1,x
∗
0 ) = −S(1→0)(x1) + 〈x∗

0 ,�(1→0)(x1)〉, (2.1)

where 〈,〉 denotes the inner product in M0 and x∗
0 are Lagrange

multiplies. We call �(1→0) a thermodynamic potential relating
Level 1 to Level 0. Next we find a minimum of �(1→0), i.e., we
solve equation

∂�(1→0)

∂x1
= 0. (2.2)

We have already assumed that S(1→0) is a concave function
of x1. We shall, moreover, assume that the mapping �(1→0)

is such that the thermodynamic potential �(1→0)(x1,x
∗
0 ) is a

convex function of x1.
Let the solution to (2.2) be (x1)eq(x∗

0 ). If we evaluate �(1→0)

at this state, we obtain

S(0)∗(x∗
0 ) = �(1→0)[(x1)eq(x∗

0 ),x∗
0 ]. (2.3)
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Step 2. We introduce a function

�(0)∗(x∗
0 ,x0) = −S(0)∗(x∗

0 ) + 〈x∗
0 ,x0〉. (2.4)

Let the solution of

∂�(0)∗

∂x∗
0

= 0 (2.5)

be (x∗
0 )eq(x0). The function S(0←1)(x0) defined by

S(0←1)(x0) = �(0)∗[(x∗
0 )eq(x0),x0] (2.6)

is then the maximum entropy (MaxEnt) image of S(1→0)(x1)
under the mapping �(1→0). The procedure indeed ends with
the same result as the maximization of entropy S(1→0) with
constraints given by requiring the projection �(1→0) to have a
constant image, see Appendix.

The state variables with star in the position of the upper
index are called conjugate variables. We note that x∗

0 = ∂S(0←1)

∂x0
.

Similarly, we introduce x∗
1 = ∂S(1→0)

∂x1
. A direct consequence of

this definition is the Maxwell relation,

∂(x∗)i
∂(x)k

= ∂(x∗)k
∂(x)i

, (2.7)

where x = [(x)1, . . . ,(x)K ] and x∗ = [(x∗)1, . . . ,(x∗)K ] are
considered to be K-dimensional vectors. We do not distinguish
in (2.7) between x0 and x1 since the relation holds for both x0

and x1. Other versions of the Maxwell relations (2.7) can be
obtained from all possible Legendre transformations of the
entropy.

A further insight into the mathematics involved in the
passage S(1→0)(x1) → S(0←1)(x0) described in the two steps
above is obtained by placing the formulation into the setting
of contact geometry (see Ref. [13]). This is because in such a
setting the Legendre transformations that, as we have shown
above as the transformations involved in the MEP, are the nat-
ural transformations (they preserve the contact structure). An
insight into the physics involved in S(1→0)(x1) → S(0←1)(x0)
described in Eqs. (2.1)–(2.5) is best revealed in examples
addressing familiar settings. We now proceed to develop some
of them.

A. Examples

We present three particular realizations of the static re-
duction in which Level 0 is always the level of the classical
equilibrium thermodynamics. Several other realizations (some
of them with a different Level 0) will be shown in Sec. IV.

1. Classical equilibrium thermodynamics

In the examples discussed in this section we take Level 0
to be the level of the classical equilibrium thermodynamics.
We now describe it. The only thing that is seen on this level is
the size (characterized by the volume V ) of the macroscopic
system under investigation, its quantity (characterized by
the number of particles N ), and its energy, denoted by E.
The energy includes the macroscopic mechanical energy of the
macroscopic systems under consideration (as, for instance, the
overall kinetic energy and potential energy) and also the energy
(called internal energy) that manifests itself in macroscopic
observations as heat. We thus have x0 = (V,N,E). This level

is, in fact, the most macroscopic level so mapping � [which
we denote in this setting as �(0)] is an identity mapping
M0 → M0. The entropy [denoted in this case S(0)] is a real
valued and sufficiently regular function of (V,E,N ) (called a
fundamental thermodynamic relation) satisfying the following
properties: (S1) a concave function; (S2) S(0)(λV,λE,λN) =
λS(0)(V,N,E), where λ ∈ R; (S3) ∂S(0)

∂E
� 0, where S(0) = 0 if

( ∂S(0)

∂E
)
−1 = 0; and (S4) S(0) tends to its maximum allowed by

constraints V , N , and E. The two-step procedure described
in (2.1)–(2.5) is the standard Legendre transformation. In the
examples below we consider the volume V to be fixed (we take
it to be equal to 1) and, due to the property (S2), we can take
x0 = (N,E) denoting the number of particles and the energy.

The conjugate variables are (N∗,E∗) = (−μ

T
, 1
T

), μ is the
chemical potential, and T is the temperature. The property (S2)
also implies P

T
= −S(0)∗(−μ

T
, 1
T

), where P is the pressure.
Note that pressure, temperature, and chemical potential are
defined as the particular derivatives of entropy. Besides
the four properties (S1)–(S4) that all entropies S(0)(N,E)
possess, the fundamental thermodynamic relations differ for
different macroscopic systems. In fact, it is in the fundamental
thermodynamic relation where the individual nature of the
macroscopic system is expressed in the classical equilibrium
thermodynamics. The only way to make the association
between macroscopic systems and the fundamental thermody-
namic relations, while staying inside the classical equilibrium
thermodynamics, is to make experimental observations. Re-
sults of such observations are collected in documents known
as thermodynamic tables.

2. Equilibrium statistical mechanics: Particle mechanics →
equilibrium thermodynamics

In this example we choose Level 1 to be the level of the
classical mechanics of particles. We consider it in its Liouville
representation [14–16] (i.e., the state variable is the N -particle
distribution function rather than position coordinated and
momenta of all N particles) and, in addition to fixing the
overall volume, we also fix the number of particles. This
corresponds, in the setting of the Gibbs equilibrium statistical
mechanics [17], to the canonical ensemble. The state variable
is thus x1 = fN (1,2, . . . ,N ), where we use the shorthand
notation “1” = (r1, p1),“2” = (r2, p2), . . . ,“N” = (rN, pN ).
By (r i , pi) we denote position vectors and momenta of the
ith particle. We shall normalize the distribution functions to
unity. The number of particles and the volume are fixed.

The entropy on the Liouville level is given by

S(1→0)(fN ) = − kB

N !

∫
d1 . . .

∫
dNfN (ln h3NfN ), (2.8)

where h is the Planck constant and distribution functions are
normalized,

1 = 1

N !

∫
d1 . . .

∫
dNfN.

This entropy comes, for example, from Eq. (5.3) of Chap. 3
in Ref. [18] or Eq. (7.12) in Ref. [19] when requiring that
integral of the distribution function over the phase space is
dimensionless and that the summation or integration is carried
out over distinct quantum states.
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The projection to the level of equilibrium thermodynamics
reads

�(1→0) : fN 	→(
E= 1

N !

∫
d1 . . .

∫
dNHNfN,ν = 1

N !

∫
d1 . . .

∫
dNfN

)
,

(2.9)

where HN is an N -particle Hamiltonian, e.g.,

HN =
N∑

i=1

p2
i

2m
+ ε(r1, . . . ,rN ). (2.10)

The first term in HN is the kinetic energy of the particles
(m is the mass of one particle) and the second term is
the potential energy. We note that the individual nature of
macroscopic systems is expressed in the mapping �(1→0) while
the entropy S(1→0) is universal. We recall that in the setting
of the classical equilibrium thermodynamics the relations are
completely reversed, �(0) is universal, and the individual
nature is expressed in S(0).

Note that the second component of the projection represents
the constraint for maximum entropy when setting ν = 1. The
above outlined static reduction based on Lagrange transforma-
tion corresponds to maximum entropy under the constraints
given by the projection. Hence one needs to add a variable (ν
in this case) in order to guarantee this constraint while using
the static reduction approach. Also note that volume V and
number of particles N act as fixed auxiliary parameters known
at both levels.

The first step of the static reduction leads to

S(0)∗(E∗,ν∗) = − kB

h3N
ZN (E∗) exp[−(ν∗/kB + 1)], (2.11)

with ZN being the partition sum

ZN (V,N,E∗) = 1

N !

∫
d1 . . .

∫
dNe

− 1
kB

E∗HN

. (2.12)

The second step ends with a fundamental thermodynamic
relation

S(0←1)(E,ν) = νkB ln

{
ZN [(E∗)eq(E,ν)]

νh3N

}
+E(E∗)eq(E,ν),

(2.13)
where the dependence (E∗)eq(E,ν) is given by solving

E = −kBν
∂ ln ZN (E∗)

∂E∗ (2.14)

in accordance with the procedure of the static reduction.
Finally, note that the equilibrium distribution function is

given by

(fN )eq(E,ν) = ν

ZN [(E∗)eq(E,ν)]
exp

[
− (E∗)eq(E,ν)

kB

HN

]
.

(2.15)

When setting ν = 1 in the final equations we obtain the
fundamental thermodynamic relation and distribution function
for the canonical ensemble.

Similarly, the grand-canonical ensemble (with only the
volume fixed) and the microcanonical ensemble (with the

volume, the number of particles, and the energy fixed) versions
of the Gibbs equilibrium statistical mechanics can also be
formulated as particular realizations of the static reduction.

3. Boltzmann kinetic theory: One particle kinetic theory →
equilibrium thermodynamics

Level 1 is now chosen to be the level of the Boltzmann
one-particle kinetic theory [20]. The state variable is the one-
particle distribution function: x1 = f (r, p), where r and p are
the position coordinate and the momentum of one particle,
respectively.

Following again Sec. 40 of Ref. [19] or Ref. [7], entropy is
given by

S(1→0)(f ) = −kB

∫
d r

∫
d pf (r, p){ln[h3f (r, p)] − 1}.

(2.16)
The projection works as follows:

�(1→0) : f 	→[
E=

∫
d r

∫
d p

p2

2m
f (r, p),N =

∫
d r

∫
d pf (r, p)

]
.

(2.17)

The first step of the static reduction leads to

S(0)∗(V,N,N∗,E∗) = −kBV

(
2πmkB

h2E∗

)3/2

e
− N∗

kB . (2.18)

The second step ends with the fundamental thermodynamic
relations of ideal gas, the Sackur-Tetrode relation, see, e.g.,
Ref. [21],

S(0←1)(E,V,N ) = NkB

{
5

2
+ ln

[
V

N

(
4πmE

3Nh2

)3/2]}
. (2.19)

4. Particle mechanics → one-particle kinetic theory

Starting with entropy (2.8), the projection to the level of
one-particle kinetic theory is given by

f1(1) = 1

N !

∫
d1 . . .

∫
dN

N∑
i=1

δ(1 − i)fN (1, . . . ,N),

(2.20a)

ν = 1

N !

∫
d1 . . .

∫
dNfN (1, . . . ,N). (2.20b)

The first step of the reduction leads to

S(1)∗(f ∗
1 ,ν∗) = −kBe

−1− ν∗
kB

h3NN !

{∫
d1 exp

[
−f ∗

1 (1)

kB

]}N

,

(2.21)

where f ∗
1 and ν∗ are the variables conjugate to f1 and ν,

respectively.
The second step leads to

S(f1,ν) = −kB

∫
d1f1(1) ln[h3f1(1)]

−kBν ln

(
N !ν[∫

d1f1(1)
]N

)
. (2.22)
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Setting ν equal to 1 and using Stirling formula for approxima-
tion of factorials, this entropy becomes

S(f1) = −kB

∫
d1f1(1){ln[h3f1(1)] − 1}, (2.23)

which is the standard Boltzmann entropy.

5. Fluid mechanics: Hydrodynamics →
equilibrium thermodynamics

In the last example we choose Level 1 to be the level
of fluid mechanics. This means that the state variable x1 =
[ρ(r),u(r),e(r)], where r is the position vector, ρ(r) =
Mmoln(r) is the local mass per unit volume (Mmol is the molar
mass), u(r) is the momentum field, and e(r) is the total local
energy per unit volume [i.e., e(r) equals the kinetic energy u2

2ρ

plus an internal energy]. If we choose the entropy S(1→0) =∫
d rs[ρ(r),u(r),e(r)] in such a way that s[ρ(r),u(r),e(r)]

depends locally on n = ρ

Mmol
and the internal energy in the

same way as at the global equilibrium (this choice is called a
local equilibrium assumption), then the static reduction gives
the global thermodynamic equilibrium relation provided the
mapping �(1→0) is chosen to be [ρ(r),u(r),e(r)] 	→ (n0,e0) =
( 1
Mmol

∫
d rρ(r),

∫
d re(r)).

6. Remarks

As we have seen in the four examples above, in each
particular realization of the static reduction we need to choose
the state variables x1, the entropy S(1→0)(x1), and the mapping
�(1→0), which, at least in the case when Level 0 is the
level of the classical equilibrium thermodynamics, includes
specification of the energy E(x1). We make now a few
observations about the possible choices.

We begin with the energy E(x1). There are two distinctly
different choices of the energy. First, we choose the state
variables x1 in such a way that the total energy E(x1) is
explicitly included as one of the components of x1 (see
Secs. II A 1 and II A 5). In the second choice, which we made
in Secs. II A 2 and II A 3, the state variables do not include the
energy itself; the total energy is a function of x1.

In the setting of the classical equilibrium thermodynamics
(see Sec. II A 1), the energy E that is included as one
component in the state variables (V,N,E) is directly the energy
E(x1). The mapping � is thus simply an identity mapping. If
we subtract from the total energy the mechanical energy of
the macroscopic system as a whole (i.e., the kinetic and the
potential energy of the macroscopic system as a whole), then
we obtain the internal energy (we shall denote it by the symbol
ε). Introduction of the internal energy ε (whose provenance
remains unspecified in the setting of the classical equilibrium
thermodynamics but its mechanical nature is recognized by
treating it in the same ways as the mechanical energy) is the
subject of the so-called first principle of thermodynamics. In
the setting of fluid mechanics, presented in Sec. II A 5, it is
the local total energy e(r) that is one of the components of the
state variables x1 = [ρ(r),u(r),e(r)]. Consequently, the total
energy E(x1) = ∫

d re(r). The local internal energy ε(r) is

related to the local total energy e(r) by e(r) = u2(r)
2ρ(r) + ε(r),

where u2(r)
2ρ(r) is the local kinetic energy expressed in terms of

the remaining components of x1 = [ρ(r),u(r),e(r)]. We note,
furthermore, that the choice of energy as one of the components
of the state variable x1 is intimately related to the choice of the
entropy S(1→0)(x1). This is because the derivative of entropy
with respect to energy, having the physical interpretation of
the inverse of the absolute temperature, is assumed to be
positive and, consequently, the energy e(r) as one component
of state variables x1 can be replaced by the entropy s(r), where
S(1→0) = ∫

d rs(r). If this is done, then the relation E = E(x1),
where x1 includes now S(1→0) as one of its components, takes
the role of the fundamental thermodynamic relation. Following
the terminology of Callen [21], we call the formulation in
which the energy is included in state variables the entropy
representation and the formulation in which the entropy is
included in state variables the energy representation. These
two types of representation of x1 are also possible in the setting
of fluid mechanics if we assume that the positivity of the
derivative of entropy with respect to energy holds also locally.
We note that if we make such an assumption we are in fact
making a weaker version of the local equilibrium assumption.
We recall that the local equilibrium assumption requires, in
addition, that the local fundamental thermodynamic relation
is exactly the same as the global one. For later use we recall
relations among derivatives in the two representations (ξ,s)
and (ξ,e): ∂e

∂s
= ( ∂s

∂e
)
−1

; ∂ξ

∂s
= − ∂ξ

∂e
( ∂s
∂e

)
−1

.
Now we turn to the specification of E(x1) that we made

in Secs. II A 2 and II A 3. We have assumed there that there
is no internal energy (i.e., that there is no energy of unknown
provenance). The total energy is assumed to be completely
expressed in terms of x1. This assumption is very clear in the
setting of the equilibrium statistical mechanics in Sec. II A 2
since the knowledge of position vectors and momenta of
all particles composing macroscopic systems allows us to
calculate the complete total energy. There are no details
(needed to calculate the total energy) that are ignored. In
the context of kinetic theory presented in Sec. II A 3 we
obviously ignore many details when we take the one particle
distribution function to be the only state variable x1. However,
if we limit ourselves to macroscopic systems composed
of completely noninteracting particles, then the one-particle
distribution function suffices to express completely the total
energy [namely the kinetic energy

∫
d r

∫
dv v2

2m
f (r,v)]. The

Boltzmann kinetic theory is indeed limited to this kind of
macroscopic system. We can now ask the following question.
Why do we need entropy in Secs. II A 2 and II A 3 if no detail
needed to calculate the total energy is ignored? We answer this
question by noting that details are ignored in the time evolution.
In the context of the Gibbs equilibrium statistical mechanics
the time evolution is in fact almost completely ignored. What
remains is only the energy conservation and some kind of
“ergodicity-type” hypothesis (whose precise mathematical
formulation remains an open problem) according to which
averages made in time are the same as some kind of averages
made in space of position vectors and momenta of all
∼1023 particles. In the Boltzmann kinetic theory the time
evolution is partially ignored. Trajectories of noninteracting
particles are rigorously kept but details of the pieces of
trajectories traced during collisions (see Sec. III B 1) are
ignored.
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Finally, we make a comment about the physics that is behind
the choice of the state variables x1. There are in fact three
sources of inspiration for choosing x1. The first one is an insight
into the microscopic time evolution and/or theoretical results
obtained for it. The second inspiration for complementing
a choice already made [we denoted it (x1)0] by some extra
state variables comes from a theoretical investigation of the
time evolution of (x1)0. The extra state variables are found
in the vector field generating the time evolution of (x1)0. We
shall see examples of this inspiration in Sec. IV. The third
type of inspiration comes from experimental observations.
Following this route, we want to select the state variables
that are in the closest possible relation to the quantities that
are experimentally observed.

III. DYNAMIC REDUCTION: LEVEL 1 → LEVEL 0

In this section we look for the time evolution that makes the
reduction discussed in the previous section. This means that
we replace the imposition of the entropy maximization (made
in the previous section) by introduction of the time evolution
on Level 1 that makes the maximization. In the search for the
time evolution we can either consider the entropy S(1→0)(x1)
as known and look for the corresponding time evolution of x1

or, inversely, we consider the time evolution of x1 as known
(e.g., from insight and experimental observations) and, by
mathematically analyzing it, we identify the corresponding
entropy S(1→0)(x1). For instance, the latter approach led
Boltzmann to his expression for the entropy (called, in this
case, the Boltzmann H-function). In this paper we shall follow
the former viewpoint.

There are at least three routes leading to the time evolution
on Level 1 during which a given entropy S(1→0) reaches its
maximum. All three routes lead to the same result; each of
them provides, however, its own insight (both physical and
mathematical).

On the first route we begin by collecting well-established
(i.e., extensively tested with results of experimental observa-
tions) mesoscopic dynamical theories and attempt to extract
from them a common mathematical structure. This is the route
started by Clebsch in Refs. [22] and [23] (by recognizing the
Hamiltonian structure of particle mechanics in the nondissipa-
tive Euler fluid mechanics) and continuing in Refs. [24–30],
with dissipative mesoscopic dynamical theories. The structure
of an abstract mesoscopic time-evolution-expressing approach
to the level of the classical equilibrium thermodynamics has
been called, in Refs. [29,30], GENERIC. It is interesting
to note that the archetype GENERIC equation is the Boltz-
mann kinetic equation [25] that is also historically the first
mesoscopic dynamical equation for which the compatibility
with the equilibrium thermodynamics has been investigated in
Ref. [20].

The second route is based on the mathematical structure
identified in the static reduction. The two steps in Sec. II
represent essentially Legendre transformations. We then recall
that the most natural mathematical environment for Legendre
transformations is contact geometry. This is because the
contact 1 form specifying the contact geometry is preserved
in this type of transformation (such transformations are called
contact structure preserving transformations). The suggestion

to formulate the classical equilibrium thermodynamics in the
setting of contact geometry was put forward first by Hermann
in Ref. [31]. In order to extend the static reduction to a dynamic
one we then argue as follows. Since the static reduction is a
contact-structure-preserving transformation, we suggest that
the time evolution making it is a continuous sequence of
such transformations. There is a well-known canonical form
for such time evolution (see, e.g., Appendix in Ref. [13]).
It resembles the canonical form of the Hamiltonian time
evolution. Both involve a generating potential. In the case
of the Hamiltonian dynamics it is the Hamiltonian (having the
physical interpretation of energy) and in the case of the contact
dynamics it is a potential called a contact Hamiltonian. The
problem to identify the dynamics becomes the problem to
identify an appropriate contact Hamiltonian (that, as it turns
out, is a sum of two terms, one related to the rate of energy
and the other to the rate of entropy—see Refs. [32–35]).

In this paper we shall follow the third route that naturally
continues the approach developed in the classical nonequilib-
rium thermodynamics (e.g., Refs. [5–7]).

A. Dissipation thermodynamics

The third route begins in the same way as the first route.
The point of departure is a collection of well-established
mesoscopic dynamical theories in which a common structure
is searched. The difference is in the size of the collection
and in the focus of the search. While the collection of
mesoscopic theories from which the GENERIC structure
has been extracted is very large (it includes, among others,
fluid mechanics and kinetic theory) the basis from which
the classical nonequilibrium thermodynamics has emerged is
essentially only fluid mechanics. Kinetic theory (and, related
to it, Grad’s hierarchy [36]) serves as a microscopic theory
generating fluid mechanics and its extensions rather than
a mesoscopic theory that itself is a particular realization
of the abstract nonequilibrium thermodynamics. As for the
structure emerging in the investigation, the first observation
made on both routes is that the vector fields generating the
time evolution in mesoscopic theories are a sum of two parts.
One generates the time evolution that leaves the entropy
unchanged and the other makes it to grow. The former is
called a nondissipative vector field and the latter the dissipative
vector field. After this observation is made, the focus on the
first route is put onto the nondissipative part (its Hamiltonian
structure is recognized) and the focus on the third route is
on the dissipative part. A closer look at the dissipative vector
fields reveals that they involve certain quantities that have
been called in nonequilibrium thermodynamics dissipative
fluxes. We shall denote them, following the traditional notation,
by use of the symbol J = (J1,J2, . . . ,JK ). For example, in
the context of the classical fluid mechanics, they are the
Fourier heat flux and the Navier-Stokes momentum flux.
Following the abstraction made in the classical nonequilibrium
thermodynamics [5–8], we regard the dissipative fluxes J
simply as new state variables. Their relation to x1 and to its
time evolution will be discussed later in Sec. III B in what is
called constitutive relations. The state space whose elements
are J will be denoted by M

(J )
1 [i.e., J ∈ M

(J )
1 ].
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Now we turn to reductions introduced in the previous
section. We make a static reduction of M

(J )
1 to another space

M
(J )
0 . The role that the entropy plays in the reduction of

M1 to M0 is taken by a new potential that we shall denote
by the symbol � and call a dissipation potential [8,37–39].
Contrary to the entropy, we require � to be convex and thus
the reduction is made by minimizing the dissipation potential
(instead of maximizing the entropy as was done in the previous
section). The other properties of � depend on the choice of
M

(J )
0 . We begin our investigation with the reduction to states at

which no dissipation takes place. At such states the dissipative
fluxes are absent. This means that we begin by choosing M

(J )
0

to be composed of only one element, namely (0,0, . . . ,0).
Consequently, we require the dissipation potential �( J) to
satisfy the following properties:

(i) �(0) = 0,

(ii) � reaches its minimum at J = 0,

(iii) � is a convex function of J in a neighborhood of

J = 0. (3.1)

The conjugates of J with respect to � will be denoted by X ,
i.e.,

X = �J (3.2)

and called dissipative forces. We use hereafter the shorthand
notation in which the symbol placed in the subscript position
denotes a derivative with respect to the quantity represented by
the symbol, i.e., ∂�

∂ J = �J . Still another comment regarding
the notation used in this section is in order. In the previous
section we used the star in the superscript position to denote
the conjugate variable. We shall keep this notation uniquely
for the conjugation with respect to entropy. In Sec. IV we
shall adopt J into the state variables x1 and, consequently, the
entropy S will also depend on J . We shall then have J∗ = ∂S

∂ J .
By using the symbol X to denote the conjugate of J with
respect to the potential � we keep the notation established in
nonequilibrium thermodynamics.

As in the previous section, we make the static reduction
by use of Legendre transformations. The potential involved
in the transformations is now the dissipation potential �. In
particular, the Legendre transformation of �( J ) corresponding
to a complete replacement of J with their conjugates X will
be denoted by the symbol (X); i.e., (X) = −�[ J̃(X)] +
〈X, J̃(X)〉, where J̃(X) is a solution to X = �J .

From the relation J̃ = X we obtain

∂J̃i

∂Xk

= ∂J̃k

∂Xi

. (3.3)

We note that this relation is in fact the Maxwell relation (2.7) in
dissipation thermodynamics. Both the Maxwell relation (2.7)
and the Maxwell relation (3.3) in dissipation thermodynamics
are direct consequences the conjugation operation. The po-
tential that provides the passage between state variables and
their conjugates is the entropy in the equilibrium thermody-
namics and the dissipation potential [related by (3.11) to the
entropy production] in the dissipation thermodynamics. In the

particular case of the quadratic dissipation potential

(X) = 1
2 〈X,�X〉 (3.4)

the relations (3.1) and (3.3) become the classical Onsager
reciprocity relation [5,40]:

J̃ = �X, (3.5)

where � is a symmetric and positive definite linear operator.
We call therefore the relation (3.3) a Maxwell-Onsager
relation.

B. Constitutive relations, dissipative dynamics

Our next task is to relate the static thermodynamics in the
space M

(J )
1 (developed in Sec. III A) to the time evolution

taking place on Level 1 and to describe its dynamic reduction
to Level 0. We shall achieve this goal with the following two
relations. First, it is a relation between ( J,X) and (x1,x

∗
1 ) and,

second, it is an equation governing the time evolution of x1

involving the dissipation potential.
The constitutive relation is

X = �x∗
1 , (3.6)

where � is required to be such that the equality

〈x∗
1 ,x∗

1
〉 = 〈X,X〉 (3.7)

holds so entropy production can be written in terms of x∗ or
X equivalently.

As we consider dissipative dynamics only, the equation
governing the time evolution of x1 is assumed to have the form

ẋ1 = χ (x1)
∂

∂x∗
1

, (3.8)

where χ : M1 → R+ remains an unspecified function. Its most
important property is that χ (x1) > 0. Note, however, that χ is
usually equal to unity.

In the terminology established in nonequilibrium thermo-
dynamics, the relation (3.6) together with the time evolution
equation (3.8) constitute a constitutive relation.

Before investigating consequences of the constitutive rela-
tion we shall comment about the geometrical interpretation of
(3.8). The conjugate state variable x∗

1 = ∂S(1→0)(x1)
∂x1

is a covector.
In order to transform it into a vector generating the time
evolution (i.e., into the right-hand side of the time evolution
equation) we have to use some kind of a geometrical structure
in the state space M1. We note that in the particular case of the
quadratic potential (X) = 1

2 〈X,�X〉 and � being a linear
operator, the time evolution equation (3.8) takes the form

ẋ1 = �T ��x∗
1 . (3.9)

In this equation we can now interpret �T �� as a metric
tensor. In this case the geometrical structure in M1 is thus the
Riemannian structure. In the particular case of the quadratic
dissipation potential, its introduction is thus equivalent to
equipping M1 with the Riemannian structure. We therefore
regard the introduction of a general dissipation potential  as
introduction of a generalized Riemannian geometry into the
state space M1. The passage from a covector x∗

1 to a vector is
made in the Riemannian geometry by x∗

1 → �T ��x∗
1 and in

the generalized Riemannian geometry by x∗
1 → x∗

1
.
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We can now prove four consequences of the constitutive
relation (3.6) and (3.8). The particular form (3.9) of the
linear Onsager time evolution has been noted, by attempting
to extract a common structure from several well-established
mesoscopic time evolutions, in Ref. [41].

Next we note that (3.6) and (3.8) imply

Ṡ(1→0) = 〈x∗
1 ,x∗

1
〉 = 〈X,X〉 � 0. (3.10)

The last inequality is a consequence of the properties (3.1). We
call therefore (in accordance with the traditional terminology
[6,8])

σ = 〈X,J〉 = 〈X,X〉 � 0 (3.11)

an entropy production.
The third consequence of the constitutive relation (3.6) and

(3.8) is an implication of the Lyapunov theorem in which
(3.10) is used. Provided the time evolution generated by
(3.8) preserves �(1→0)(x1), the property (3.10) allows us to
consider the thermodynamic potential (2.1) as a Lyapunov
function corresponding to the approach x1 → x0 as t → ∞.
We see therefore that the time evolution of x1 governed
by (3.10) indeed makes the reduction of Level 1 to Level
0. The conservation of �(1→0)(x1) (which, at least in the
case when Level 0 is the level of the classical equilibrium
thermodynamics, includes conservation of the energy) can
always be guaranteed by an appropriate degeneracy of the
dissipation potential . We shall see examples in Sec. III B 1.

The fourth implication of the constitutive relation (3.6) and
(3.8) is a new version of the Maxwell-Onsager relation (3.3).
By taking into account (3.6) and (3.8) in the relation (3.3) we
arrive at

∂ ˙(x1)i
∂(x∗

1 )k
= ∂ ˙(x1)k

∂(x∗
1 )i

, (3.12)

where x1 is a K-dimensional vector x1 = [(x1)1, . . . ,(x1)K ];
similarly, we write also x∗

1 .

1. Examples

Particular realizations of the abstract formulation of dissi-
pation thermodynamics and constitutive relations in familiar
settings help to reveal its physical content.

a. Simple relaxation. In the first example we simply take
� = identity operator. If, in addition, we limit ourselves to
the quadratic dissipation potential (X) = 1

2 〈X,�X〉, then
the time evolution equation (3.8) is simply ẋ1 = �x∗

1 .
b. Fourier heat conduction. In the next example we turn to

fluid mechanics. For the sake of brevity, we limit ourselves only
to heat transfer so we choose x1 = e(r). Following Fourier,
we take � = ∇ = ( ∂

∂r1
, ∂
∂r2

, ∂
∂r3

). If we again consider only the
quadratic dissipation potential, (3.6) is the Fourier constitutive
relation and (3.8) has the form ∂e

∂t
= −∇(λ∇e∗).

c. Chemical kinetics. In the third example we consider the
mass-action-law time evolution arising in chemical kinetics.
In this context the state variables x1 = n = (n1, . . . ,np) are
numbers of moles of p species A1, . . . ,Ap undergoing q

chemical reactions: α
(j )
1 A1 + · · · + α

(j )
p Ap � β

(j )
1 A1 + · · · +

β
(j )
p Ap, j = 1, . . . ,q. We define stoichiometric coefficients

γ
(j )
i = β

(j )
i − α

(j )
i ; j = 1, . . . ,q; i = 1, . . . ,p, and stoichio-

metric matrix γ with the rows (γ (j )
1 , . . . ,γ

(j )
p ); j = 1, . . . ,q.

The constitutive relation (3.6) and (3.8) becomes in this setting
X = γ n∗, where X = (X(1), . . . ,X(q)) are chemical affinities
of q chemical reactions and n∗ = (n∗

1, . . . ,n
∗
p) are chemical po-

tentials of p species. The time evolution equation (3.8) is now
ṅ = n∗ = γ T J , where J = X . It can be directly verified
that this time evolution equation is indeed the Guldberg-Waage
mass-action-law dynamics provided � = γ , the dissipa-
tion potential  = ∑q

l=1 W (l)(n)[e
1
2 X(l) + e− 1

2 X(l) − 2], where
[W (1)(n), . . . ,W (q)(n)] are related to rate coefficients (for the
explicit form of this relation see Ref. [42]), and the entropy
that equals −∑p

i=1(ni ln ni + Qini), where (Q1, . . . ,Qp) are
constants.

We have thus proven that the well-established mass-action-
law dynamics is another particular realization of the general
formulation developed above in this section. But what new
information does this reformulation of the familiar mass-
action-law time evolution equations bring to the chemical
kinetics itself? We note three new results.

By casting the mass-action-law time evolution equations
to the form of (3.8), we have a proven approach, as t → ∞,
for the state of chemical equilibrium at which all chemical
affinities [X(1), . . . ,X(q)] disappear.

(i) The mass-action-law in the form (3.6) and (3.8) is a
generalization of the original Guldberg-Waage dynamics in
the sense that the relation between the numbers of moles and
chemical potentials remains in (3.6) and (3.8) unspecified.

(ii) The formulation (3.6) and (3.8) of the mass-action-law
dynamics has been used in Ref. [42] to extend it (by including
fluctuations) and to couple it to mechanics in Refs. [43,44].

(iii) Finally, the formulation (3.6) and (3.8) reveals
Maxwell-Onsager reciprocity relations (3.3) and (3.12) among
extents of the reactions J and affinities X or, alternatively, if
the Maxwell-Onsager relations are formulated in the form of
(3.12), then it reveals relations among rates of the numbers of
moles and chemical potentials. Such relations are absolutely
invisible in the standard chemical kinetics. In order to see more
clearly the relations (3.3) in the context of chemical kinetics,
we write them explicitly for the special case of two reactions
{i.e., q = 2, X = [X(1),X(2)] and J = [J (1),J (2)]}:

[
∂X(1)

∂J (2)

]
J (1)

=
[
∂X(2)

∂J (1)

]
J (2)[

∂J (1)

∂X(2)

]
X(1)

=
[

∂J (2)

∂X(1)

]
X(2)[

∂J (1)

∂J (2)

]
X(1)

= −
[
∂X(2)

∂X(1)

]
J (2)[

∂J (2)

∂J (1)

]
X(2)

= −
[
∂X(1)

∂X(2)

]
J (1)

. (3.13)

We emphasize that the law of mass action is outside of
Classical Irreversible Thermodynamics (CIT), see [7], and
relations (3.13) hold even outside the the regime of CIT.
Moreover, relations (3.13) reduce in CIT to a single relation
(that is in accordance with Onsager reciprocal relations, see
Ref. [45] for full discussion of the reciprocal relations within
GENERIC). Relations (3.13) hold universally for any two
coupled chemical reactions with any number of interacting
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species and any relation between n and chemical potentials n∗
[i.e., for any entropy S(n)].

d. Boltzmann collision term. Dissipation in the Boltzmann
kinetic equation is brought about by ignoring details of particle
trajectories traced during collisions. The ignorance involves:
(i) limitation to only binary collisions, (ii) that binary collisions
are assumed to take place at one point in the position space
(this means that only momenta of colliding particles change
during collisions), (iii) that values of momenta of two outgoing
particles are constrained only by requiring conservation of
the kinetic energy and the momentum during the collision,
and (iv) that there are no paired and higher-order correlations
in the distribution of the particles. This viewpoint of binary
collisions allows us to consider them as chemical reactions
V + V1 � V′ + V′

1, where V denotes the species labeled by
momentum p, and similarly then for the species labeled by
the momentum p1 of the companion particle and the species
labeled by the outgoing momenta p′ and p′

1.
By applying chemical kinetics reviewed in the previous

illustration we obtain: X(r, p, p1, p′, p′
1) = �f ∗(r, p) =

−f ∗(r, p) − f ∗(r, p1) + f ∗(r, p′) + f ∗(r, p′
1),  =∫

d p
∫
d p1

∫
d p′ ∫ d p′

1W (f ; p, p1, p′, p′
1)(e

1
2 X + e− 1

2 X − 2),
where the following properties are satisfied: (i) W differs
from zero and is positive only if p + p1 = p′ + p′

1 and
p2 + p2

1 = (p′)2 + (p′)2
1 and (ii) there is symmetry with

respect to the exchanges p � p1 and ( p, p1) � ( p′, p′
1).

Requirement (i) is the degeneracy condition guaranteeing
conservation of the momentum and energy (we recall
that the only energy in the Boltzmann kinetic theory
is the kinetic energy) and requirement (ii) guarantees
(3.7). By a direct verification (see Ref. [33]) we prove
that the time evolution equation (3.8) is the Boltzmann

kinetic equation without the term − ∂( p
m

f )
∂ r , i.e., the

equation ∂f (r, p)
∂t

= ∫
d p1

∫
d p′ ∫ d p′

1W
(B)(f ; p, p1, p′, p′

1) ×
[f (r, p′)f (r, p′

1) − f (r, p)f (r, p1)], provided the entropy
S(1→0)(f ) is the Boltzmann entropy introduced in
Sec. II A 3 and W (B) is related to W appearing in
the dissipation potential  by W (B)(f ; p, p1, p′, p′

1) =
1
2W (f ; p, p1, p′, p′

1)[f (r, p)f (r, p1)f (r, p′)f (r,v′
1)]−

1
2 .

C. Nondissipative dynamics that is compatible
with the dissipative dynamics

The main focus in our search for the time evolution of
x1 has been on its role in reducing Level 1 to Level 0. So
far, we have identified the time evolution during which the
entropy is raised (called a dissipative time evolution) which
then, with the help of the Lyapunov theorem, implies the
reduction. Without entering into delicate mathematical details
of investigation of the reduction time evolution (see, e.g.,
Ref. [46]), we recognize that we also have to include inthe time
evolution during which the entropy remains unchanged (called
nondissipative time evolutions). We shall see then in Sec. III D
that the well-established mesoscopic dynamics (notably the
one described by the Boltzmann kinetic equation) are indeed
combinations of both dissipative and nondissipative dynamics.

In this section we thus turn to the nondissipative dynamics
during which the entropy, which has emerged in the dissipative
dynamics, remains constant. Such nondissipative dynamics is

then called a nondissipative dynamics that is compatible with
the dissipative dynamics. For the energy preserving dynamics
we require, in addition, that the nondissipative time evolution
leaves the energy E(x1) unchanged. We shall follow two
routes: The first is described in Sec. III C 1 and the second
in Sec. III C 2.

1. Hamiltonian dynamics

On the first route, we take inspiration from the particular
case when Level 1 is chosen to be the level of the classical
mechanics of particles. This means that the state variables
are x1 = (1,2, . . . ,N ) (we use the notation introduced in
Sec. II A 2) and the time evolution is Hamiltonian. We recall
that the Hamiltonian time evolution is generated by a potential
E(x1) that is Hamiltonian and has the physical interpretation
of energy. The time evolution equations are

ẋ1 = LEx1 , (3.14)

where L is the Poisson bivector transforming the covector Ex1

into a vector. We call L a Poisson bivector if

{A,B} = 〈Ax1 ,LBx1〉 (3.15)

is a Poisson bracket. By 〈,〉 we denote the scalar product in
the state space M1, and A and B are real valued functions of
x1. We recall that we use the notation Ax1 = ∂A

∂x1
, where ∂

∂x1
denotes the ordinary partial derivative if the state space M1

is finite dimensional and the Volterra functional derivative
if M1 is infinite dimensional. We recall that {A,B} is a
Poisson bracket if {A,B} = −{B,A} and the Jacobi identity
{A,{B,C}} + {B,{C,A}} + {C,{A,B}} = 0 holds. We note
that the time evolution generated by (3.14) preserves the
energy (since Ė = {E,E} = 0). The Poisson bracket (3.15)
corresponding to the state variables x1 = (1,2, . . . ,N ) is given
by {A,B} = ∑N

i=1 (Ar i
B pi

− Br i
A pi

).
Summing up, in order to specify the Hamiltonian time

evolution of x1 we need a potential E(x1) that has the physical
interpretation of energy and Poisson bivector L transforming
the gradient of energy into a vector field. If we want to relate
the time evolution (3.14) to the dissipative dynamics we need
more. In particular, we need to incorporate into the time
evolution the entropy S(1→0)(x1) that generates the dissipative
time evolution. The way we shall relate (3.14) to the entropy
is by requiring that the entropy remains unchanged during
the time evolution. We note that this will be the case if the
Poisson bivector L is appropriately degenerate in the sense
that {A,S(1→0)} = 0 for all A. Then, indeed, as it follows from
(3.14), ˙S(1→0) = {S(1→0),E} = 0. We recall the terminology
established in Hamiltonian dynamics (see, e.g., Ref. [47]). A
function C satisfying {A,C} = 0 for all A is called a Casimir.
We thus require that the entropy S(1→0)(x1) is a Casimir of the
Poisson bivector L. Our problem now is to find L with such a
property.

As we are still confined to the classical mechanics of
particles, we begin the search with the state variables x1 =
(1,2, . . . ,N). The Poisson bracket is nondegenerate and its
only Casimir is a constant. We thus see that with the choice
x1 = (1,2, . . . ,N ) of state variables we cannot combine the
Hamiltonian time evolution with the dissipative dynamics.
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We pass therefore to the Liouville representation in which
x1 = fN (1,2, . . . ,N) is the N -particle distribution function.
In this representation the Poisson bracket (3.15) is given by
(see Ref. [47])

{A,B} = 〈Ax1 ,LBx1〉 =
∫

d1 . . .

∫
dNfN

N∑
i=1

×
(

∂AfN

∂ r i

∂BfN

∂ pi

− ∂BfN

∂ r i

∂AfN

∂ pi

)
. (3.16)

This Poisson bracket is indeed degenerate. It is easy to verify
that any function C(fN ) = ∫

d1 . . .
∫

dNc(fN ), where c is
R → R function fN 	→ c is a Casimir of the bracket (3.16).
In particular, thus the Gibbs entropy introduced in Sec. II A 2
is a Casimir and, consequently, the Gibbs entropy remains
unchanged during the Hamiltonian time evolution generated
by (3.14) with the Poisson bracket (3.16). The observation
that we have made above about Casimirs of (3.16) implies
also that the entropy is not singled out by the requirement of
degeneracy. It is the dissipative time evolution that introduces
the entropy.

If we now choose Level 1 to be a general mesoscopic level,
then we still assume that the fully microscopic Hamiltonian
time evolution (3.14) remains inherited in at least a part of the
mesoscopic time evolution. We shall call it a nondissipative
part of the time evolution. We shall indeed see below that
many well-established mesoscopic time evolution equations
are a combination of (3.8) and (3.14). The compatibility of
(3.14) with (3.8) requires degeneracy of the Poisson bracket.
The entropy, which emerges in the dissipative part of the time
evolution, has to be a Casimir of the bracket (3.15).

As an illustration, we note that the free flow term
−div[f (r, p) p

m
] in the Boltzmann equation has indeed the form

(3.14) with the Poisson bracket (3.16) in which N = 1 and the
energy E(f ) = ∫

d r
∫

d pf (r, p) p2

2m
.

Another illustration is provided by Euler fluid mechanics
[48]. We take x1 = [ρ(r),s(r),u(r)]. If we compare these state
variables with those in Sec. II A 5, then we see that we are
replacing the energy field e(r) with the entropy field s(r)
(see the comments made in Sec. II A 6). If the local entropy
s(r) = s(ρ,u,e; r) appearing in Sec. II A 5) is such that
∂s(r)
∂e(r) > 0 [which is indeed the case since ∂s(r)

∂e(r) has the physical
interpretation of the inverse of the local absolute temperature],
then the transformation [ρ(r),e(r),u(r)] → [ρ(r),s(r),u(r)]
is one to one and we can indeed make such a replace-
ment. We can directly verify that the Euler fluid mechanics
equations

∂ρ

∂t
= −∂i(ρEui

)

∂s

∂t
= −∂i(sEui

)

∂ui

∂t
= −∂j (uiEuj

)−ρ(r)∂iEρ(r)

− s(r)∂iEs(r) − uk(r)∂iEuk(r) (3.17)

are indeed a particular realization of (3.14) with the Poisson
bracket (see Refs. [23,47])

{A,B} =
∫

d r[ρ(∂i(Aρ)Bui
− ∂i(Bρ)Aui

)

+ s(∂i(As)Bui
− ∂i(Bs)Aui

)

+uj (∂i(Auj
)Bui

− ∂i(Buj
)Aui

)] (3.18)

and the energy E = ∫
e(r), where e(r) = e(ρ,s,u; r) is the

image of s(r) = s(ρ,e,u; r), appearing in Sec. II A 5 under
the transformation [ρ(r),e(r),u(r)] → [ρ(r),s(r),u(r)]. The
last equation in (3.17) can be put into the form of the local
conservation law ∂ui

∂t
= −∂j (uiEuj

) − ∂ip provided p(r) =
−e(r) + ρ(r)Eρ(r) + s(r)Es(r) + u(r)Eu(r). But this is the
equilibrium thermodynamic relation related the pressure to
the entropy. In the above equation we use the summation
convention and the shorthand notation ∂i = ∂

∂ri
.

2. Godunov dynamics

On the second route we let ourselves to be motivated by the
Euler fluid mechanics [48]. The state variables are chosen to
be all fields (i.e., functions of the position coordinate r) and
the time evolution equations are local conservation laws. This
means that x1 = q(r) = [q1(r), . . . ,qN (r)] and

∂q
∂t

= −div Q(q), (3.19)

where Q = (Q1, . . . ,QN ) are fluxes. If we assume that one
of the fields included in q(r) is the local energy e(r), then the
time evolution generated by (3.19) is also energy preserving
[indeed, the total energy E = ∫

d re(r) is preserved].
Now we proceed to entropy conservation. In this setting we

shall say that the time evolution generated by (3.19) is entropy
preserving if there exists a field s(r) that is a pointwise function
of q(r) and its time evolution induced by (3.19) is another local
conservation law

∂s

∂t
= −div Q(s), (3.20)

where Q(s) is the flux corresponding to the field s(r). Godunov
has noted (see Refs. [49–52]; the proof is made by a direct
verification) that the time evolution generated by (3.19) is
entropy preserving if (3.19) can be cast in the form

∂q∗

∂t
= −div Q∗, (3.21)

where q∗ = ∂s̃
∂q and Q∗ = ∂S̃

∂q ; s̃(r) is pointwise and a con-

cave function of q(r), and S̃(r) = [(S̃)1(r),(S̃)2(r),(S̃)3(r)]
is a pointwise vector function of q(r). The field
s(r), whose time evolution is governed by the lo-
cal conservation law (3.20), is given by s(r) = −s̃(r) +
〈q∗,q〉(r) and the flux Q(s) by Q(s) = −S̃ + 〈 Q∗,q〉(r).
We use the following notation: 〈q∗,q〉(r) = q∗

1 (r)q1(r) +
· · · + q∗

N (r)qN (r) and (〈 Q∗,q〉)i(r) = (Q∗
1)i(r)q1(r) + · · · +

(Q∗
N )i(r)qN (r); i = 1,2,3. Consequently, the total entropy

S(1→0) that is preserved during the time evolution governed
by (3.21) is S(1→0) = ∫

d rs(r).
As an illustration, we note that the equations governing

the time evolution of the classical Euler fluid mechanics have
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indeed the form (3.19) of local conservation laws with q(r)
given in Sec. II A 5. Moreover, the time evolution of the local
entropy is governed by (3.20) [and thus the time evolution
equations of the classical Euler fluid mechanics can be put into
the Godunov form (3.21)], provided the local scalar pressure
arising in the fluxes Q(r) is related to the local entropy in the
same way as at the equilibrium thermodynamics (i.e., we make
the local equilibrium assumption).

We have seen in Sec. III C 1 that the Euler fluid mechanics
equations also represent the Hamiltonian dynamics that is
compatible with the dissipative dynamics involving the local
equilibrium entropy. The Euler fluid dynamics is thus both
Hamilton and Godunov. The question of how these two types
of dynamics relate in general remains unanswered.

D. GENERIC dynamics

We now combine the dissipative and the nondissipative
dynamics introduced in Secs. III B and III C 1. We begin by
noting that both are generated by a potential. In the dissipative
dynamics it is the entropy S(1→0)(x1) and in the nodissipative
dynamics it is the energy E(x1). The gradient of entropy x∗

1 (a
covector) is transformed in dissipative dynamics into a vector
by the dissipation potential [which we regard as a generalized
Riemannian structure; see the text in Sec. III B that follows
Eq. (3.8)] and the gradient of energy E(x1) is transformed into
a vector in nondissipative dynamics by the Poisson bivector L.
We now need to know how the energy behaves in the dissipative
dynamics and how the entropy behaves in the nondissipative
dynamics. If the energy is included in �(1→0)(x1), then the
energy remains inactive (i.e., it does not change) in the
dissipative time evolution. This property is guaranteed by
degeneracy of the dissipation potential  (i.e., degeneracy of
the generalized Riemannian structure). In the nondissipative
dynamics it is, on the other hand, the entropy that remains
inactive. This property is guaranteed by degeneracy of the
Poisson bivector L (or, equivalently, by requiring that the
entropy is a Casimir of the Poisson bracket corresponding
to L).

The degeneracies of L and  that we have just recalled
allow us to combine the entropy and the energy into one
potential, �(1→0)(x1,x

∗
0 ), introduced in (2.1) and called a

thermodynamic potential, and use only this single potential
to generate both dissipative and nondissipative dynamics. We
thus write the combination of the dissipative and nondissipa-
tive time evolution equation in the form

ẋ1 = 1

e∗
0

Lx
†
1 − 

x
†
1
, (3.22)

where L is a Poisson bivector. The superscript dagger
denotes conjugation with respect to �(1→0)(x1,x

∗
0 ), i.e., x

†
1 =

∂�(1→0)(x1,x
∗
0 )

∂x1
.

We make six comments.
Comment 1. We note that the time evolution generated

by (3.22) manifestly describes the approach Level 1 →
Level 0 that we discussed in the static reduction in Sec. II.
Indeed, as t → ∞, solutions to (3.22) approach (x∗

0 )eq(x0)
that are solutions of (2.2). The explicit presence of the
parameters belonging to Level 0 in (3.22) displays manifestly
the required degeneracies of the dissipative and nondissipative

time evolution equations introduced in Secs. III B and III C
and also displays the fact that this dynamics addresses two
levels, namely Level 1 and Level 0.

Comment 2. A brief history of (3.22) was reviewed at
the beginning of Sec. III. We recall that (3.22) was called
GENERIC in Refs. [29,30] and that two monographs [53,54]
and, more recently, a review article [33] have been written
about equations such as (3.22). However, the search for
alternative, and possibly more appropriate from both the
mathematical and the physical points of view, formulations
continues. As for the nondissipative term [the first term
on the right-hand side of (3.22)], we mention in particular
the Godunov dynamics recalled in Sec. III C 2 and the
investigation reported in Ref. [55]. Regarding the dissipative
(the second) term on the right-hand side of (3.22), there are
even more variations that have been suggested. We recall
that the formulation (3.22) with dissipation potential is the
same as the one introduced in Ref. [29]. Similar but not
equivalent formulations have been suggested in Refs. [56,57].
In this paper we are contributing to the clarification of the
physical content of the dissipation potential by relating it to the
classical results of nonequilibrium thermodynamics reported
in Refs. [5–8] and by deriving its consequences (3.13) in the
specific context of chemical kinetics.

Comment 3. From the geometrical point of view, (3.22)
is a vector field generated by one potential, namely the
thermodynamic potential �(1→0)(x1,x

∗
0 ), and involving two

geometrical structures transforming covectors (e.g., gradients
of a potential) into vectors. One such structure is the Poisson
structure playing this role in the Hamiltonian mechanics.
If we limit ourselves only to this type of dynamics, then
the Poisson structure is preserved during the time evolution
(this is a direct consequence of the Jacobi identity). The
second structure is a generalized Riemannian structure (i.e.,
the dissipation potential ) playing this role in the gradient
dynamics. Neither of these two structures are preserved in the
GENERIC time evolution generated by (3.22). It would be
much more satisfactory from the geometrical point of view
to reformulate (3.22) into a form in which there is only one
geometrical structure that has the following two properties:
(i) It transforms gradients of two different potentials into
vector fields representing both dissipative and nondissipative
dynamics and (ii) it is preserved during the time evolution.
In such reformulation the difference between dissipative and
nondissipative part of the vector field is not in the geometrical
structure [as it is in (3.22)] but in generating potentials.

It turns out [32–35] that such a reformulation is indeed
possible in the setting of contact geometry. In addition to its
geometrical appeal, it also has a physical appeal. The time
evolution (3.22) formulated in the setting of contact geometry
becomes a continuous sequence of Legendre transformations
that are an infinitesimal version of the Legendre transforma-
tions making the static reductions in Sec. II.

Comment 4. We have combined in (3.22) the dissipative
and nondissipative time evolution by simply adding the vector
fields generating them. This simple addition of two differ-
ent vector fields has, however, very complex consequences
on trajectories generated by the resulting vector field. Let
us recall, for instance, the situation in the particular case
of the Boltzmann kinetic equation. The Boltzmann vector
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field is a sum of the Hamiltonian part and the dissipative
part that is the Boltzmann collision term described in
Sec. III B 1.

In the absence of the Hamiltonian part, the collision
term in the vector field drives f (r, p) to local Maxwellian
distributions [obtained as a solution to X(r, p, p1, p′, p′

1) =
−f ∗(r, p) − f ∗(r, p1) + f ∗(r, p′) + f ∗(r, p′

1) = 0] that form
a submanifold of M1. The submanifold, which we denote
MlocM ⊂ M1, is an image of a mapping [ρ(r), p(r),e(r)] ↪→
M1. The exact form of the mapping (see, e.g., Ref. [36]) is not
important for the argument below.

In the absence of the collision term, the Hamiltonian part of
the vector field is solved by f (r, p) → f (r − p

m
t, p), where

f (r, p) is the distribution function at the initial time t = 0 and
the entropy remains unchanged during the time evolution.

If both the Hamiltonian and the collision terms are present
(i.e., if we consider the complete Boltzmann kinetic equation),
then f (r, p,t) tends to the total equilibrium manifoldMtotM ⊂
MlocM ⊂ M1 at which [ρ(r), p(r),e(r)] are independent of r .
This means that the Hamiltonian vector field, that by itself
does not cause any dissipation, brings about an additional
dissipation if added to the dissipative collision-generated
vector field. The proof of this statement, initiated by Grad
in Ref. [36] and brought into full generality by Villani in
Ref. [46], is an example of beautiful mathematics involved in
an analysis of solutions of equations of GENERIC type (3.22)
(see also Ref. [58]).

Comment 5. The Jacobi identity plays an important role
in Hamiltonian mechanics. It guarantees that the Pois-
son structure of M1, defined by L, is preserved dur-
ing the time evolution (indeed, the Jacobi identity guar-
antees that d

dt
{A,B} = { dA

dt
,B} + {A,dB

dt
} = {{A,E},B} +

{A,{B,E}} = {{A,B},E}). Its role in GENERIC dynamics
is obviously much less important. In the presence of the
dissipative part, the Poisson structure is not preserved in
GENERIC dynamics irrespective of L satisfying or not
satisfying the Jacobi identity. The properties of the bivector L

that also continue to be very important in GENERIC dynamics
are its antisymmetry and its degeneracy. This observation
has also been made in the contact structure formulation of
GENERIC (see Refs. [32–35]).

Comment 6. If the dissipation potential (x1,x
∗
1 ) is chosen

to be quadratic [i.e., (x1,x
∗
1 ) = 1

2 〈x∗
1 ,�(x1)x∗

1 〉 with �(x1) �
0; see (3.4)], then the dissipative part of the vector field
becomes

ẋ1 = [�(x1)x∗
1 ]x∗

1 =Sx1
. (3.23)

There are, however, many well-established dissipative time
evolutions (including the one arising in chemical kinetics
and the Boltzmann collision dynamics, both discussed in
Sec. III B 1), that cannot be cast into this form. There
is therefore a general agreement that the dissipation time
evolution equation (3.23) is not sufficiently general and has
to be modified. There are at least two ways to make this
modification. First, by replacing (3.23) with (3.8), which uses
the dissipation potential, and, second, by replacing (3.23) with

ẋ1 = [�(x1,x
∗
1 )x∗

1 ]x∗
1 =Sx1

�(x1,x
∗
1 ) � 0. (3.24)

There is no general agreement regarding which of these two
methods is preferred. Below, we shall recall the arguments
in favor of the dissipation potential formulation. We shall
then also mention arguments favoring (3.24) and argue against
them.

1. Arguments in favor of the dissipation potential

(1) The time evolution (3.23) represents gradient dynam-
ics. The vector field [i.e., the right-hand side of (3.23)] is a
gradient of the potential S(x1) (i.e., a covector) transformed
into a vector by the Riemannian structure represented by the
matrix �(x1). The dissipation potential formulation (3.8) still
keeps the geometrical interpretation of a generalization of the
gradient dynamics. The transformation of a covector into a
vector is not made in (3.8) by a Riemannian structure but by
making a gradient of another potential, namely the dissipation
potential. On the other hand, the formulation (3.24) has no
geometrical interpretation that would relate it to the gradient
dynamics.

(2) The dissipation potential is an essential ingredient of
dissipation thermodynamics that has always been a part of
the classical nonequilibrium thermodynamics. We have shown
its relation to the dissipative time evolution in Sec. III A. In
addition, the dissipative time evolution was presented in the
form of (3.8) in Refs. [37,59].

(3) Recently, the formulation (3.8) has arisen in an attempt
to arrive at a mesoscopic time evolution from the microscopic
particle dynamics, see Bruce Turkington’s paper [3], and also
in an attempt to extend Onsager’s derivation of the Onsager
reciprocity relations to the far-from-equilibrium nonlinear
regime in Ref. [60].

(4) The Maxwell-Onsager relations (3.13) hold only if
the chemical kinetics is generated by the dissipation po-
tential. These (and those that are similar to them) relations
represent thus a concrete tool to prove or disprove exper-
imentally the dissipation potential formulation of chemical
kinetics.

2. Arguments against the dissipation potential
and our answers to them

(1) The dissipation potential formulation (3.8) excludes
an antisymmetric Casimir-type contribution (not producing
entropy and not being a part of the Hamiltonian dynamics)
to the time evolution. Such a contribution is, on the other
hand, allowed in the time evolution generated by (3.23) or
(3.24). Our answer to this objection is presented in Ref. [45].
Essentially, we argue that the Casimir-type terms can always
be seen as remnants of a reduction made from extended (in
the sense discussed in the next section) formulations as the
antisymmetric coupling should be given by the Hamiltonian
part of the evolution.

(2) The time evolution (3.24) is clearly more general than
the time evolution equation (3.8) [note that if we equate the
right-hand sides of (3.8) and (3.24), then the symmetry of
the second derivative of the dissipation potential represents
a restriction on the matrix �(x1,x

∗
1 )]. In principle (see

Ref. [61]), it is therefore possible to identify a dissipative
time evolution that is experimentally proven to exist and that
can be formulated in the form (3.24) but cannot be formulated
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in the form (3.8). While, of course, we cannot exclude this
possibility, we consider the experimental observations needed
for such a proof as very difficult, if not impossible, to realize.

(3) Some attempts to derive mesoscopic dynamics from
the microscopic particle dynamics indicate a preference for
the formulation (3.24) (e.g., Kleeman’s paper [4]). To answer
this objection we recall that any path from the microscopic
to a mesoscopic dynamics is just one of essentially infinitely
many paths that all involve many types of steps in which
some details, judged as unimportant, are ignored. If one
path indicates some features of the mesoscopic dynamics,
then another one may indicate a different feature. Indeed,
the path followed by Turkington in Ref. [3] indicates that
the mesoscopic dissipative dynamics has the form (3.8). As
admitted in Kleeman’s paper [4], further research should be
conducted to fully compare the Kleeman’s and Turkington’s
approaches, and compatibility between Kleeman’s approach
and GENERIC with dissipation potential should be thus further
studied. Moreover, the preference for the dissipative bracket
in Ref. [4] is established within the weak-noise limit, where
the irreversible evolution is linearized. Therefore, one should
not regard that preference as a decisive argument for choosing
a dissipation bracket instead of a dissipation potential.

IV. EXTENSION: LEVEL 1 → LEVEL 2

So far, we have looked from Level 1 toward a more
macroscopic Level 0. In this section we look in the opposite
direction toward a more microscopic level that we shall
call Level 2. The reason for this new interest may be, for
example, the finding that our experimental observations on
Level 1 appear to be impossible to reproduce and/or that
they do not agree with Level 1 theoretical predictions. As an
example, we recall a need for more details in both experimental
and theoretical fluid mechanics when the fluids of interest
become the polymeric fluids arising in the processing of plastic
materials. Where shall we find the pertinent extra details?
There are several sources of inspiration for the enlargement of
the state space M1. We mention three but we shall follow only
the third one.

The archetype example of the first source of inspiration
for choosing extra state variables is the above-mentioned
extension of the classical fluid mechanics motivated by its
failure to explain polymeric fluids. The pertinent details in
this example are identified by turning to the microscopic
constituents of the fluids. Some of their characteristics then
become the extra state variables that, in combination with
x1, become state variables x2 in the extended state space
M2. Specifically, in polymeric fluids, we model the complex
polymeric macromolecules as, for example, dumbbells and
include their mechanical characteristics (as, e.g., extension and
orientation) into the set of the state variables used in classical
fluid mechanics (see Ref. [62]).

The second inspiration is based on the way the experimental
observations are made and on the form in which the results
appear. Let the experimental observations be limited to those
that constitute the experimental basis of Level 1. Moreover,
let the results of the measurements be found, strictly speaking,
impossible to reproduce since the results appear to fluctuate.
The occurrence of fluctuations may be due to an increase in

the precision of the measurements and/or due to the fact that
some details ignored in Level 1 begein to play an important
role in the situations under investigation. The problem now
is to use the extra information provided by an analysis of
fluctuations to introduce a new, more microscopic, Level 2,
on which the results of extended (i.e., Level 2) experimental
observations would not fluctuate (or would still fluctuate but
with a diminished intensity). One way to achieve this goal was
presented in Ref. [63].

The third inspiration comes from dissipation thermody-
namics. In Sec. III A we introduced its static version and,
subsequently, in Sec. III B, we implemented it into the time
evolution in M1. Now we shall develop its dynamic version
(i.e., we step up to a more microscopic Level 2 on which
J or quantities related to it play the role of independent
state variables) and then we shall combine the time evolution
arising in it with the time evolution in M1. From the physical
point of view, the essence of this approach to extensions is an
introduction of additional inertia into the time evolution in M1.
The vector field (or a part of it) generating the time evolution
on Level 1 is taken as an independent state variable and a new
time evolution equation is constructed for it. The first examples
of this type of extension were presented in research of heat
transfer [64] and in the fluid mechanics that was viewed as a
theory reduced from the Boltzmann equation (Grad’s hierarchy
introduced in Ref. [36]; see also Refs. [9–12]). In the rest of
this paper we explore the extrainertia extensions in the light
of the reduction theory developed in the previous sections and
work out some examples.

We begin by introducing a new state space M2 as a Cartesian
product of M1 and M

(J )
1 [i.e., M2 = M1 × M

(J )
1 ; (x1,J) ∈ M2].

As we did in the two previous sections in the investigation of
reductions, we shall also make a distinction between static and
dynamic versions in the investigation of extensions.

First, we turn to the static extension. We make it by extend-
ing the entropy S(1→0)(x1) into a new entropy S(2→0)(x1,J)
defined in the space M2. We make the extension by

S(2→0)(x1,J) = S(1→0)(x1) − K�( J), (4.1)

where K is a phenomenological coefficient having the physical
dimension of time.

Having extended the entropy from M1 to M2 we now reduce
it back to M1. By making the Legendre transformation in J
we arrive at

S(1→0)(x1) + K(X). (4.2)

In the absence of constraints, the reduced entropy S(2←1) =
S(1→0)(x1) + K[(X)]X=0 = S(1→0)(x1) is thus [due to the
properties (3.1) of the dissipation potential] the original
entropy in the space M1. If, on the other hand, we impose
the constitutive relation (3.6), we arrive at

S(2←1) = S(1→0)(x1) + K[(X)]X=�x∗
1
, (4.3)

which is a new entropy in the space M1. We note that this new
entropy involves quantities appearing in the dissipative time
evolution that takes place in M1.

Now we turn to the dynamic version of the above static
extension and reduction. Our objective is to construct an
equation governing the time evolution of x2 = (x1,J) and thus
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establish a new level of description that we call Level 2. The
time evolution in M2 is required to be compatible with Level
0 and Level 1 in the following sense.

Requirement of the compatibility with Level 0. The time
evolution in M2 reduces Level 2 to Level 0. This means that
the equation governing the time evolution of x2 possesses the
structure identified in Sec. III (in which Level 1 is now replaced
by Level 2).

Requirement of the compatibility with Level 1. The approach
x2 → x0 proceeds in two stages. In the first stage, called a fast
time evolution, x2 → x1 and Level 1 (with the time evolution
taking place on it) is recovered. In the second stage, called a
slow time evolution, the original time evolution in M1 makes
the passage x1 → x0.

First, we shall formulate Level 2 dynamics in a simple
finite dimensional setting. Next, we make it more explicit in
the context of heat transfer.

A. Toy illustration

The three levels, called Level 0, Level 1, and Level 2, are
introduced as follows.

1. Level 0

The state space M0 is a one-dimensional space with
elements x0 = e0, where e0 has the physical interpretation of
energy. The fundamental thermodynamic relation is S(0)(e0).

2. Level 1

The state space M1 is a two-dimensional space with
elements x1 = (q,e). The quantity e is the same as in Level
0 and the physical interpretation of q is left unspecified (it
could be a scalar characterizing the internal structure, for
instance, a free volume). The fundamental thermodynamic
relation is S(1→0)(q,e), and the mapping M1 → M0 is given
by �(1→0) : (q,e) 	→ e0.

Now we introduce time evolution into M1. We assume that
the time evolution is only dissipative and that the energy e

is conserved. Moreover, if we choose X = q∗, then the time
evolution (3.8) becomes

d

dt

(
q

e

)
=

(
q∗

0

)
(4.4)

in the entropy representation and

d

dt

(
q

s

)
=

(
q∗

q∗q∗

)
(4.5)

in the energy representation.
From these time evolution equations we then obtain

S(0←1)(e) = [S(1→0)]q∗=0, that is, the fundamental thermody-
namic relation in M0 implied by the fundamental thermody-
namic relation S(1→0)(q,e) in M1.

3. Level 2

The state space M2 is a three-dimensional space with
coordinates x2 = (p,q,e). The quantities q and e are the same
as in M1, the physical interpretation of the new quantity p

can be deduced from the time evolution equations introduced
below. The extension of Level 1 to Level 2 is made by adopting

a new state variable p. The mappings �(2→0) and �(2→1) are
given by (p,q,e) 	→ e and (p,q,e) 	→ (q,e), respectively, and
the fundamental thermodynamic relation is S(2→0)(p,q,e).

Now we introduce the time evolution into M2 that is
compatible with Level 0 and Level 1. We prove below that
one such time evolution is governed by

d

dt

⎛
⎝p

q

e

⎞
⎠ =

⎛
⎝ 0 −1 q∗

e∗

1 0 −p∗
e∗

− q∗
e∗

p∗
e∗ 0

⎞
⎠

⎛
⎝0

0
1

⎞
⎠ +

⎛
⎝�p∗

0
0

⎞
⎠. (4.6)

Note that, typically, q is an even variable while p is an odd
variable with respect to the time-reversal transformation, see,
e.g., Ref. [45]. Therefore, evolution of q is reversible while
evolution of p contains both reversible and irreversible parts.

4. Compatibility of Level 2 with Level 1 and Level 0

First, we prove that (4.6) is indeed a particular realization
of the GENERIC equation (3.22). In order to see that, we have
to show that the first term on the right-hand side of (4.6) is
Hamiltonian. We note that energy in the entropy representation
is simply E(p,q,e) = e and thus its gradient is indeed the
vector (0,0,1)T . Next, we have to prove that the matrix that
multiplies the vector (0,0,1)T is a Poisson bivector L. To
prove it, we pass from the entropy representation to the energy
representation [i.e., from the state variables (p,q,e) to (p,q,s)]
by use of the transformation p = p,q = q,s = s(p,q,e). This
transformation between two representations is one to one since
e∗ = se > 0. Under this transformation the matrix that multi-

plies the vector (0,0,1)T in (4.6) transforms into (
0 −1 0
1 0 0
0 0 0

).

This transformed matrix is indeed a Poisson bivector (Jacobi
identity and antisymmetry are clearly fulfilled) and thus also
the matrix that multiplies the vector (0,0,1)T in (4.6) is a
Poisson bivector (because the transformation between two
representations is one to one). In the energy representation
we also clearly see that the entropy S(2→0)(p,q,e) = s(p,q,e)
is a Casimir of the Poisson bracket corresponding to it.

Now we turn our attention to the second term on the right-
hand side of (4.6). This term is the same as the second term
on the right-hand side of (3.22) provided � is a dissipation
potential satisfying the properties (3.1). We have thus proven
that (4.6) is indeed a particular representation of the GENERIC
equation (3.22).

Next we turn to the compatibility of the Level 2 dynamics
(4.6) with the Level 1 dynamics (4.4). Let S(2→0) and � be
chosen in such a way that p, which has been adopted on Level
2 as an extra state variable, evolves faster than q (we recall that
e does not evolve at all). We limit ourselves to the stage in the
time evolution in which p has already reached its stationary
value that is determined, as we see in the first equation in (4.6),
by

1

e∗ q∗ + �p∗ = 0. (4.7)

In this stationary state, p becomes completely enslaved to
q and remains in this relation to q for the rest of the time
evolution. This means that after reaching the stationary state
[obtained as a solution to (4.7)] p evolves in time only due to
the time evolution of q.
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Equation (4.7) can be rewritten as

∂

∂p∗

[
−�(p∗) + q∗

(
−p∗

e∗

)]
= 0, (4.8)

which yields a function p̃∗(q∗). Note that the term q∗ should be
interpreted as a force while the term (−p∗

e∗ ) is the corresponding
flux which is identified as the right-hand side of the evolution
equation for q. When function p̃∗(q∗) is plugged back into
this last expression, a new dissipation potential  is obtained,
which is a Legendre transformation of the original dissipation
potential � [with respect to the variable p∗ when taking into
account Eq (4.7)],

(q∗) = −�[p̃∗(q∗)] − q∗ p̃∗(q∗)

e∗ . (4.9)

Moreover, derivative of this new dissipation potential with
respect to q∗ is given simply by

q∗ = − p̃∗(q∗)

e∗ . (4.10)

This completes the Legendre transformation analogously to
the procedure presented in Sec. III A.

For example, if the dissipation potential on Level 2 is
quadratic, i.e.,

�(p∗) = 1
2�(p∗)2, (4.11)

the relaxed value of p∗ becomes

p̃∗(q∗) = − 1

�

q∗

e∗ (4.12)

and the dissipation potential on Level 1 is equal to

(q∗) = 1

2

1

�

(
q∗

e∗

)2

. (4.13)

When function p̃∗ is plugged back into evolution equations
(4.6), the equations become

d

dt

⎛
⎝p

q

e

⎞
⎠ =

⎛
⎝ 0

q∗

0

⎞
⎠. (4.14)

That means that the Legendre transformation of the dissipation
potential on Level 2, �, to the dissipation potential on Level
1, , changes the evolution equations on Level 2, Eq. (4.6),
to evolution where p has already relaxed and q evolves only
irreversibly (in contrast to evolution of q on Level 2, which
was reversible).

As for the compatibility of Level 2 with Level 0, this
property of solutions to (4.6) now follows simply from the
compatibility of Level 2 with Level 1 (proven in the previous
paragraph) and from the compatibility of Level 1 with Level 0
that we have proven on Level 1.

Before proceeding to a more detailed investigation of the
approach of Level 2 to Level 1, we make an important
observation about (4.6). Let us look at (4.6) through the eyes
of the standard viewpoint of extensions. This means that our
point of departure is the equation governing the time evolution
of q, namely the second equation in (4.6) (i.e., dq

dt
= − 1

e∗ p
∗).

Instead of specifying the flux p∗ arising on its right-hand side
(in other words, instead of providing a constitutive relation for
the flux p∗) we adopt it as a new state variable and propose

an equation governing its time evolution. Subsequently, by
requiring the compatibility of the total time evolution with
equilibrium thermodynamics (i.e., Level 0) and the original
Level 1 time evolution, we specify, or at lest restrict the choice
of, the extra time evolution equation. We can indeed regard the
genesis of (4.6) in this way but with one important difference.
The state variable that we have adopted as an independent
state variable is not the flux itself but its conjugate. We see
clearly that the recipe for extension is not to take the flux
and make it a new state variable but to take a flux and make
its conjugate a new state variable. This important feature of
extensions has been missed in their initial investigations [9–12]
because Grad’s hierarchy [36], which has served as a prototype
of extensions, does not display this feature due to its very
narrow limitation of ideal gases.

How do we interpret these two levels of description
physically? Consider a ball on a billiard table. If one only
considers the position of the ball, one makes observations on
Level 1, where q and energy constitute the state variables.
Evolution on this level of description is irreversible and thus
it is only observed that the ball tends to stop its motion.

If, on the other hand, one considers also the momentum
of the ball, one makes a more detailed observation, and the
evolution is partly reversible (given by the Poisson bracket) and
partly irreversible (given by the dissipation potential �, which
describes friction between the ball and the table). This more
detailed level of description is nothing more than classical
Newtonian mechanics.

Consider now that there is a smooth pit in the center of the
billiard table. The ball eventually stops in the pit due to gravity,
but before that happens it rolls around the pit or even a little
away from the pit and then back. Entropy on Level 1 reaches
its maximum when the ball is in the pit. But as the ball may
even go away from the pit for some period of time, the entropy
may be even decrease for a period of time. An observer on
Level 1 would refer to this phenomenon as fluctuations.

On the other hand, an observer measuring also momentum
of the ball, i.e., on Level 2, would not see any fluctuations since
he or she would simply integrate Newton’s laws to predict
the trajectory of the ball precisely. Fluctuations thus can be
regarded as an invitation to a higher level of description, where
they become predictable, and what seems to be irreversible on
a less-detailed level of description may become reversible on
a more detailed level.

5. Fast time evolution

We continue by putting the approach of Level 2 into Level
1. We want to make the time evolution (we have already
given it a name, we called it a fast time evolution) into the
GENERIC form (3.22). In other words, we look for a particular
realization of (3.22), generating the fast time evolution to make
the reduction M2 → M1.

We summarize what we already know about the fast time
evolution. First, we know that the states approached as t → ∞
are solutions to (2.2). Second, we note that in this particular
example of the fast time evolution there is no Hamiltonian part
(at least near equilibrium, where variables with the same parity
are coupled by the dissipation potential, see Ref. [45]). We
therefore concentrate on the dissipative part and look for the
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thermodynamic potential �(2→1)(p,q,e) that generates it. The
problem of identification of the fast time evolution is in fact a
problem of separating the time evolution equations (4.6) into
two uncoupled equations, one governing the fast time evolution
of p in which (q,e) appear as parameters and the other equation
that is Eq. (4.4) governing the slow time evolution of q. If
the time evolution equations (4.6) were linear, then such a
separation would represent block diagonalization. A detailed
analysis of the solutions to (4.6) that would be needed to
solve the separation problem [note that such an analysis would
first require us to provide a more detailed specification of
the quantities in (4.6) (like the entropy S(2→0)(p,q,e) and the
dissipation potential �] will not be made in this paper. Instead,
we only suggest one possible fast time evolution and verify
that it possesses the essential property that we require from it,
namely that it leads to states that are solutions to (2.2).

The time evolution equation that we propose for the fast
time evolution is

dp

dt
= −�(2→1)�(2→1)

p (p,q,e), (4.15)

where

�(2→1)(p,q,e) = −S(2→0)(p,q,e) − q∗p (4.16)

and�(2→1) is a positive constant,
We see immediately that (4.15) is indeed a particular

realization of (3.22). Note that the dissipation potential in
this particular realization of (3.22) is the quadratic potential
1
2�(2→1)(p∗)2, where a star denotes the conjugate with respect
to �(2→1). We also see that solutions to (4.15) approach, as
t → ∞, solutions to �(2→1)

p (p,q,e) = 0 and that the equation
�(2→1)

p (p,q,e) = 0 is the same as Eq. (2.2). Consequently, we
have proven that solutions to (4.15) approach the stationary
state determined by (2.2).

Next, we recall that if we regard the GENERIC equa-
tion (3.22) as an equation representing reduction to Level 0,
then the potential �(2→0)(p,q,e) that generates it becomes
the fundamental thermodynamic relation on Level 0 if it is
evaluated at the state reached as t → ∞, which is the state
obtained as a solution to �(2→0)

p (p,q,e) = 0; �(2→0)
q (p,q,e) =

0. We shall thus interpret [�(2→1)(p,q,e)]
�

(2→1)
p (p,q,e)=0 as

the fundamental thermodynamic relation on Level 1 implied
by its compatibility with both Level 0 and Level 2. In
accordance with the terminology introduced in Sec. II we
denote this fundamental relation by the symbol S(1←2)(q,e).
In order to express this relation more explicitly, we realize
that [�(2→1)(p,q,e)]

�
(2→1)
p (p,q,e)=0 is a Legendre transformation

of S(2→0)(p,q,e) in the p variable [in accordance with the
notation introduced in Sec. II, we denote it S(2→0)∗(p∗,q,e)]
that is evaluated at p∗ = −q∗ . Consequently [compare with
(4.3)],

S(1←2)(q,e) = [S(2→0)∗(p∗,q,e)]p∗=−q∗ . (4.17)

This fundamental thermodynamic relation involves quanti-
ties belonging to both Level 2 and Level 0. It is in particular the
entropy S(2→0)(p,q,e), addressing the compatibility of Level 2
with Level 0, and the dissipation potential � (or, alternatively,

) emerging in the dissipative part of the time evolution on
Level 2.

B. Heat transfer

Let us now invert the extension proposed in the preceding
example to show how a method of reduction from a higher
(more microscopic) level of description works. Namely, it is
the purpose of this section to illustrate the reduction from the
level of Maxwell-Cattaneo heat transfer (Level 2), where state
variables are x2 = [w(r),s(r)] (w being a vector field odd with
respect to time-reversal transformation [45]), to Fourier (Level
1), where state variables are x1 = s(r).

The Poisson bracket on Level 2 is, see Ref. [65],

{A,B} =
∫

d rs(∂iAsBwi
− ∂iBsAwi

)

+
∫

d rwi(∂jAwi
Bwj

− ∂jBwi
Awj

), (4.18)

where Awi
stands for ( ∂A

∂wi
)
s
. In the entropy representation,

where state variables are e(r) and w(r), the Poisson bracket of
a functional A and energy

E =
∫

d re(r) (4.19)

becomes

{A,E}

=
∫

d rAwi

[
−s(w,e)∂i

1

e∗ + ∂j

(
wi

w∗
j

e∗

)
+ wj∂i

(
w∗

j

e∗

)]

+
∫

d rAe

{
∂i

[
s

w∗
i

(e∗)2

]
− ∂j

[
wi

w∗
i w

∗
j

(e∗)2

]}
. (4.20)

See, for example, Ref. [21] or Ref. [19] to see how one can
pass between the two representations. Note that the conjugate
variables were identified with the corresponding derivatives of
entropy.

The dissipation potential is specified as

�(e,e∗,w∗) = 1

2

∫
d r�(e,e∗)(w∗)2, (4.21)

where �(e,e∗) is a yet-unspecified function of e and e∗.
Evolution equations are then recovered from Ȧ = 〈Ax2 ,ẋ2〉 =∫

d rAwi
ẇi + Aeė, in particular,

∂wi

∂t
= −s∂i

1

e∗ + ∂j

(
wi

w∗
j

e∗

)
+ wj∂i

(
w∗

j

e∗

)
+ �w∗

i
,

(4.22a)

∂e

∂t
= ∂i

[
s

w∗
i

(e∗)2

]
− ∂j

[
wi

w∗
i w

∗
j

(e∗)2

]
. (4.22b)
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The Legendre transformation introduced in Sec. III A works on � as follows:

∂

∂w∗

⎛
⎜⎜⎜⎝−�(e,e∗,w∗) +

∫
d r e∗︸︷︷︸

Xe

{
∂i

[
s

w∗
i

(e∗)2

]
− ∂j

[
wi

w∗
i w

∗
j

(e∗)2

]}
︸ ︷︷ ︸

Je

⎞
⎟⎟⎟⎠ = 0, (4.23)

where the force is given simply by conjugate to e and the flux
is identified as the right-hand side of the evolution equation
for e. Equation (4.23) can be rewritten as[

�δij +
(

∂i

1

e∗

)
wj +

(
∂j

1

e∗

)
wi

]
w̃∗

j (e∗) = s∂i

1

e∗ . (4.24)

Entropy on the Maxwell-Cattaneo level is usually defined
as

S(2→0) =
∫

d rs(1→0)[e(r)] − 1

2
βw(r)2, (4.25)

see Ref. [65]. The static reduction has been shown to
be compatible with simple maximization of entropy with
constraints. Therefore, the static reduction from the Maxwell-
Cattaneo level with entropy (4.25) and projection �(w,e) = e

eventually leads to

w = 0 everywhere (4.26)

on Level 1. This way Eq. (4.24) simplifies to

w̃∗(e∗) = 1

�(e,e∗)
s(1→0)∂i

1

e∗ (4.27)

and, when plugging this condition and (4.26) into the evolution
equation for w, Eq. (4.22a), one obtains that variable w no
longer evolves on Level 1, i.e., the time derivative is equal to
zero.

Plugging Eq. (4.27) and Eq. (4.26) back into Eq. (4.23)
leads to a new dissipation potential:

(e∗) = 1

2

∫
d r

[s(1→0)(e)]2

�

(
∇ 1

e∗

)2

, (4.28)

the derivative of which is

e∗ = ∇
{

[s(1→0)(e)]2

�(e,e∗)(e∗)2
∇ 1

e∗

}
− [s(1→0)(e)]2

2�2(e,e∗)(e∗)8

∂

∂e∗

× [�(e,e∗)(e∗)4](∇e∗)2. (4.29)

To fulfill the degeneracy that energy (4.19) is conserved during
the evolution prescribed by this dissipation potential, it is
necessary to require that

�(e,e∗) = �0(e)

(e∗)4
, (4.30)

where �0(e) is an arbitrary positive function. This relation
resembles the Stefan-Boltzmann law where energy density
of a photon gas is also proportional to the fourth power of
temperature. It should be noted, however, that this does not
restrict the final dependence of the measured heat conductivity
since the dependence of �0 on e still provides enough
generality for the conductivity to be a general function
of temperature. In summary, the Legendre transformation

provides a new dissipation potential on the lower level of
description.1

When condition (4.30) is satisfied, the last term in Eq. (4.29)
disappears and the evolution equations on Level 1 become

∂wi

∂t
= 0, (4.31)

∂e

∂t
= e∗ = ∇

{
[s(1→0)(e)]2(e∗)2

�0(e)
∇ 1

e∗

}
, (4.32)

which is the standard Fourier heat conduction when [s(1→0)]e
is substituted for e∗. Note that these equations are precisely
those equations obtained from (4.22) when relations (4.27) and
(4.26) are plugged into it. The advantage of the formulation
in terms of dissipation potential  is that it is demonstrated
that the GENERIC structure is respected by the reduction from
Level 2 to Level 1.

Interestingly, conservation of energy on Level 1, which
is expressed by the degeneracy of dissipation potential ,
restricts dissipation potential �, which lives on Level 2, to
some extent. In other words, the Poisson bracket has to be
related to � in such a way that the dissipation potential
constructed by the Legendre transformation, , satisfies the
required degeneracy.

In summary, starting with Maxwell-Cattaneo heat transfer
(Level 2), one can formulate evolution on Level 1 (Fourier
heat transfer) by use of a simple Legendre transformation.
Indeed, Legendre transformation in the sense of the dissipative
thermodynamics of dissipation potential on Level 2 leads to
the dissipation potential on Level 1. Evolution of variable
e, which is reversible on Level 2, becomes irreversible on
Level 1. Moreover, the structure of GENERIC is respected by
this reduction.

Before ending this example we put the results obtained
above into the context of some other results obtained for
the Cattaneo heat conduction. Joseph and Preziosi [66]
provide an extensive review of the problem of heat waves,
and many properties of the Maxwell-Cattaneo equation are
demonstrated. The reduction to Fourier heat conduction is
done by either setting certain parameters to particular values
(e.g., relaxation time to zero) or by choosing an appropriate
relaxation memory kernel.

Although indeed such reductions provide efficient passages
to more macroscopic forms of particular equations, they
lack a common structure which could be used for other
physical problems. From the thermodynamic point of view, an
example of such a structure can be the GENERIC equation (or
the contact geometric reformulation), where the principle of

1Note that the new dissipation potential is indeed convex in the
sense that 〈e∗,e∗ 〉 � 0, as can be verified easily.
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MIROSLAV GRMELA, VÁCLAV KLIKA, AND MICHAL PAVELKA PHYSICAL REVIEW E 92, 032111 (2015)

maximum entropy is extensively used during the reductions. In
summary, the advantage of our treatment of the reduction from
Maxwell-Cattaneo to Fourier is that a unifying thermodynamic
structure is proposed that provides the passage between levels
of description.

Note, however, that we do not have the ambition to
derive any general and unique method of reductions. Rather,
we propose a new method of reduction, the generality and
elegance of which is provided by the GENERIC equation,
and a particular realization of which is demonstrated on the
passage from Maxwell-Cattaneo to Fourier. The advantage
of the method to previously developed methods, see, e.g.,
Ref. [67], is, for example, that no neglect of higher-order terms
is needed. Still, we do not claim that the method be the only
one possible.

Instead, we are trying to identify a multiscale structure that
is compatible with GENERIC (with a dissipation potential
formulation) so one could change levels of description in
a thermodynamically sound way. Additionally, we do not
provide a generalization of nonequlibrium thermodynamics
nor it is a new thermodynamic framework. We look for new
relationships and applications within a general, well-defined,
and studied nonequilibrium thermodynamics.

Kalospiros et al. [68] describe heat transfer within the so-
called one-generator formalism [53], where the Hamiltonian
structure is not recongnized. A more general treatment of heat
transfer can be found in Ref. [65], where the Hamiltonian
structure of heat transfer is found and particular approaches
to heat transfer are shown to be realizations of the GENERIC
equation. In Ref. [68] the reduction is carried out by again
setting certain parameters to particular values, which can be an
efficient but not general method. In summary, the description
of heat transfer in the present manuscript is based on a
more general framework of the GENERIC equation than the
treatment in Ref. [68], and the reduction is carried out by use
of a thermodynamic procedure that transcends the particular
application to heat transfer.

V. CONCLUDING REMARKS

Complex macroscopic systems (as, for instance, the sys-
tems studied in biology) cannot be investigated on a single
level of description. There is a need for a more abstract
theory that could be applied on different levels and that would
also include a structure addressing relations among the levels.
We consider the classical nonequilibrium thermodynamics as
a nucleus from which the more abstract multilevel theory
unfolds. In this paper we continue the development in this
direction that began in Refs. [33–35] and references cited
therein. Our attention is focused in this paper in particular
on the dissipation thermodynamics developed in Refs. [5,6,8])
and extended thermodynamics developed in Refs. [9–12,36].

An abstract formulation of these two branches of nonequi-
librium thermodynamics is then shown to provide a uni-
fied setting for several well-established mesoscopic theories.
Moreover, some of the results obtained in the abstract theory
become new results in the specific mesoscopic theories. The
mesoscopic theories serving as examples in this paper include
Gibbs equilibrium statistical mechanics, Boltzmann kinetic
theory, chemical kinetics, and Fourier and Maxwell-Cattaneo

heat transfer. The new results obtained in the examples include
reciprocity relations among extents of reactions and affinities
in chemical kinetics (3.13) and a systematic reduction from
the Maxwell-Cattaneo heat transfer to the standard Fourier
heat transfer.
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APPENDIX: SIMPLE MAXIMIZATION OF ENTROPY

The purpose of this section is to show that the final result
of the static reduction introduced in Sec. II is compatible
with simple maximization of entropy with constraints given
by variables x0.

Let us, therefore, start with the final result of the static
reduction, entropy S(0←1), and go backwards so the relation to
entropy S(1→0) is revealed explicitly. Using Eq. (2.4), entropy
on Level 0 becomes

S(0←1)(x0) = −S(0)�[(x�
0)eq(x0)] + 〈(x�

0)eq(x0),x0〉
= S(1→0){(x1)eq[(x�

0)eq(x0)]}
− 〈(x�

0)eq(x0),�{(x1)eq[(x�
0)eq(x0)]} − x0〉.

(A1)

Plugging Eqs. (2.3) and (2.4) into Eq. (2.5) leads to

∂

∂x�
0

∣∣∣∣
(x�

0 )eq(x0)

(−S(1→0)[(x1)eq(x�
0)]+〈x�

0,�[(x1)eq(x�
0)]〉) = x0.

(A2)
The derivative of the first term can be rewritten as

∂

∂x�
0

∣∣∣∣
(x�

0 )eq(x0)

S(1→0)[(x1)eq(x�
0)]

= ∂S(1→0)

∂x1

∣∣∣∣
(x1)eq[(x�

0 )eq(x0)]

∂(x1)eq

∂x�
0

∣∣∣∣
(x�

0 )eq(x0)

Eq. (II.2)=
〈
(x�

0)eq(x0),
∂�

∂x1

∣∣∣∣
(x1)eq[(x�

0 )eq(x0)]

∂(x1)eq

∂x�
0

∣∣∣∣
(x�

0 )eq(x0)

〉
.

(A3)

Plugging this last equation into Eq. (A2) finally leads to

�[(x1)eq(x�
0)eq(x0)] = x0, (A4)
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and the entropy on Level 0 implied by Level 1, Eq. (A1),
becomes

S(0←1)(x0) = S(1→0){(x1)eq[(x�
0)eq(x0)]}. (A5)

To show that this indeed is the result that can be obtained by
simple maximization of entropy S(1→0) with constraints given
by the projection �, it is sufficient to show that the point at
which that entropy is evaluated is the same in both procedures.

Simple maximization of entropy S(1→0) leads to

S
(0←1)
MaxEnt(x0) = S(1→0)[(x1)MaxEnt(x0)], (A6)

where (x1)MaxEnt(x0) is the solution to

∂

∂x1

∣∣∣∣
(x1)MaxEnt(x0)

(S(1→0) − 〈(x�
0)MaxEnt(x0),�(x1)〉) = 0, (A7)

�[(x1)MaxEnt(x0)] = x0. (A8)

From Eqs. (2.5) and (A4) it follows, moreover, that

(x1)MaxEnt(x0) = (x1)eq[(x�
0)eq(x0)] and (A9a)

(x�
0)MaxEnt(x0) = (x�

0)eq(x0). (A9b)

Comparing Eq. (A5) to Eq. (A6) with (A9) then leads to
the conclusion that the entropy on Level 0 implied by Level
1 by the static reduction, S(0←1), is the same entropy that can
be obtained by simple maximization of entropy S(1→0) with
the constraint that the the image of projection � is constant,
S

(0←1)
MaxEnt(x0). The static reduction thus indeed can be regarded

as a procedure of entropy maximization, but the full static
reduction, as presented in Sec. II, provides more information
about the passage from Level 1 to Level 2 as functions �(0)�

and S(0)� are revealed. Moreover, the formulation of the static
reduction in terms of Legendre transformations is useful in the
contact-geometric formulation of thermodynamics [35].
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