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Unification of field theory and maximum entropy methods for learning probability densities
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The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data
is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as
providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches.
Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify
these two methods by showing that every maximum entropy density estimate can be recovered in the infinite
smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can
be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness
limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory
thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative
(lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary
for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
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I. INTRODUCTION

Research in nearly all fields of science routinely calls for
the estimation of smooth probability densities from finite
sampled data [1,2]. Indeed, the presence of histograms in a
large fraction of the scientific literature attests to this need.
But the problem of how to go beyond a histogram and recover
a smooth probability distribution has yet to find a definitive
solution, even in one dimension.

The reader might find this state of affairs surprising. Many
different methods for estimating smooth probability densities
are well known and commonly used. One of the most popular
methods is kernel density estimation [1,2]. Kernel density
estimation is easy to carry out, but this approach has little
theoretical justification and there is no consensus on certain
basic aspects of its use, such as how to choose a kernel width
or how to treat data points near a boundary [3]. Bayesian
inference of a Gaussian mixture model is another common
method. This approach, however, requires that one assume an
explicit functional form for the density that one wishes to learn.

Concepts from statistical physics have given rise to two
alternative approaches to the density estimation problem:
maximum entropy (MaxEnt) [4,5] and Bayesian field theory
[6–14]. Each of these approaches has a firm but distinct
theoretical basis. MaxEnt derives from the principle of max-
imum entropy as described by Jaynes in 1957 [4]. Bayesian
field theory, which is also referred to as “information field
theory” in some of the literature [9], instead uses the standard
methods of Bayesian inference together with priors that
weight possible densities according to an explicit measure
of smoothness without requiring that these densities have
a particular functional form. Perhaps because the principles
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underlying these two methods are different, the relationship
between these approaches has remained unclear.

MaxEnt density estimation is carried out as follows. One
first uses sampled data to estimate values for a chosen set of
moments, e.g., mean and variance. Typically, all moments up
to some specified order are selected [5,15]. The probability
density that matches these moments while having the maxi-
mum possible entropy is then adopted as one’s estimate. All
other information in the data is discarded. One can therefore
think of the MaxEnt estimate as a null hypothesis reflecting
the assumption that there is no useful information in the data
beyond the values of the specified moments [16].

In the Bayesian field theory approach, one first defines a
prior on the space of continuous probability densities. This
prior is formulated using a scalar field theory that favors
smooth probability densities over rugged ones. The data are
then used to compute a Bayesian posterior, and from this
posterior one identifies the maximum a posteriori (MAP)
density estimate. Simple field theory priors require that one
assume an explicit smoothness length scale �. However, an
optimal value for � can be learned from the data in a natural way
if one instead adopts a prior formed from a scale-free mixture
of these simple field theories [6–8]. Scale-free Bayesian field
theories thus provide a way to estimate probability densities
without having to specify any tunable parameters.

One problem with the field theory priors that have been
considered for this purpose thus far [6–8] is that they impose
boundary conditions on candidate densities. This assumption
of boundary conditions is standard practice in physics; it
greatly aids analytic calculations and is often well motivated by
physical reasoning. In the density estimation context, however,
boundary conditions limit the types of data sets for which
such field theory priors would be appropriate. MaxEnt, by
contrast, does not impose any boundary conditions on the
density estimates it provides.

Here I describe a class of Bayesian field theory priors that
have no boundary conditions. These priors yield MAP density
estimates that exactly match the first few moments of the data.
In the � → ∞ limit, such MAP estimates become identical to
MaxEnt estimates constrained by these same moments. More
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generally, I show that a MaxEnt density estimate matched to
any moments of the data can be recovered from Bayesian field
theory in the infinite smoothness limit; one need only choose
a field theory prior that defines “smoothness” appropriately.

This unification of Bayesian field theory and MaxEnt
density estimation further suggests a natural way to test
the validity of the MaxEnt hypothesis against one’s data. If
Bayesian field theory identifies � = ∞ as being optimal for
one’s data set, the MaxEnt hypothesis is validated. If instead
the optimal � is finite, the MaxEnt hypothesis is rejected in
favor of a nonparametric density estimate that matches the
same moments of the data but has lower entropy.

This paper is structured as follows. Section II describes
the derivation of an action, S�, that governs the posterior
probability of densities under a specific class of Bayesian
field theories. Section III describes how the MAP density,
which minimizes this action, can be uniquely derived without
assuming any boundary conditions. A differential operator I
call the “bilateral Laplacian” plays a central role in eliminating
the need for boundary conditions.

Section IV shows that such MAP density estimates reduce
to MaxEnt estimates in the � → ∞ limit. Section V derives an
expression for a quantity, the “evidence ratio” E(�), that allows
one to select the optimal value for � given the data. The large �

behavior of this evidence ratio is shown to be characterized by
a “K coefficient,” the sign of which provides a novel analytic
test of the MaxEnt assumption.

Section VI formalizes a discrete-space representation of this
Bayesian field theory inference procedure. In addition to being
essential for the computational implementation of this method,
this discrete representation greatly clarifies why no boundary
conditions are required to derive the MAP density when one
makes use of the bilateral Laplacian. Section VII describes how
to compute the MAP density (to a specified precision) at all
length scales �. Section VIII illustrates this density estimation
approach on simulated data sets. A summary and discussion
are provided in Sec. IX.

Detailed derivations of various results from Secs. II through
VI are provided in Appendices A–D. Appendix E presents
details of a predictor-corrector homotopy algorithm that allows
the density estimation computations described in this paper to
be carried out. An open source software implementation of this
algorithm for one-dimensional density estimation is provided
[17]. Finally, Appendix F gives an expanded discussion of
how Bayesian field theory relates to earlier work in statistics
on “maximum penalized likelihood” [3,18,19].

II. BAYESIAN FIELD THEORY

The main results of this paper are elaborated in the context
of one-dimensional density estimation. Many of these results,
however, are readily extended to higher dimensions. This issue
is discussed in more detail later.

Suppose we are given N data points x1,x2, . . . ,xN sampled
from a smooth probability density Qtrue(x) that is confined
to an interval of length L. Our goal is to estimate Qtrue from
these data. Following Ref. [8], we first represent each candidate
density Q(x) in terms of a real field φ(x) via

Q(x) = e−φ(x)∫
dx ′e−φ(x ′) . (1)

This parametrization ensures that Q is positive and normalized
[20]. Next we adopt a field theory prior on φ. Specifically we
consider priors of the form

p(φ|�) = e−S0
� [φ]

Z0
�

, (2)

where

S0
� [φ] =

∫
dx

L

�2α

2
(∂αφ)2 (3)

is the “action” corresponding to this prior and

Z0
� =

∫
Dφ e−S0

� [φ] (4)

is the associated “partition function.” The real parameter �

is a length scale below which fluctuations in φ are strongly
damped. The parameter α, on the other hand, reflects a
fundamental choice in how we define “smoothness.” In this
paper we consider arbitrary positive integer values of α, for
reasons that will become clear. It should be noted, however,
that previous work has explored the consequences of using
noninteger values of α [7].

As shown in Appendix A, this choice of prior allows us
to compute an exact posterior probability p(φ|data,�) over
candidate densities. We find that

p(φ|data,�) = e−S�[φ]

Z�

, (5)

where

S�[φ] =
∫

dx

L

{
�2α

2
(∂αφ)2 + NLRφ + Ne−φ

}
(6)

is a nonlinear action,

Z� =
∫

Dφ e−S�[φ] (7)

is the corresponding partition function, and

R(x) = N−1
N∑

n=1

δ(x − xn) (8)

is the raw data density.
The derivation of Eq. (6) is somewhat subtle. In particular,

the action S�[φ] gives a posterior probability p(φ|data,�) that
is not related to p(φ|�) via Bayes’s rule. However, upon
marginalizing over the constant component of φ, one finds
that p(Q|data,�) is indeed related to p(Q|�) via Bayes’s rule.
This latter fact is sufficient to justify the use of Eq. (6) in what
follows. See Appendix A for details.

III. ELIMINATING BOUNDARY CONDITIONS

We define the MAP field φ� as the field that minimizes the
action S�. To obtain a differential equation for φ�, previous
work [6–8] imposed periodic boundary conditions on φ and
used integration by parts to derive

�2α(−1)α∂2αφ� + NLR − Ne−φ� = 0. (9)

With the periodic boundary conditions in place, this differen-
tial equation has a unique solution. However, imposing these
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boundary conditions amounts to assuming that Qtrue(x) is the
same at both ends of the x interval. It is not hard to imagine
data sets for which this assumption would be problematic.

It is true, of course, that Eq. (9) requires boundary
conditions in order to have a unique solution. The reason
boundary conditions are needed is the appearance of the
standard α-order Laplacian operator, (−1)α∂2α . However, we
assumed boundary conditions on φ in order to derive Eq. (9)
in the first place. It therefore has not been established that
boundary conditions are required for S�[φ] to have a unique
minimum.

In fact, S�[φ] has a unique minimum without the imposition
of any boundary conditions on φ. The boundary conditions on
φ assumed in previous work [6–8] are therefore unnecessary.
Indeed, from Eq. (6) alone we can derive a differential equation
that uniquely specifies the MAP field φ�.

We start by rewriting the action as

S�[φ] =
∫

dx

L

{
�2α

2
φ�αφ + NLRφ + Ne−φ

}
, (10)

where the differential operator �α is defined by the require-
ment that

ϕ�αφ = (∂αϕ)(∂αφ) (11)

for any two fields ϕ and φ. In what follows we refer to �α as
the “bilateral Laplacian of order α.” Note that �α is a positive
semidefinite operator, since∫

dx φ�αφ =
∫

dx (∂αφ)2 � 0 (12)

for every real field φ.
We now prove that φ� is unique by showing that S�[φ]

is a strictly convex function of φ when N > 0. Consider the
change in S�[φ] upon the perturbation φ → φ + εψ , where φ

and ψ are two real fields, ε is an infinitesimal number, and
the field ψ is normalized so that L−1

∫
dx ψ2 = 1. The action

will change by an amount

S�[φ + εψ] = S�[φ] + ε

∫
dx ψ

δS

δφ

∣∣∣∣
φ

+ ε2

2

∫
dx

{
�2α

L
ψ�αψ + N

L
e−φψ2

}
+ · · · .

(13)

Because �α is positive semidefinite, the O(ε2) term will
be bounded from below by ε2N exp[− max(φ)] and must
therefore be positive. The Hessian of S� is therefore positive
definite at every φ, establishing the strict convexity of S� and
thus the uniqueness of φ�.

The requirement that δS�/δφ = 0 gives the following
differential equation for φ�:

0 = �2α�αφ� + NLR − Ne−φ� . (14)

From the argument above we see that this differential equation,
unlike Eq. (9), has a unique solution without the imposition of
any boundary conditions on φ�.

This lack of a need for boundary conditions in Eq. (14),
despite the need for boundary conditions in Eq. (9), is due
to a fundamental difference between the standard Laplacian

and the bilateral Laplacian. This difference occurs only at the
boundaries of the x interval. Roughly speaking, �αφ is well
defined at both xmin and xmax, whereas (−1)α∂2αφ is not. This
point will be clarified in Sec. VI, when we formulate our
Bayesian field theory approach on a finite set of grid points.

In the interior of the x interval, however, the bilateral
Laplacian is identical to the standard Laplacian. To see this,
we integrate Eq. (11) over x and use integration by parts to
derive∫

dx ϕ�αφ =
∫

dx ϕ[(−1)α∂2α]φ

+
α−1∑
b=0

[(−1)b(∂α−b−1ϕ)(∂α+bφ)]xmax
xmin

. (15)

The second term on the right-hand side vanishes if the test
function ϕ is chosen so that ∂bϕ = 0 at xmin and xmax for
b = 0,1, . . . ,α − 1. The value of such test functions ϕ within
the interior of the interval are unconstrained, and so

�αφ(x) = (−1)α∂2αφ(x), for all xmin < x < xmax. (16)

IV. CONNECTION TO MAXIMUM ENTROPY

From its definition in Eq. (11), we see that the bilateral
Laplacian is symmetric and real. This operator is therefore
Hermitian and possesses a complete set of orthonormal eigen-
vectors with corresponding real eigenvalues; see Appendix B
for a discussion of this spectrum.

The kernel of �α is particularly relevant to the density
estimation problem. A field φ is in the kernel of �α if and only
if ∫

dx φ�αφ =
∫

dx (∂αφ)2 = 0. (17)

From this we see that the kernel of �α is equal to the space of
polynomials of order α − 1.

In particular, φ = 1 is in the kernel of �α for all positive
integers α. As a result, multiplying Eq. (14) on the left by
unity and integrating gives

∫
dx e−φ� = L. The MAP density

Q�, which is defined in terms of φ� by Eq. (1), is thereby seen
to have the simplified form,

Q� = e−φ�

L
. (18)

If we multiply Eq. (14) on the left by other polynomials of
order α − 1 and integrate, we further find that∫

dx Q� xk =
∫

dx R xk, k = 1, . . . ,α − 1. (19)

Therefore, at every length scale �, the first α − 1 moments of
the MAP density Q� exactly match those of the data.

At � = ∞, the MAP field φ∞ is restricted to the kernel of
the bilateral Laplacian. The corresponding density thus has the
form

Q∞(x) = 1

L
exp

(
−

α−1∑
k=0

akx
k

)
, (20)
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where the values of the coefficients ak are determined by
Eqs. (18) and (19). Q∞ is therefore identical to the MaxEnt
density that matches the first α − 1 moments of the data [5].

At � = 0, the kinetic term in Eq. (14) vanishes. As a result,
setting δS0/δφ = 0 gives

Q0(x) = R(x). (21)

We therefore see that the MAP density Q0 is simply the
“histogram” of the data, i.e., the normalized sum of delta
functions centered at each data point. When we formulate
our inference procedure on a grid in Sec. VI, we will see
that Q0 = R indeed becomes a bona fide histogram with bins
defined by our choice of grid.

The set of MAP densities Q� thus forms a one-parameter
“MAP curve” in the space of probability densities. This MAP
curve extends from the data histogram at � = 0 to the MaxEnt
density at � = ∞. Every density Q� along this MAP curve
exactly matches the first α − 1 moments of the data.

More generally, the MaxEnt density estimate constrained
to match any set of moments can be recovered in the infinite
smoothness limit of an appropriate Bayesian field theory. To
see this, consider a MaxEnt estimate QME chosen to satisfy
the generalized moment-matching criteria

∫
dx QME fj =

∫
dx R fj , j = 1,2, . . . ,J (22)

for some set of user-specified functions f1(x), f2(x), . . ., fJ (x).
A Bayesian field theory that recovers this MaxEnt estimate in
the infinite smoothness limit can be readily constructed by
using a prior defined by the action

S0
ξ [φ] =

∫
dx

L

ξ

2
φ�φ, (23)

where ξ is a (positive) smoothness parameter and � is a
positive semidefinite operator whose kernel is spanned by the
specified functions f1, f2, . . ., fJ together with the constant
function f0(x) = 1. The posterior probability on φ will then
be governed by the action

Sξ [φ] =
∫

dx

L

{
ξ

2
φ�αφ + NLRφ + Ne−φ

}
. (24)

Following the same line of reasoning as above, we find that the
MAP density Qξ , corresponding to the field φξ that minimizes
Sξ , will satisfy

∫
dx Qξ fj =

∫
dx R fj , j = 0,1, . . . ,J (25)

regardless of the value of ξ . In the infinite smoothness limit
(ξ → ∞), the MaxEnt density will be recovered, i.e.,

Q∞(x) = 1

L
exp

⎛
⎝−

J∑
j=0

ajfj (x)

⎞
⎠ = QME(x), (26)

where the coefficients a0,a1, . . . ,aj are determined by
Eq. (25).

V. CHOOSING THE LENGTH SCALE

To determine the optimal value for �, we compute
p(data|�) = ∫

Dφ p(data|φ)p(φ|�). This quantity, commonly
called the “evidence,” forms the basis for Bayesian model
selection [6,7,21,22].

For the problem in hand, the evidence vanishes when α > 1
regardless of the data. The reason for this is that p(Q|�) is
an improper prior; see Appendix C. However, the evidence
ratio E = p(data|�)/p(data|∞) is finite for all � > 0. Using
a Laplace approximation, which is valid for large N , we find
that

E(�) = eS∞[φ∞]−S�[φ�]

√
detker[e−φ∞ ] detrow[L2α�α]

η−α det[L2α�α + ηe−φ� ]
, (27)

where η = N (L/�)2α . Here the subscripts “row” and “ker”
indicate restriction to the row space and kernel of �α ,
respectively; the e−φ� terms inside the determinants stand for
matrices that have the values e−φ�(x) (for all xs) arrayed along
the main diagonal and zeros everywhere else. See Appendix C
for the derivation of Eq. (27).

By construction, the evidence ratio E(�) approaches unity
in the large � limit. Whether this limiting value is approached
from above or below is relevant to the question of whether
� = ∞ is optimal and thus whether the MaxEnt hypothesis
is consistent with the data. Using perturbation theory about
η = 0 (i.e., � = ∞), we find that

ln E = Kη + O(η2), (28)

where the coefficient K is [23]

K =
∑
i > α

Nv2
i − zii

2λi

+
∑
i > α

j � α

z2
ij + vizijj

2λiζj

−
∑
i > α

j,k � α

vizij zjkk

2λiζj ζk

.

(29)

Here λi and ψi(x) (i = 1,2, . . .) denote the eigenvalues and
eigenfunctions of L2α�α and are indexed so that λi = 0 for i �
α. The eigenfunctions are normalized so that

∫
dx L−1ψiψj =

δij , and in the degenerate subspace (i,j � α) they are oriented
so that

∫
dx Q∞ψiψj = δij ζj for some positive real numbers

ζj . The other indexed quantities are vi = ∫
dx (Q∞ − R)ψi ,

zij = ∫
dx Q∞ψiψj , and zijk = ∫

dx Q∞ψiψjψk .
Equation (29) provides a plug-in formula that can be used

to assess the validity of the MaxEnt hypothesis. If K > 0,
there is guaranteed to be a finite value of � that has a larger
evidence ratio than � = ∞. In this case the MaxEnt estimate
is guaranteed to be nonoptimal. On the other hand, if K < 0,
then � = ∞ is a local optimum that may or may not be a global
optimum as well. Numerical computation of E over all values
of � is thus needed to resolve whether the MaxEnt hypothesis
provides the best explanation of the data in hand.
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VI. DISCRETE SPACE REPRESENTATION

In this section we retrace the entire analysis above in the
discrete representation, i.e., where the continuous x interval
is replaced by an evenly spaced set of G grid points. This
discrete representation is necessary for the computational
implementation of our field theoretic density estimation
method. Happily, our main findings above are seen to hold
exactly upon discretization. This discrete representation also
sheds light on how the bilateral Laplacian differs from the
standard Laplacian and why this difference eliminates the need
for boundary conditions.

We consider G grid points evenly spaced throughout the
interval [xmin,xmax]. Specifically, we place grid points at

xi = xmin + h

(
n − 1

2

)
, n = 1,2, . . . ,G, (30)

where h = L/G is the grid spacing. In moving to this discrete
representation, functions of x become G-dimensional vectors
with elements denoted by the subscript n. For instance, the field
φ(x) becomes a vector with elements φn. Integrals become
sums, i.e., ∫

dx f (x) → h

G∑
n=1

fn, (31)

and path integrals over φ become G-dimensional integrals over
the elements φn, i.e.,∫

Dφ →
∫ ∞

−∞
dφ1

∫ ∞

−∞
dφ2 · · ·

∫ ∞

−∞
dφG. (32)

We denote differential operators in this discrete repre-
sentation with a subscript G. The derivative operator, ∂G,
becomes a (G − 1) by G matrix having elements (∂G)nm =
h−1(−δn,m + δn+1,m). For instance, setting G = 8 gives the 7
by 8 matrix,

∂8 = 1

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0
0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(33)

Similarly, the standard α-order Laplacian becomes a (G − 2α)
by G matrix, given by (−1)α∂G−2α+1 · · · ∂G−1∂G. For example,
choosing α = 3 and G = 8 yields the a 2 by 8 Laplacian matrix

− ∂6
8 = 1

h6

(−1 6 −15 20 −15 6 −1 0

0 −1 6 −15 20 −15 6 −1

)
. (34)

Because 2α elements are eliminated from the vector φ� upon application of the standard Laplacian, the discrete version of Eq. (9)
provides only G − 2α equations for the G unknown values of φ�. Thus 2α additional constraints, typically provided in the form
of boundary conditions, are needed to obtain a unique solution.

By contrast, the α-order bilateral Laplacian is represented by the G by G matrix �α
G = (∂α

G)�∂α
G, where ∂α

G =
∂G−α+1 · · · ∂G−1∂G. Indeed, again choosing α = 3 and G = 8, we recover an 8 by 8 bilateral Laplacian matrix

�3
8 = 1

h6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 3 −1 0 0 0 0
−3 10 −12 6 1 0 0 0

3 −12 19 −15 6 1 0 0
−1 6 −15 20 −15 6 −1 0

0 −1 6 −15 20 −15 6 −1
0 0 −1 6 −15 19 −12 3
0 0 0 −1 6 −12 10 −3
0 0 0 0 −1 3 −3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

The middle two rows of �3
8 match those of −∂6

8 , reflecting the
equivalence of bilateral Laplacians and standard Laplacians
in the interior of the x interval. However, �3

8 contains six
additional rows, three at either end. These are sufficient to
specify a unique solution for the eight elements of the φ� vector.
More generally, the discrete version of Eq. (14) provides G

equations for the G unknown elements of φ� and is therefore
able to specify a unique solution without the imposition of any
boundary conditions.

Using the bilateral Laplacian, we can readily define a
discretized version of the field theory prior p(φ|�) by adopting
the action

S0
� [φ] = �2α

2G

∑
n,m

�α
nmφnφm. (36)

This leads to the posterior action

S�[φ] =
∑
n,m

{
�2α

2G
�α

nmφnφm

+ NL

G
Rnφnδnm + N

G
e−φnδnm

}
, (37)

where Rn is the value of the data histogram at grid point n, i.e.,
the fraction of data points discretized to grid point n, divided
by bin width h.

The corresponding equation of motion is

�2α
∑
m

�α
nmφ�m + NLRn − Ne−φ�n = 0. (38)
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FIG. 1. (Color) Illustration of the predictor-corrector homotopy algorithm. (a) The MAP curve (brown) is approximated using a finite set of
densities {R,Q�r

, . . . ,Q�−2 ,Q�−1 ,Q�0 ,Q�1 ,Q�2 , . . . ,Q�m
,Q∞}. First the MAP density at an intermediate length scale �0 = L/

√
G is computed.

A predictor-corrector algorithm is then used to extend the set of MAP densities outward to larger and to smaller values of �. These � values are
chosen so that neighboring MAP densities lie within a geodesic distance of � ε of each other. (b) Each step Q�t ′ → Q�t

has two parts. First, a

predictor step (magenta) computes a new length scale �t and an approximation Q
(0)
�t

of Q�t
. A series of corrector steps Q

(0)
�t

→ Q
(1)
�t

→ Q
(2)
�t

· · ·
(orange) then converges to Q�t

.

The kernel of �α
G is spanned by vectors φ whose elements

have the polynomial form φn = ∑α−1
b=0 abx

b
n . The analogous

moment-matching behavior therefore holds exactly in the
discrete representation, i.e.,

h

G∑
n=1

Q�n xk
n = h

G∑
n=1

Rn xk
n, (39)

where Q� is related to φ� via Eq. (18). In the � → ∞ limit, the
MAP density Q∞ again has the analogous form

Q∞n = 1

L
exp

(
−

α−1∑
k=0

akx
k
n

)
, (40)

where the coefficients ak are chosen to satisfy Eq. (39). Thus,
the connection between Bayesian field theory and MaxEnt
density estimation remains intact upon discretization.

The derivation of the evidence ratio in Eq. (27) follows
through without modification. The only change is that the
functional determinants now become determinants of finite-
dimensional matrices. The derivation of the K coefficient in
Eq. (29) also follows in a similar manner; the only change to
Eq. (29) is that the the index i now ranges from 1 to G, not 1
to ∞.

VII. COMPUTING DENSITY ESTIMATES

To compute density estimates using this field theory
approach, we work in the discrete representation described
in the previous section. First, the user specifies the number of
grid points G as well as a bounding box [xmin,xmax] for the data.
MAP densities Q� are then computed at a finite set of length
scales {0,�r , · · · ,�−2,�−1,�0,�1,�2, · · · ,�m,∞}, as illustrated
in Fig. 1(a). This “string of beads” approximation to the MAP
curve allows us to evaluate the evidence ratio E over all length
scales and, to finite precision, identify the length scale �∗ that
maximizes E.

This approximation of the MAP curve is computed using
a predictor-corrector homotopy algorithm [25]. An overview
of this algorithm is now given. Please refer to Appendix E
for algorithm details. I note that this algorithm provides more

transparent precision bounds on the computed Q� densities
than does the previously reported algorithm of Ref. [8].

First, an intermediate length scale �0 is chosen and the
corresponding MAP density Q�0 is computed. This density,
Q�0 , serves as the starting point from which to trace the MAP
curve towards both larger and smaller length scales [Fig. 1(a)].
The algorithm then proceeds in both directions, stepping from
length scale to length scale and updating the MAP density at
each step.

During each step, the subsequent length scale is chosen so
that the corresponding MAP density is sufficiently similar to
the MAP density at the preceding length scale. Specifically,
in stepping from �t ′ to �t , the algorithm chooses �t so that the
geodesic distance Dgeo (see Refs. [8,26]) between Q�t ′ and Q�t

matches a user-specified tolerance ε, i.e.,

Dgeo
[
Q�t

,Q�t ′
] ≡ 2 cos−1

(∫
dx
√

Q�t
Q�t ′

)
� ε. (41)

The value ε = 10−2 was used for the computations described
below and shown in Figs. 2 and 3. Stepping in the de-
creasing � direction is terminated at a length scale �r such
that Dgeo[Q�r

,R] < ε. Similarly, stepping in the increasing
� direction is terminated at a length scale �m such that
Dgeo[Q�m

,Q∞] < ε; the MaxEnt density Q∞ is computed at
the start of the algorithm essentially as described by Ormoneit
and White [15].

Each step along the MAP curve is accomplished in two parts
[Fig. 1(b)]. Given the MAP density Q�t ′ at length scale �t ′ , a
“predictor step” is used to compute both the next length scale
�t as well as an approximation Q

(0)
�t

to the corresponding MAP
density Q�t

. The repeated application of a “corrector step” is
then used to compute a series of densities Q

(1)
�t

,Q
(2)
�t

, . . . that
converges to Q�t

.
If the numerics are properly implemented, this predictor-

corrector algorithm is guaranteed to identify the correct MAP
density Q� at each of the chosen length scales �. This is because
the action S�[φ] is strictly convex in φ and therefore has a
unique minimum (as was shown in Sec. III). The distance
criteria in Eq. (41) further ensures that the stepping procedure
does not drastically overstep �∗. It is worth noting that, because
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FIG. 2. (Color) Density estimation without boundary conditions
using the α = 3 field theory prior. (a) N = 100 data points were
drawn from a simulated density Qtrue (black) and binned at G = 100
grid points. The resulting histogram (gray) is shown along with the
field theory density estimate Q�∗ (orange) and the corresponding
MaxEnt estimate Q∞ (blue). (b) The heat map shows the densities
Q� interpolating between the MaxEnt density at � = ∞ and the data
histogram at � = 0. (c) The log of the evidence ratio E is shown as a
function of �. (d) The differential entropy H = − ∫ dx Q� ln Q� [24]
is shown as a function of �; the entropy at � = ∞ is indicated by the
dashed line. Dotted lines in (b–d) mark the optimal length scale �∗.

�α
G is sparse, these predictor and corrector steps can be sped

up by using numerical sparse matrix methods.

VIII. EXAMPLE ANALYSES

Figure 2 provides an illustrated example of this density
estimation procedure in action. Starting from a set of sampled
data [Fig. 2(a), gray], the homotopy algorithm computes the
MAP density Q� at a set of length scales spanning the interval
� ∈ [0,∞] [Fig. 2(b)]. The evidence ratio E is then computed
at each of these chosen length scales using Eq. (27), and the
length scale �∗ that maximizes E is identified [Fig. 2(c)].
Q�∗ is then reported as the best estimate of the underlying
density [Fig. 2(a), orange]. If one further wishes to report
“error bars” on this estimate, other plausible densities Q

can be drawn from the posterior p(Q|data) as described in
Ref. [8].

The optimal length scale �∗ may or may not be infinite. If
�∗ = ∞, then Q�∗ is the MaxEnt estimate that matches the first
α − 1 moments of the data. On the other hand, if �∗ is finite as
in Fig. 2, then Q�∗ will have lower entropy than the MaxEnt
estimate [Fig. 2(d)] while still exactly matching the first α − 1
moments of the data. This reduced entropy reflects the use of
addition information in the data beyond the values of the first
α − 1 moments. It should be noted that �∗ is never zero due to
a vanishing Occam factor in this limit.

The density estimation procedure proposed in this paper
thus provides an automatic test of the MaxEnt hypothesis. It
can therefore be used to test whether Qtrue has a hypothesized
functional form. For example, using α = 3 we can test
whether our data was drawn from a Gaussian distribution.
This is demonstrated in Fig. 3. In these tests, when data were
indeed drawn from a Gaussian density, �∗ = ∞ was obtained
about 64% of the time [Fig. 3(a) and 3(d)]. By contrast,
when data were drawn from a mixture of two Gaussians,
the fraction of data sets yielding �∗ = ∞ decreased sharply
as the separation between the two Gaussians was increased
[Figs. 3(b), 3(c), 3(e), and 3(f)]. In a similar manner, this
density estimation approach can be used to test other functional
forms for Qtrue, either by using the bilateral Laplacian of
different order α, or by replacing the bilateral Laplacian
with a differential operator having a kernel spanned by other
functions whose expectation values one wishes to match to the
data.

The method used to select �∗ both here and in previous
work [6,7] is sometimes referred to as “empirical Bayes”: we
choose �∗ to be the value of � that maximizes p(data|�). By
contrast, Ref. [8] used a fully Bayesian approach by positing a
Jeffreys prior for p(�) and then choosing the length scale � that
maximizes p(data,�) ∼ p(data|�)p(�). It can be reasonably
argued that the empirical Bayes method adopted here is less
sensible than the fully Bayesian approach. However, in the
fully Bayesian approach, the assumed prior p(�) obscures the
large � behavior of the evidence ratio E. This large � behavior
is nontrivial and potentially useful.

As shown in Sec. V, the behavior of E in the large � limit
is governed by the K coefficient defined in Eq. (29). The
sign of the K coefficient can therefore be used to assess the
MaxEnt hypothesis without having to compute E at every
length scale. This suggestion is supported by the simulations
shown in Fig. 3. Here the sign of K (positive or negative)
performed well as a proxy for whether the MaxEnt estimate
was recovered (no or yes, respectively) from a full computation
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FIG. 3. (Color) The optimal estimated density for any particular data set might or might not have maximum entropy. Panels (a–c) show
three different choices for Qtrue (black), along with a histogram (gray) of N = 100 data points binned at G = 100 grid points. In each panel,
Qtrue was chosen to be the sum of two equally weighted normal distributions separated by a distance of (a) 0, (b) 2.5, or (c) 5. Panels (d–f)
show the evidence ratio curves computed for 100 data sets respectively drawn from the Qtrue densities in (a–c). Blue curves indicate �∗ = ∞;
orange curves indicate finite �∗. Titles in (d–f) give the percentage of data sets for which �∗ = ∞ was found. The heat maps shown in panels
(g–i) report the number of simulated data sets for which the K coefficient was positive or negative and for which the MaxEnt density was or
was not recovered.

of the MAP curve; see Figs. 3(g) [27], 3(h), and 3(i). These
results suggest that the K coefficient, for which Eq. (29)
provides an analytic expression, might allow an expedient test
of the MaxEnt hypothesis when computation of the entire MAP
curve is less feasible, e.g., in higher dimensions.

IX. SUMMARY AND DISCUSSION

Bialek et al. [6] showed that probability density estimation
can be formulated as a Bayesian inference problem using field
theory priors. Among other results, Ref. [6] derived the action
in Eq. (6) and showed how to use a Laplace approximation
of the evidence to select the optimal smoothness length scale
[28]. However, periodic boundary conditions were imposed
on candidate densities in order to transform the standard
Laplacian into a Hermitian operator. The MaxEnt density
estimate typically violates these boundary conditions, and
as a result the ability of Bayesian field theory to subsume
MaxEnt density estimation went unrecognized in Ref. [6] and
in follow-up studies [7,8].

Here we have seen that boundary conditions on candidate
densities are unnecessary. The bilateral Laplacian, defined in
Eq. (11), is a Hermitian operator that imposes no boundary
conditions on functions in its domain, yet is equivalent to the
standard Laplacian in the interior of the interval of interest.
Using the bilateral Laplacian of various orders to define field
theory priors, we recovered standard MaxEnt density estimates
in cases where the smoothness length scale was infinite. We

also obtained a novel criterion for judging the appropriateness
of the MaxEnt hypothesis on individual data sets.

Bayesian field theories can be constructed for any set
of moment-matching constraints. One need only replace the
bilateral Laplacian in the above equations with a differential
operator that has a kernel spanned by the functions whose mean
values one wishes to match to the data. The resulting field
theory will subsume the corresponding MaxEnt hypothesis
and thereby allow one to judge the validity of that hypothesis.
Analogous approaches for estimating discrete probability
distributions can be formulated by replacing integrals over
x with sums over states.

The elimination of boundary conditions removes a consid-
erable point of concern with using Bayesian field theory for
estimating probability densities. As demonstrated here and in
Ref. [8], the necessary Bayesian field theory computations are
readily carried out in one dimension. One issue not investigated
here, the large N assumption used to compute the evidence
ratio, can likely be addressed by using Feynman diagrams in
the manner of Ref. [9].

In the author’s opinion, the problem of how to choose an
appropriate prior appears to be the primary issue standing in the
way of a definitive practical solution to the density estimation
problem in one dimension. It is not hard to imagine different
situations that would call for qualitatively different priors,
but understanding which situations call for which priors will
require further study. The author is optimistic, however, that the
variety of priors needed to address most of the one-dimensional
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density estimation problems typically encountered might not
be that large.

This field theory approach to density estimation readily
generalizes to higher dimensions, at least in principle. Addi-
tional care is required in order to construct field theories that
do not produce ultraviolet divergences [6], and the best way
to do this remains unclear. The need for a very large number
of grid points also presents a substantial practical challenge.
Grid-free methods, such as those used by Refs. [11,29], might
provide a way forward.
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APPENDIX A: DERIVATION OF THE ACTION

Our derivation of the action S�[φ] in Eq. (6) is essentially
that used in Ref. [8]. This derivation is not entirely straightfor-
ward, however, and the details of it have yet to be reported.

The prior p(φ|�), which is defined by the action S0
� in

Eq. (3), is improper due to the differential operator �α having
an α-dimensional kernel; see Sec. III and Appendix C. To avoid
unnecessary mathematical difficulties, we can render p(φ|�)
proper by considering a regularized form of the action,

S0
� [φ] =

∫
dx

L

1

2
φ[�2α�α + ε]φ, (A1)

where ε is an infinitesimal positive number. All quantities of
interest, of course, should be evaluated in the ε → 0 limit.

The corresponding prior over Q is

p(Q|�) =
∫ ∞

−∞
dφc p(φ|�) =

√
2π

ε

e−S0
� [φnc]

Z0
�

. (A2)

Here we have decomposed the field φ using

φ(x) = φnc(x) + φc, (A3)

where φc is the constant Fourier component of φ and φnc(x)
is the nonconstant component of φ. The likelihood of Q given
the data is given by

p(data|Q) =
N∏

n=1

Q(xn). (A4)

Using the identity

a−N = NN

�(N )

∫ ∞

−∞
du e−N(u+ae−u), (A5)

which holds for any positive numbers a and N , we find that
the likelihood of Q can be expressed as

p(data|Q) = NN

LN�(N )

∫ ∞

−∞
dφce

− ∫ dx
L {NLRφ+Ne−φ}. (A6)

The prior probability of Q and the data together is therefore
given by

p(data,Q|�) = NN

LN�(N )

√
2π

ε

1

Z0
�

∫ ∞

−∞
dφc e−S�[φ], (A7)

where S�[φ] is the action from Eq. (6).
The “evidence” for �, i.e., the probability of the data given

�, is therefore given by

p(data|�) = NN

LN�(N )

√
2π

ε

Z�

Z0
�

, (A8)

where Z� is the partition function from Eq. (7). The posterior
distribution over Q is then given by Bayes’s rule:

p(Q|data,�) = p(data,Q|�)

p(data|�)
(A9)

=
∫ ∞

−∞
dφc

e−S�[φ]

Z�

. (A10)

This motivates us to define the posterior distribution over φ as

p(φ|data,�) ≡ e−S�[φ]

Z�

. (A11)

This definition of p(φ|data,�) is consistent with the formula
for p(Q|data,�) obtained in Eq. (A10), in that

p(Q|data,�) =
∫ ∞

−∞
dφc p(φ|data,�). (A12)

However, Eq. (A11) violates Bayes’s rule, since

p(φ|data,�) �= p(data,φ|�)

p(data|�)
. (A13)

This violation of Bayes’s rule is not a problem, however, since
φ itself is not directly observable; only Q is observable. Put
another way, Eq. (A11) violates Bayes’s rule only in the way
that it specifies the behavior of φc. This constant component
of φ, however, has no effect on Q.

Note that all of the above calculations have been exact;
no large N approximation was used. This contrasts with prior
work [6,7], which used a large N Laplace approximation to
derive the formula for S�[φ]. Also note that the regularization
parameter ε has vanished in the formulas for the posterior
distributions p(Q|data,�) and p(φ|data,�). However, this pa-
rameter still appears in the formula for the evidence p(data|�),
both explicitly and implicitly through the value of Z0

� .

APPENDIX B: SPECTRUM OF THE BILATERAL
LAPLACIAN

In the continuum limit, �α = (∂α)�∂α remains manifestly
Hermitian and therefore possesses a complete orthonormal
basis of eigenfunctions. We now consider the spectrum of this
operator. In what follows we will make use the ket notion of
quantum mechanics, primarily as a notational convenience.
For any two functions f and g and any Hermitian operator H ,
we define

〈f |H |g〉 ≡
∫

dx

L
f ∗Hg. (B1)
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Note the convention of dividing by L in the inner product
integral. This allows us to take inner products without altering
units.

From

〈φ|�α|φ〉 =
∫

dx

L
|∂αφ|2 � 0, (B2)

we see that �α is positive semidefinite. Equality in Eq. (B2)
obtains if and only if φ is a polynomial of order α − 1; such
polynomials therefore comprise the null space of �α .

More generally, any solution to the eigenvalue equation
�αψ = λψ implies that λ〈φ|ψ〉 = 〈φ|�α|ψ〉 for any test
function φ. Integrating this by parts gives

λ

∫ xmax

xmin

dxφ∗ψ =
α−1∑
b=0

[(−1)b(∂α−b−1φ∗)(∂α+bψ)]xmax
xmin

+ (−1)α
∫ xmax

xmin

dxφ∗∂2αψ. (B3)

Considering test functions φ(x) whose first α − 1 derivatives
all vanish at the boundary, we see that in the bulk of the interval,
xmin < x < xmax, the eigenfunction equation for the standard
α-order Laplacian holds, i.e.,

λψ = (−1)α∂2αψ. (B4)

Any function of �α must therefore be an eigenfunction of
the standard Laplacian as well. Moreover, all boundary terms
in Eq. (B3) must vanish because the values of φ and its
derivatives at the boundary are independent of its integral
with any function in the interior. The eigenfunction ψ must
therefore have the boundary behavior

0 = ∂α+bψ |xmin = ∂α+bψ |xmax for 0 � b < α. (B5)

Note in particular that this behavior is exhibited by polyno-
mials of order α − 1, which comprise the kernel of �α . If
λ > 0, the corresponding eigenfunction ψ will instead consist
of 2α terms of the form exp[iκx], where κ = λ1/2αeiπb/α

for b = 0,1, . . . ,2α − 1. The coefficients of these terms will
be such that the boundary behavior in Eq. (B5) is satisfied.
Typically such eigenfunctions will not be purely sinusoidal
or purely exponential, but rather will exhibit a nontrivial
combination of sinusoidal and exponential behavior [see
Fig. 4(b)].

It should be emphasized that the boundary behavior of the
eigenfunctions [Eq. (B5)] is not a boundary condition that all
functions φ in the domain of �α must satisfy. Specifically,
although any well-behaved function φ can be expressed in the
eigenbasis via

φ =
∞∑

k=0

ckψk (B6)

for some set of coefficients ck , one will typically find that

∂bφ �=
∞∑

k=0

ck∂
bψk (B7)

because the sum on the right-hand side of Eq. (B7) will not
be well defined. The reason for this seeming disagreement is
that the convergence criterion for Eq. (B6) is weaker than that

FIG. 4. Spectrum of the bilateral Laplacian of order α = 3.
(a) The first three Legendre polynomials provide an orthonormal
basis for the kernel of �3. These choices for ψ1, ψ2, and ψ3 are
plotted with decreasing opacity. (b) All other eigenfunctions are
nontrivial linear combinations of factors of the form exp(iκx). Their
general behavior is illustrated by the basis functions ψ4, ψ5, ψ6, and
ψ7, which are plotted with decreasing opacity. (c) The rank-ordered
eigenvalues of �3 lie at or below those of the standard Laplacian with
any choice of boundary conditions. Shown are the eigenvalues of �3

(black squares), together with the eigenvalues of −∂6 with periodic,
Dirichlet, or Neumann boundary conditions (dark, medium, and light
gray circles, respectively).

of Eq. (B7), due to the fact that ψk ∼ 1 whereas ∂bψk ∼ kb.
Therefore, even though the right-hand side of Eq. (B6) will
converge for any particular φ, the right-hand side of Eq. (B7)
typically will not.

The ordered eigenvalues of the bilateral Laplacian provide a
lower bound for the eigenvalues of the standard Laplacian with
any set of boundary conditions. To see this, note that we can
define a positive semidefinite Hermitian operator Hbc whose
kernel is spanned by all functions satisfying a set of specified
boundary conditions. Let us denote the standard Laplacian
with these boundary conditions as �α

bc. Then we can express
δα
bc in terms of the bilateral Laplacian as

�α
bc = lim

A→∞
�α

A, (B8)

where

�α
A = �α + AHbc. (B9)

In the A → ∞ limit, a prior defined using �α
A in place of �α

will restrict candidate fields φ to those that satisfy the boundary
condition specified by Hbc.

From first-order perturbation theory, we know that the kth
eigenvalue of �α

A+dA is related to that of �α
A by

λA+dA
k = λA

k + dA〈ψA|Hbc|ψA〉. (B10)
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Therefore, the kth eigenvalue of δα
bc is given by

λbc
k = λk +

∫ ∞

0
dA
〈
ψA

k

∣∣Hbc

∣∣ψA
k

〉
, (B11)

where ψA
k is the (appropriately defined) kth eigenvector of

the operator �α
A. Because Hbc is positive semidefinite, the

integral on the right-hand side is greater or equal to zero. We
therefore see that λbc

k � λk for all k, regardless of what the
actual boundary conditions are.

This point is illustrated in Fig. 4(c), which plots the ordered
eigenvalues for the α = 3 bilateral Laplacian together with
the ordered eigenvalues of the standard α-order Laplacian
with three different types of boundary conditions: periodic
boundary conditions,

∂bψ |xmin = ∂bψ |xmax, b = 0,1, . . . ,2α − 1; (B12)

Dirichlet boundary conditions,

∂2bψ |xmin = ∂2bψ |xmax = 0, b = 0,1, . . . ,α − 1; (B13)

and Neumann boundary conditions,

∂2b+1ψ |xmin = ∂2b+1ψ |xmax = 0, b = 0,1, . . . ,α − 1. (B14)

APPENDIX C: DERIVATION OF THE EVIDENCE RATIO

We now turn to the task of evaluating the partition functions
Z� and Z0

� so that we can compute the evidence p(data|�)
using Eq. (A8). Defining � = L2α�α and η = N (L/�)2α , and
working in the grid representation, we find a Hessian of the
form

∂2S

∂φm∂φn

∣∣∣∣
φ�

= �2α

GL2α
(�mn + δmne

−φ�n ). (C1)

The corresponding Laplace approximation to the path integral
is therefore given by

Z� ≈ e−S�[φ�]

{(
�2α

2πGL2α

)G

det[� + ηe−φ� ]

}−1/2

. (C2)

Note that the operator � is unitless and has well-defined
eigenvalues in the G → ∞ limit. Also note that η is unitless.
For these reasons, η will emerge as a natural perturbation
parameter in the � → ∞ limit.

Evaluating the partition function Z0
� requires more care

because the regularized form of the action S0
� , given in

Eq. (A1), has to be used in order for the equations we derive
to make sense. We find that

Z0
� =

{(
�2α

2πGL2α

)G

det

[
� + ηε

N

]}−1/2

(C3)

=
{(

�2α

2πGL2α

)G

N−αηαεα det
row

[�]

}−1/2

. (C4)

As in the main text, the subscript “row” on the determinant
denotes restriction to the row space of �. Note: in moving from
Eq. (C3) to Eq. (C4), we have used degenerate perturbation
theory to calculate the determinant in the ε → 0 limit.

Putting these values for Z� and Z0
� back into Eq. (A8), we

get

p(data|�) = ε
α−1

2

√
2πNN− α

2

LN�(N )
e−S�[φ�]

√
ηα detrow[�]

det[� + ηe−φ� ]
. (C5)

Although both Z� and Z0
� depend strongly on the number of

grid points G, the value for the evidence does not. The evidence
does, however, depend on the regularization parameter ε;
specifically, it is proportional to ε

α−1
2 . This is the basis for the

claim in the main text that the evidence vanishes for α > 1.
In the large � limit, η → 0, and so

det[� + ηe−φ� ] → ηα det
ker

[e−φ∞ ] det
row

[�], (C6)

where “ker” denotes restriction to the kernel of �. As a result,

p(data|∞) = ε
α−1

2

√
2πNN− α

2

LN�(N )

e−S∞[φ∞]√
detker[e−φ∞ ]

. (C7)

Taking the ratio of these expressions for p(data|�) and
p(data|∞), we recover the formula for the evidence ratio E

in Eq. (27). Note that E, unlike the evidence itself, does not
depend on the regularization parameter ε.

APPENDIX D: DERIVATION OF THE K COEFFICIENT

The goal of this section is to clarify the large length scale
(� → ∞) behavior of

ln E = S∞[φ∞] − S�[φ�]

+ 1

2
ln

{
detker[e−φ∞ ] detrow[�]

η−α det[� + ηe−φ� ]

}
. (D1)

To do this we expand ln E as a power series in η about η = 0.
We will find that ln E = Kη + O(η2) where K is a nontrivial
coefficient, given by Eq. (29), that can be either positive or
negative depending on the data.

We carry out this expansion in three steps:
(1) Expand φ� to first order in η.
(2) Expand S�[φ�] to first order in η.
(3) Expand ln det[� + ηe−φ� ] to first order in η.

In what follows we will use the bracket notation of Appendix B.
The eigenvalues λi and corresponding eigenfunctions ψi(x) of
� are taken to satisfy〈

ψi |ψj

〉 = δij for all i,j, (D2)

λi = 0 for i � α, (D3)

and

〈ψi |e−φ∞|ψj 〉 = δij ζj for i,j � α (D4)

for some positive numbers ζj . We will also make use of the
following indexed quantities:

vi = L〈ψi |Q∞ − R〉 =
∫

dx (Q∞ − R)ψi, (D5)

zij = L〈ψi |Q∞|ψj 〉 =
∫

dx Q∞ψiψj , (D6)

zijk = L〈ψi |Q∞ψj |ψk〉 =
∫

dx Q∞ψiψjψk. (D7)
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1. Expansion of φ� to first order in η

We begin by representing φ� as a power series in η. Abusing
our subscript notation somewhat, we write

φ� = φ∞ + ηφ1 + η2φ2 + · · · . (D8)

Plugging this expansion into the equation of motion,

0 = �φ� + η(LR − e−φ� ), (D9)

then collecting terms of equal order in η, we get

0 = �φ∞ + η(�φ1 + LR − e−φ∞ )

+ η2(�φ2 + e−φ∞φ1) + · · · . (D10)

This expansion must vanish at each order in η. At lowest order
in η we recover �φ∞ = 0, which just reflects the restriction
of φ∞ to the kernel of �. At first order in η,

0 = �φ1 + LR − e−φ∞ , (D11)

which we will now proceed to investigate.
To compute φ1, we first write it in terms of the eigenfunc-

tions of �, i.e.,

φ1(x) =
∑

i

Aiψi(x), (D12)

for appropriate coefficients Ai . Taking the inner product of
Eq. (D11) with 〈ψi |, we get

0 = λiAi + L〈ψi |R − Q∞〉 (D13)

= λiAi − vi. (D14)

Since λi > 0 for i > α, we find that

Ai = vi

λi

, i > α. (D15)

As yet we have no information about the values Ai for
i � α. For this we need to consider the second-order term in
Eq. (D10). Starting from

0 = �φ2 + e−φ∞φ1 (D16)

and dotting each side with 〈ψj | for j � α, we find that

0 = 〈ψj |�|φ2〉 + 〈φi |e−φ∞|φ1〉 (D17)

=
∑

i

Ai〈ψj |e−φ∞|ψi〉 (D18)

= Ajζj +
∑
i>α

Aizij. (D19)

Applying Eq. (D15), we thus see that

Aj = −
∑
i>α

vizij

λiζj

, j � α. (D20)

This completes our computation of the Ai coefficients, from
which we obtain

φ� = φ∞ + η

⎡
⎢⎢⎢⎣
∑
i>α

vi

λi

ψi −
∑
i > α

j � α

vizij

λiζj

ψj

⎤
⎥⎥⎥⎦+ O(η2).

(D21)

2. Expansion of S�[φ�] to first order in η

The action S�[φ] can be expressed as

S�[φ] = N

{
η−1

2
〈φ|�|φ〉 + L〈φ|R〉 +

∫
dx

L
e−φ

}
. (D22)

Using this expression together with the expansion in Eq. (D8),
we find that the value of the action S� at its minimum φ� is

S�[φ�] = S∞[φ∞] + Nη

{
1

2
〈φ1|�|φ1〉 + L〈φ1|R − Q∞〉

}

+O(η2). (D23)

The first inner product term in Eq. (D23) is

1

2
〈φ1|�|φ1〉 = 1

2

∑
i>α

v2
i

λi

, (D24)

while the second is

L〈φ1|R − Q∞〉 = −
∑
i>α

v2
i

λi

. (D25)

This gives the rather simple result

S�[φ�] − S∞[φ∞] = −η
∑
i>α

Nv2
i

2λi

+ O(η2). (D26)

3. Expansion of ln det[� + ηe−φ� ] to first order in η

We first outline how we will go about computing ln det �
where � = � + ηe−φ� . Calculating this quantity requires
calculating the eigenvalues of �. We will use γi and ρi

to denote the eigenvalues and corresponding orthonormal
eigenfunctions of �, i.e.,

�ρi = γiρi (D27)

and

〈ρi |ρj 〉 = δij . (D28)

Our primary task is to compute each eigenvalue γi as a power
series in η:

γi = λi + ηγ 1
i + η2γ 2

i + · · · . (D29)

This task, as we will see, also requires computing the
eigenfunctions ρi as a power series in η:

ρi = ψi + ηρ1
i + η2ρ2

i + · · · . (D30)

As usual, it will help to expand ρ1
i in the eigenfunctions of �.

We write

ρ1
i (x) =

∑
j

Bi
jψj (x) (D31)

and will soon proceed to compute the coefficients Bi
j .

Keeping in mind that λi > 0 for i > α, and λj = 0 for
j � α, we see that

ln det � = ln
∏

i

γi (D32)
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= ln

⎧⎨
⎩ηα

⎛
⎝∏

j�α

γ 1
j

⎞
⎠(∏

i>α

λi

)⎫⎬
⎭

+ η

{∑
i>α

γ 1
i

λi

+
∑
i�α

γ 2
i

γ 1
i

}
+ O(η2). (D33)

So while the larger eigenvalues of � need only be computed
to first order in η, the α lowest eigenvalues of � must actually
be computed to second order in η. Performing this second-
order calculation will require that we (partially) compute the
eigenfunctions ρi to first order in η, i.e., compute (some of)
the coefficients Bi

j in Eq. (D31).
Plugging Eq. (D29) and Eq. (D30) into Eq. (D27) and

collecting terms by order in η, we get

0 = �ρi − γiρi (D34)

= (� + ηe−φ∞ + η2e−φ∞φ1)
(
ψi + ηρ1

i + η2ρ2
i

)
− (λi + ηγ 1

i + η2γ 2
i

)(
ψi + ηρ1

i + η2ρ2
i

)+ O(η3)

(D35)

= (�ψi − λiψi) + η
(
�ρ1

i + e−φ∞ψi − λiρ
1
i − γ 1

i ψi

)
+ η2

(
�ρ2

i + e−φ∞ρ1
i − e−φ∞φ1ψi − λiρ

2
i − γ 1

i ρ1
i

−γ 2
i ψi

)+ O(η3). (D36)

The coefficient of each term in this expansion must vanish.
From the zeroth-order term of Eq. (D36) we recover the
eigenvalue equation �ψi = λiψi , which we already knew.
From the first-order term we get

0 = �ρ1
i + e−φ∞ψi − λiρ

1
i − γ 1

i ψi . (D37)

Dotting this with 〈ψk| and using Eq. (D31) then gives

0 = 〈ψk|�
∣∣ρ1

i

〉+ 〈ψk|e−φ∞|ψi〉 − λi〈ψk

∣∣ρ1
i

〉− γ 1
i 〈ψk|ψi〉

(D38)

= (λk − λi)B
i
k + zik − γ 1

i δik. (D39)

If we set k = i, we recover the standard first-order correction
to the eigenvalues, namely,

γ 1
i = zii for all i. (D40)

In particular,

γ 1
j = ζj for j � α. (D41)

We also see by inspection of Eq. (D39) that

Bi
k = −zik

λk

for i � α, k > α. (D42)

Moreover, from the normalization requirement of Eq. (D28),

1 = 〈ρi |ρi〉 (D43)

= 〈ψi |ψi〉 + 2η〈ψi |ρi〉 + O(η2) (D44)

= 1 + 2ηBi
i + O(η2), (D45)

from which we conclude that

Bi
i = 0 for all i. (D46)

Turning to the second-order term in Eq. (D36), we now
consider the requirement

0 = �ρ2
i + e−φ∞ρ1

i − e−φ∞φ1ψi − λiρ
2
i − γ 1

i ρ1
i − γ 2

i ψi .

(D47)

Choosing i � α, dotting with 〈ψi |, and using the fact that
λi = 0, we find that

0 = 〈ψi |e−φ∞
∣∣ρ1

i

〉− 〈ψi |e−φ∞φ1|ψi〉 − γ 1
i 〈ψi

∣∣ρ1
i

〉− γ 2
i

(D48)

=
∑

j

Bi
j zij −

∑
j

Ajziij − γ 1
i Bi

i − γ 2
i . (D49)

Now consider the first term of Eq. (D49). Because Bi
i = 0 and

zij = ζiδij for i,j � α, no j � α terms contribute to this sum.
The third term also vanishes due to Bi

i = 0. So for i � α,

γ 2
i =

∑
j>α

Bi
j zij −

∑
j>α

Ajziij −
∑
j�α

Ajziij (D50)

= −
∑
j>α

z2
ij

λj

−
∑
j>α

vj ziij

λj

+
∑
j � α

k > α

vkzjkziij

λkζj

. (D51)

Having computed γ 1
i for all i and γ 2

i for i � α, we can now
find ln det �. Plugging in our results for γ 1

i and γ 2
i and using∏

j�α

ζj = det
ker

[e−φ∞ ],
∏
i>α

λi = det
row

[�], (D52)

we get what we set out to find:

ln det � = ln
{
ηα det

ker
[e−φ∞ ] det

row
[�]

}

+ η

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
i>α

zii

λi

−
∑
j > α

i � α

z2
ij + vj ziij

λj ζi

+
∑
k > α

i,j � α

vkzjkziij

λkζiζj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+O(η2). (D53)

4. Putting it all together

Putting together our results from Eq. (D26) and Eq. (D53),
we find that to first order in η,

ln E = S∞[φ∞] − S�[φ�]

− 1

2
ln

{
det �

ηα detker[e−φ∞ ] detrow[�]

}
(D54)

= η
∑
i>α

Nv2
i

2λi

− η

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
i>α

zii

λi

−
∑
j > α

i � α

z2
ij + vj ziij

λj ζi

+
∑
k > α

i,j � α

vkzjkziij

λkζiζj

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(D55)

= Kη, (D56)
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where

K =
∑
i>α

Nv2
i − zii

2λi

+
∑
j > α

i � α

z2
ij + vj ziij

2λjζi

−
∑
k > α

i,j � α

vkzjkziij

2λkζiζj

.

(D57)

The formula for K in Eq. (29) is obtained by renaming the
indices i,j,k in the second and third terms.

APPENDIX E: PREDICTOR-CORRECTOR ALGORITHM

1. Computing the MaxEnt density

We saw in the main text that adopting the prior defined by
the action in Eq. (3) renders φ∞ a polynomial of order α − 1,
i.e.,

φ∞(x) =
α−1∑
i=0

aix
i (E1)

for some vector of coefficients a = (a0,a1, . . . ,aα−1). The
problem of computing the MaxEnt density Q∞ therefore
reduces to finding the vector a that minimizes the posterior
action

S∞(a) = N

∫
dx

L

{
LR

α−1∑
i=0

aix
i + exp

[
−

α−1∑
i=0

aix
i

]}
.

(E2)

Following Ormoneit and White [15], we solve this opti-
mization problem using the Newton-Raphson algorithm with
backtracking. Starting at a0 = 0, we iterate

an → an+1 = an + γnδan, (E3)

where the vector δan is the solution to

α−1∑
j=0

∂2S

∂ai∂aj

∣∣∣∣
an

δan
j = − ∂S

∂ai

∣∣∣∣
an

(E4)

and γn is some number in the interval (0,1]. From Eq. (E2),

∂S

∂ai

= Nμi − N

∫
dx

L
xi exp

[
−

α−1∑
k=1

akx
k

]
, (E5)

where μi = ∫
dx R xi is the ith moment of the data, and

∂2S

∂ai∂aj

= N

∫
dx

L
xi+j exp

[
−

α−1∑
k=1

akx
k

]
. (E6)

The Hessian matrix H , with elements Hij = ∂2S
∂ai∂aj

, is positive
definite at all a. This is readily seen from the fact that for any
vector w,

w�Hw = N

∫
dx

L

(∑
i

xiwi

)2

e−∑k akx
k

> 0. (E7)

Equation (E4) will therefore always yield a unique solution
for δan.

The scalar γn is chosen so that the change in the action in
each iteration is commensurate with the linear approximation.
Specifically, γn is first set to 1. Then, if

S∞(an + γnδan) − S∞(an) <
γn

2

α−1∑
i=0

∂S

∂ai

∣∣∣∣
an

δan
i (E8)

is not satisfied, γn is reduced by factors of 1
2 until Eq. (E8)

holds. This “dampening” of the Newton-Raphson method
is sufficient to guarantee convergence [15,30]. The algo-
rithm is terminated when the magnitude of the change in
the action, |S∞(an+1) − S∞(an)|, falls below a specified
tolerance.

2. Predictor step

The predictor step computes a change � → �′ in the length
scale, as well as an approximation to the corresponding
change φ� → φ�′ in the MAP field. Specifically, the pre-
dictor step returns a scalar δt and a function ρ(x) such
that

t ′ = t + δt (E9)

and

φ�′(x) ≈ φ
(0)
� (x) = φ�(x) + ρ(x)δt, (E10)

where t = ln η is a numerically convenient reparametrization
of �. To determine the function ρ, we examine the equation of
motion, Eq. (D9), at �′:

0 = �φ�′ + η′(LR − e−φ�′ ) (E11)

= �(φ� + ρδt) + ηeδt (LR − e−(φ�+ρδt)) (E12)

= �φ� + η(LR − e−φ� ) + δt{[� + ηe−φ� ]ρ

+ η(LR − e−φ� )} + O(δt2). (E13)

The O(1) term vanishes due to φ(n) satisfying the equation of
motion at �. The O(δt) term must therefore vanish as well. We
thus obtain a linear equation,

[� + ηe−φ� ]ρ = η(e−φ� − LR), (E14)

which can be numerically solved for ρ. The scalar δt is then
chosen to satisfy the distance criterion,

ε2 = D2
geo[Q�,Q�′] (E15)

≈
∫

dx
(Q� − Q�′)2

Q�

(E16)

≈ (δt)2
∫

dx Q� ρ2. (E17)

We therefore set

δt = ± ε√∫
dx Q� ρ2

, (E18)

with the sign of δt chosen according to the direction we wish
to traverse the MAP curve.
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3. Corrector step

The purpose of the corrector step is to accurately solve the
equation of motion, Eq. (D9), at fixed length scale �. This step
is initially used to compute Q�0 at the starting length scale �0.
It is then employed to home in on the MAP density at each
new length scale chosen by the predictor step of the homotopy
algorithm.

As with the computation of the MaxEnt density, this
corrector step uses the Newton-Raphson algorithm with
backtracking. Starting from a hypothesized field φ(0) (e.g.,
returned by the predictor step), the iteration

φ(n) → φ(n+1) = φ(n) + γnδφ
(n) (E19)

is performed. The function δφ(n) and scalar γn are chosen so
that this iteration converges to the true field φ�. To derive
the field perturbation δφ(n), we provisionally set γn = 1 and
plug the above formula for φ(n+1) into the equation of motion,
Eq. (D9). Keeping only terms of order δφ(n) or less, we see
that the field perturbation δφ(n) is the solution to the linear
equation,

[
� + ηe−φ(n)]

δφ(n) = η(e−φ − LR) − �φ(n), (E20)

which we solve numerically. As before, γn is then chosen so
that the action decreases by an amount commensurate with the
linear approximation, i.e.,

S�[φ(n+1)] − S�[φ(n)] <
γn

2

∫
dx

δS�

δφ(x)

∣∣∣∣
φ(n)

δφ(n). (E21)

This iterative process is terminated when the magnitude of
the change in the action, |S�[φ(n+1)] − S�[φ(n)]|, falls below a
specified tolerance.

APPENDIX F: MAXIMUM PENALIZED LIKELIHOOD
AND BAYESIAN FIELD THEORY

In statistics there is a class of nonparametric techniques
for estimating smooth functions called “maximum penalized
likelihood” estimation [3,18,19,29]. The central idea behind
these estimation methods is to maximize the likelihood
function modified by a heuristic roughness penalty. In this
context, Silverman proposed using −S�[φ], defined in Eq. (6),
as the penalized likelihood function for probability density
estimation [18]. This choice was motivated by the observation
that, when � = ∞, one recovers a moment-matching distri-
bution having a familiar parametric form. This early work
by Silverman is therefore relevant to the results reported
here.

However, the results reported here move beyond Ref. [18]
in a number of critical ways. First, the connection with
MaxEnt estimation was not recognized in Ref. [18], nor
was the fact that the MAP density Q� matches the same
moments as Q∞ even at finite values of �. Moreover, periodic
boundary conditions on Q� were assumed in much of the
analysis described in Ref. [18], and the contradiction between
these boundary conditions and the results for � = ∞ was not
discussed.

Perhaps most importantly, the shortcomings of the maxi-
mum penalized likelihood approach highlight the importance
of adopting an explicit Bayesian interpretation. Although the
penalized likelihood context of Ref. [18] and later work
(see Ref. [3,19]) was sufficient to motivate the formula for
S�[φ], it provided no motivation for computing the evidence
p(data|�). Without the Bayesian notion of evidence, it is
unclear how to determine the optimal smoothness length scale
�∗ without resorting to empirical methods, such as cross-
validation. By contrast, the Bayesian interpretation introduced
by Bialek et al. [6] and built upon here transparently motivates
the computation of p(data|�), thereby providing an explicit
criterion for choosing �∗. In particular, this Bayesian interpre-
tation is essential for our derivation of the K coefficient in
Eq. (29).
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