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Dispersion of overdamped diffusing particles in channel flows coupled to transverse acoustophoretic
potentials: Transport regimes and scaling anomalies
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We address the dispersion properties of overdamped Brownian particles migrating in a two-dimensional
acoustophoretic microchannel, where a pressure-driven axial Stokes flow coexists with a transverse
acoustophoretic potential. Depending on the number and symmetries of the stable nodal points of the
acoustophoretic force with respect to the axial velocity profile, different convection-enhanced dispersion
regimes can be observed. Among these regimes, an anomalous scaling, for which the axial dispersion increases
exponentially with the particle Peclét number, is observed whenever two or more stable acoustophoretic nodes
are associated with different axial velocities. A theoretical explanation of this regime is derived, based on exact
moment homogenization. Attention is also focused on transient dispersion, which can exhibit superballistic
behavior 〈(x − 〈x〉)2〉 ∼ t3, x being the axial coordinate.
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I. INTRODUCTION

The interplay between stochastic Brownian fluctuations and
deterministic fields plays a central role in modern physics
with implications ranging from field theory [1] to soft matter
and polymer physics [2], encompassing cosmological and
astrophysical models [3] as well as atom physics [4]. The
role of noise is central in determining macroscopic emergent
features in the collective behavior of particle ensembles, as
regards both the average transport properties and the dispersion
behavior around the average motion. The availability of
theoretical models that can predict transport regimes according
to the structure of the deterministic drive and the nature and
intensity of fluctuations can greatly facilitate the optimized
design of a number of micro- and nanofluidic devices, such
as micromixers, cell and DNA sorting devices, and active
microsensors [5].

A primary distinction between classes of problems can
be drawn depending on the nature of the deterministic drive
that causes the average motion of the particle ensemble. If
the drive stems from a vector potential, then the effective
particle velocity expressing the average particle motion is
also solenoidal. This is the case, for instance, of overdamped
diffusing particles (tracers) subjected solely to Stokesian drag
in an incompressible flow. In this case, the time-asymptotic
average velocity of the particle ensemble equals the spatial
average of the flow velocity, and interesting effects are only
associated to deviations about the average motion. In the case
where transport occurs in a bounded impermeable domain
these deviations are responsible for convection-enhanced or
chaos-enhanced mixing regimes, which arise from the cooper-
ative interaction between deterministic and stochastic motion
and that are quantitatively defined by the spectral structure of
the advection-diffusion operator [6]. Besides, this synergetic
interaction shows its effect even in unbounded domains
where large-scale dispersion of particle ensembles is typically
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enhanced over the bare particle diffusivity. Classical examples
are Taylor-Aris axial dispersion in laminar flows through
straight channels [7] and the peculiar behavior of the effective
dispersion tensor associated with passive tracers transported
in two-dimensional spatially periodic incompressible flows,
where different dispersion regimes can be predicted depending
on the rotation number of the mean sweep flow [8,9].

On the other hand, if the particle velocity stems from a
scalar potential (i.e., it is irrotational), then long-time averages
of particle velocity and spatial averages of the deterministic
drive need not coincide, and several interesting and peculiar
phenomena have been observed for both stationary and time-
periodic potentials, such as stochastic resonance [10], noise
rectification in time-periodic landscapes (Brownian motors)
[11], and giant diffusion (in tilted potentials) [12], especially
in the presence of disorder [13].

With an eye to the Hodge-Helmholtz decomposition of
vector fields v(x) into a solenoidal vsol(x), and irrotational
virr(x) component [14],

v(x) = vsol(x) + virr(x) (1)

∇ · vsol = 0 , vsol = ∇ × A , ∇ × virr = 0 , virr = ∇φ,

most of the literature on Brownian dynamics, particle dis-
persion, and/or mixing has been focused either on purely
solenoidal or purely irrotational (potential) flows. There are
only few exceptions to this tendency, such as the recent work by
Cerbelli [15] reporting the logarithmic scaling of the dispersion
coefficient as a function of the Peclét number for Brownian
particles moving in a critical array of cylindrical obstacles
under the action of a constant force (which can be viewed
both as solenoidal as well as irrotational) and the investigation
of dispersion in the same setting for various (noncritical)
geometries by Ghosh et al. [16].

The present work analyzes the dispersion properties for
the overdamped motion of particles in a parallel channel
flow where a transverse potential is superimposed to the
Stokesian (incompressible) axial velocity profile. Beyond the
theoretical interest in dispersion theory, this model describes
the (ideal) dynamics of micro- and nanoparticle motion
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in acoustophoretic microflow devices, where the transverse
potential accounts for the action of the acoustophoretic force
acting on particles, which is gaining more and more interest
as a method for an effective control and separation of particles
[17–19]. The practical feasibility of this depends on the
structural properties of the particles, which, in biological
suspensions, are related to the biophysical properties of the
cells. In this context, one of the most promising applications
is the splitting of a continuous stream of cells into healthy and
neoplastic subpopulations based upon the different compress-
ibility that the cancerous cells possess compared to the healthy
ones [20].

The interaction among axial flow, acoustophoretic force,
and thermal fluctuations determines three emerging phenom-
ena, namely (i) the relaxation of particle number density
towards the stationary (Frobenius) distribution in the trans-
verse direction to the flow, (ii) the asymptotic (long-term
or large-distance) axial dispersion, and (iii) the anomalous
intermediate (transient) effects in the particle mean-square
displacement as a function of time. These three phenomena are
next thoroughly addressed both analytically and numerically.
Exact moment homogenization, namely the application of the
macrotransport theory developed by Brenner and coworkers
[21–23] to this class of channel flows, is used to derive the
asymptotic (long-term or large-distance) dispersion properties.

We show that in the long-term or large-distance limit,
axial dispersion displays three different regimes, depending on
the spatial structure of the acoustophoretic force (essentially,
on the number of its stable nodal points), and on the value
of the axial velocity at these nodes. An interesting regime,
which, to the best of our knowledge, has never been observed
before, occurs when the acoustophoretic potential displays
two or more stable nodes at which the axial flow profile
attains different velocity values. In this case, an exponential
dependence of the axial dispersion coefficient on the particle
Peclét number can be observed and predicted.

Of theoretical and practical interest is also the transient axial
dispersive behavior. We show that an anomalous, superballistic
regime (i.e., the mean-squared displacement grows as the third
power of time) can be observed for certain particle distributions
entering the inlet cross section of the device.

The article is organized as follows. Section II describes
succinctly the modeling of acoustophoretic channel microde-
vices and derives the system of Langevin and Fokker-Planck
equations describing Brownian particle motion within the
overdamped approximation. Section III addresses homoge-
nization via moment analysis for this class of channel flows and
derives a bound for the asymptotic axial dispersion coefficient.
Section IV analyzes particle distribution in the transverse
direction, whose dynamics is decoupled from axial motion, and
discusses the related physical properties (i.e., the behavior of
the effective axial velocity). Section V develops the asymptotic
analysis of axial dispersion regimes supporting the theoretical
predictions (derived from moment analysis developed in
Sec. IV) with Langevin simulations. A detailed analysis
of the equation for the steady field controlling dispersion
properties (cfr. the b field) is developed, providing a fully
analytic and simple interpretation of the phenomenological
dispersion properties observed. Section VI addresses transient
dispersion effects and provides a simple interpretation of the

super-ballistic phenomena occurring for particular classes of
the acoustophoretic potential and for some inlet conditions.

II. PHYSICAL MOTIVATION: ACOUSTOPHORETIC
FLOW DEVICES

Free-flow acoustophoretic microdevices have been recently
proposed and investigated for particle manipulation and sepa-
ration in steady channel flows, exploiting particle interaction
with a pressure wave transverse to the flow. These devices
have been shown to provide an accurate control over particle
trajectories while being easy to produce and inducing relatively
low stresses on suspended particles and cells [24] when
compared to other techniques.

The flow-particle interaction, which allows manipulation
and separation, derives from the acoustophoretic force acting
on particles, which depends on fluid and particle properties,
such as viscosity, compressibility, and density [25–29]. The
transition between inviscid and viscous behavior for particle
motion driven by an acoustophoretic force, is accounted for

by the acoustic boundary layer thickness δ =
√

2ηl

ρlω
, where ηl

is the viscosity of the liquid (ηwater � 10−3 Pa s), ρl the liquid
density (ρwater = 103 kg m−3), and ω the angular frequency of
the acoustic wave, ω = 2πf . For instance, for an ultrasonic
acoustic wave propagating in water at room temperature, the
acoustic boundary layer thickness attains a value order of
microns. This implies that the action of ultrasonic waves on
particles of radius larger than 3 ÷ 5 μm can be described by
means of the inviscid theory. This is the case of cells, whose
diameter falls in the range acell = 1 ÷ 10 μm with exceptional
cases around 100 μm. Conversely, for nanoparticles, i.e.,
anano = 1 ÷ 100 nm, the evaluation of the momentum transfer
between the fluid surrounding the particle and the particle must
explicitly take into account dissipation effects due to viscosity
in the wave propagation. Furthermore, viscous dissipation has
been proved responsible for the generation of recirculating
cross-sectional vortices in three-dimensional models [30].

A dimensionless parameter accounting for the effect of
the viscosity is the dimensionless boundary layer thickness
δ̃ = δ/a, which attains the values δ̃cell = 10−3 ÷ 10−1 and
δ̃nano = 1 ÷ 102 for micrometer and nanometer sized particles,
respectively. When the dimensionless acoustic boundary layer
thickness results δ̃ � 1, inviscid theory can be applied.

The acoustic radiation force also depends upon the ratio κ̃

of the compressibility of the fluid κf to that of the particles
κp, where κ is give by κ = −V −1(∂pV )T . For instance, the
compressibility of water is κwater � 450 TPa−1, while that of
cells is in general slightly less so κ̃cell � 1. Different kinds
of micro-sized particles can be processed in acoustophoretic
devices depending on the purpose. For example, polystyrene
beads, which are used to indirectly measure the viscosity of the
liquid within which they migrate, are characterized by κps �
150 TPa−1. For particles possessing sizes between nanometers
and micrometers, Brownian fluctuations should also be taken
into account. Effective particle diffusivity can be estimated
via the Stokes-Einstein equation D = kBT

6πηla
, where T is the

temperature. At room temperature, the effective diffusivity
of the cells is order of Dcell � 10−13 ÷ 10−14 m2 s−1, while
for a = anano the effective diffusivity results Dnano � 10−10 ÷
10−12 m2 s−1.
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FIG. 1. Schematic picture of a free-flow acoustophoretic device.

A. Particle motion in an acoustophoretic channel

This section reviews briefly the equations governing par-
ticle transport in a free-flow acoustophoretic channel. A
two-dimensional model is assumed, see Fig. 1.

The description of the acoustophoretic force is based upon
the knowledge of the acoustophoretic contrast factor that, as
developed in Ref. [29], is given by:


(κ̃,ρ̃,δ̃) = 1
3f1(κ̃) + 1

2 Re[f2(ρ̃,δ̃)]. (2)

The quantity f1(κ̃) = 1 − κ̃ is the monopole scattering coeffi-
cient, while

f2(ρ̃,δ̃) = 2[1 − γ (δ̃)](ρ̃ − 1)

2ρ̃ + 1 − 3γ (δ̃)
(3)

is the dipole scattering coefficient, where γ (δ̃) = − 3
2 [1 +

i(1 + δ̃)]δ̃. For a stationary plane wave orthogonal to the
channel axis, the acoustophoretic force f (y/H ) can be
expressed as [29]:

f (y/H ) = (2π )2
a3Eak

H
sin

(
2πky

H

)
, (4)

where H is the channel width, k the number of half-
wavelengths [note that the pressure wave results p ∼
cos(kπy/H )], and Ea ∼ 101 ÷ 103J m−3 is the acoustic en-
ergy.

Consider a two-dimensional channel with a transverse
characteristic size H , and indefinitely extended in the axial
direction, see Fig. 1, in which the fluid moves with an
axial velocity u(y/H ) and a pressure wave generates the
transverse acoustophoretic force f (y/H ). For a Poiseuille flow
u(y/H ) = V 6 [(y/H ) − (y/H )2], where V is the mean axial
velocity.

Considering the Stokes drag acting of the particles in
a viscous fluid, the stochastic dynamics governing particle
motion is described by the system of stochastic (Langevin)
differential equations:

mpdẋ = −6πηa[ẋ − V u(y/H )] dt + αT dwx(t), (5a)

mpdẏ = −6πηaẏ dt + (2π )2
a3Eak

H
sin

(
2πky

H

)
dt

+αT dwy(t), (5b)

where ẋ = dx/dt , ẏ = dy/dt , αT is the intensity of thermal
fluctuations, and wx(t) and wy(t) are two independent Wiener

processes. Considering spherical particles, i.e., mp = 4
3πa3ρp,

and making spatial coordinates and time dimensionless via the
rescaling x/H → x, y/H → y, tV /H → t , the system (5)
can be recast the form:

μdẋ = −[ẋ − u(y)] dt +
√

2εdwx(t), (6a)

μdẏ = [−ẏ + ν sin(2πky)] dt +
√

2εdwy(t), (6b)

where μ = 2ρpa2V

9ηf H
is the dimensionless mass of the parti-

cles, ν = (2πa)2
Eal

6πηf HV
the dimensionless acoustophoretic force

intensity, and ε = D/V H = 1/Pe the reciprocal of the
Peclét number Pe, related to αT by the equation

√
2ε =√

H/V αT /6πηf aH . Henceforth, x, y, and t are dimension-
less variables.

For physically admissible values of H and V used in mi-
crofluidic applications, the dimensionless mass of the particle
is order of μ = 10−7 ÷ 10−1 for neutrally buoyant particles
in water and a = 10−9 ÷ 10−6 m. Therefore, it is reasonable
to neglect the inertia in almost all of the cases and assume
overdamped conditions, namely μ � 0. Correspondingly, the
system (6) becomes:

dx(t) = u(y) dt +
√

2 ε dwx(t), (7a)

dy(t) = ν sin(2πky) dt +
√

2 ε dwy(t). (7b)

The intensity of the dimensionless acoustophoretic force
for cell-like particles is in the range ν = 10−2 ÷ 100. For
nanoparticles the estimate is slightly more difficult, mainly
because the values of the parameters above introduced are
subjected to significant variations, depending on the particle
properties and the wave frequency. However, a reasonable
estimate based upon the particle radius (observe that ν ∼ a2)
provides a value of ν that is of order ν ∼ 10−6 ÷ 10−4. Finally,
physically admissible value of the particle Peclét number
ranges in the interval Pe = 102 ÷ 108.

The dimensionless forward Fokker-Planck equation asso-
ciated with the evolution of the particle density p(x,y,t) reads
as:

∂tp + u(y) ∂xp + ν ∂y[sin(2πky) p] = ε
(
∂2
xp + ∂2

yp
)
. (8)

Particle density is obviously normalized probabilistically, i.e.,∫ ∞
−∞ dx

∫ 1
0 p(x,y,t) dy = 1. Equation (8) is equipped with

regularity conditions for |x| → ∞, meaning that p(x,y,t)
decays for |x| → ∞ faster than any power of x, and with
homogeneous Neumann boundary conditions at the solid walls
of the channel (impermeable walls for particle transport), i.e.,

∂yp(x,y,t)|y=0,1 = 0. (9)

III. CHANNEL-FLOW DISPERSION IN
A TRANSVERSE POTENTIAL

Moment analysis of transport equations provides a simple
and effective way to estimate effective transport parameter
in dispersion problems in unbounded domains, alternative to
multiple-scale expansion methods. Originally, this approach
has been proposed by Aris [7] for incompressible channel-
flow dispersion (the Taylor-Aris dispersion problem) and
subsequently elaborated on further for a wealth of different
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transport problems by Brenner and coworkers [21,22]. These
authors refer to it as the macrotransport paradigm for problems
possessing local and global scale variables.

This section succinctly addresses the application of this
approach to the compressible channel-flow problem associated
with the Fokker-Planck equation (8), for which the local
variable is simply the transverse coordinate y and the large-
scale variable is the axial coordinate x.

In the long-term or large-distance limit, the marginal prob-
ability density function px(x,t) = ∫ 1

0 p(x,y,t) dy, averaged
with respect to the cross-sectional coordinate y, satisfies an
effective advection-diffusion equation with constant coeffi-
cients (see Ref. [31] for a rigorous mathematical setting of the
convergence),

∂tpx(x,t) = −Ve ∂xpx(x,t) + εe ∂2
xpx(x,t), (10)

where Ve is the effective axial velocity and εe is the reciprocal
of the dispersion Peclét number

εe = De

V H
, (11)

De being the effective axial dispersion coefficient.
In order to obtain the expressions for Ve and εe, the

hierarchy of local moments {p(n)(y,t)}∞n=0 associated with
Eq. (8) can be introduced,

p(n)(y,t) =
∫ ∞

−∞
xn p(x,y,t) dx, n = 0,1, . . . , (12)

starting from which the hierarchy of global moments
{m(n)(t)}∞n=0 is simply defined as the integral of the local
moments over the channel cross section:

m(n)(t) =
∫ 1

0
p(n)(y,t) dy, n = 0,1, . . . . (13)

Since m(0)(t) = 1, by probability conservation and normal-
ization, the time derivatives of the first- and second-order
moments provide two simple estimators for Ve and εe,
respectively. This is due to the fact that in the long-time or
large-distance limit, it follows straightforwardly from Eq. (10)
that:

dm(1)(t)

dt
= Ve, (14)

dm(2)(t)

dt
= 2Ve m(1)(t) + 2εe. (15)

That said, the balance equations for the local moments can be
obtained multiplying both sides of Eq. (8) by xn and integrating
over the axial variable:

∂tp
(n)(y,t) = n u(y) p(n−1)(y,t) + Ly[p(n)(y,t)]

+ ε n(n − 1) p(n−2)(y,t), (16)

n = 0,1, . . . , where Ly is the transverse advection-diffusion
operator,

Ly[p(n)(y,t)] = −ν ∂y[sin(2πky) p(n)(y,t)] + ε ∂2
yp(n)(y,t).

(17)

Equation (16), and, consequently, the transverse operator
Ly , are equipped with homogeneous Neumann conditions

inherited from Eq. (9),

∂yp
(n)(y,t)|y=0,1 = 0, (18)

for all t > 0, and n = 0,1, . . . . Integrating Eq. (16) over the
transverse section and observing that

∫ 1
0 Ly[p(n)(y,t)] dy = 0,

the following expression for the time evolution of the global
moments can be derived:

dm(n)(t)

dt
= n

∫ 1

0
u(y) p(n−1)(y,t) dy + ε n(n − 1) m(n−2)(t).

(19)
So far, the analysis is exact. Let us now consider the long-time
or large distance approximation for the estimate of the effective
transport parameters. For n = 0, p(0)(y,t) satisfies the pure
advection-diffusion equation

∂yp
(0)(y,t) = Ly[p(0)(y,t)], (20)

equipped with the Neumann boundary conditions (18) at the
channel walls. The spectral structure of Ly is fairly simple:
(i) it admits a countable system of eigenvalues Ly[ψs(y)] =
−λs ψs(y), s = 0,1, . . . ; (ii) all the eigenvalues are real, as Ly

can be mapped into an Hermitian operator, by transforming Ly

into an one dimensional Schrödinger operator; (iii) ordering
the eigenvalues so λ0 < λ1 � λ2 � · · · , the first eigenvalue
λ0 = 0 is not degenerate and corresponds to probability
conservation, while all the other eigenvalues −λs , s = 1,2, . . .

are negative; and (iv) since eLy is a positive operator, the
first eigenfunction ψ0(y) associated with the conservation
eigenvalue λ0 = 0 of Ly can be always chosen so ψ0(y) � 0
(Frobenius theorem).

Therefore, the solution of Eq. (20) can be expressed as:

p(0)(y,t) = ψ0(y) + O(e−λ1t ), (21)

i.e., it asymptotically converges towards the conservation
eigenfunction ψ0(y), Ly[ψ0(y)] = 0, that corresponds to the
equilibrium transverse particle distribution. ψ0(y) by normal-
ization is such that

∫ 1
0 ψ0(y) dy = 1 and is referred to as the

Frobenius distribution (or eigenfunction) of the transverse
advection-diffusion operator. From Eq. (19) for n = 1 it
follows:

dm(1)(t)

dt
=

∫ 1

0
u(y) p(0)(y,t) dy. (22)

The substitution of the asymptotic expression (21) into Eq. (22)
provides the estimate for the effective axial velocity, namely

Ve =
∫ 1

0
u(y) ψ0(y) dy, (23)

that corresponds to the average of the axial velocity profile
with respect to the Frobenius distribution ψ0(y).

Next consider the first-order local moment p(1)(y,t) that
satisfies Eq. (16) for n = 1, i.e.,

∂tp
(1)(y,t) = Ly[p(1)(y,t)] + u(y) p(0)(y,t). (24)

Since Ve �= 0, it is expected from Eq. (22) that p(1)(y,t) grows
asymptotically as the first power of t . Therefore, the solution
of Eq. (24) can be expressed as:

p(1)(y,t) = ψ0(y)[Vet + b(y)] + O(e−λ1t ), (25)

032104-4



DISPERSION OF OVERDAMPED DIFFUSING PARTICLES . . . PHYSICAL REVIEW E 92, 032104 (2015)

where the steady field b(y) can be determined by enforcing that
Eq. (25) is a solution of Eq. (24). This provides the following
balance equation for b(y):

Ly[ψ0(y) b(y)] = ψ0(y)[Ve − u(y)]. (26)

Equation (26) is equipped with homogeneous Neumann
boundary conditions

∂y(ψ0(y) b(y))|y=0,1 = 0, (27)

deriving from Eq. (18), which can be rewritten as
∂yb(y)|y=0,1 = 0. Since the forcing term at the right-hand side
of Eq. (26) possesses zero mean, Eq. (26) admits a solution.
Indeed, if b(y) is a particular solution of Eq. (26) and C is a
constant, then b(y) = b(y) + C is also a solution of Eq. (26),
i.e., there are infinitely many solutions of Eq. (26) equipped
with impermeable Neumann conditions differing from each
other by an additive constant. This multiplicity of solutions
is completely immaterial in the asymptotic estimate of the
dispersion coefficient (as discussed below).

The long-time or large-distance expression for m(2)(t)
follows by substituting the asymptotic expression (25) for
p(1)(y,t) into Eq. (19) for n = 2, neglecting the exponentially
vanishing contributions and using the identity m(0)(t) = 1:

dm(2)(t)

dt
= 2 V 2

e t + 2
∫ 1

0
u(y) ψ0(y) b(y) dy + 2 ε. (28)

Since m(1)(t) = Vet + ∫ 1
0 ψ0(y) b(y) dy, the latter expression

can be rewritten as:

dm(2)(t)

dt
= 2Ve m(1)(t)

+ 2
∫ 1

0
ψ0(y) [u(y) − Ve] b(y) dy + 2 ε, (29)

where b(y) is any solution of Eq. (26) satisfying the homo-
geneous Neumann boundary conditions. The comparison of
Eq. (29) with Eq. (15) provides the expression for εe, namely:

εe = ε +
∫ 1

0
ψ0(y)[u(y) − Ve] b(y)dy. (30)

Since
∫ 1

0 ψ0(y)[u(y) − Ve] dy = 0, any particular solution of
Eq. (26), independently of the additive constant C, will provide
the same value of εe.

It is rather straightforward to prove (see Appendix) that:∫ 1

0
ψ0(y) [Ve − u(y)] b(y) dy = −ε

∫ 1

0
ψ0(y)[∂yb(y)]2 dy,

(31)
so

εe = ε + ε

∫ 1

0
ψ0(y)[∂yb(y)]2 dy � 0. (32)

Inequality (32) indicates that the axial dispersion coefficient
De is always greater than or at most equal to the diffusion
coefficient D (i.e., εe � ε).

IV. TRANSVERSE DISTRIBUTION

As the transverse motion along y is completely decoupled
from axial dynamics, the marginal transverse probability

density function py(y,t) = ∫ ∞
−∞ p(x,y,t) dx satisfies the re-

duced equation

∂tpy(y,t) = Ly[py(y,t)], (33)

where Ly is the transverse advection-diffusion operator de-
fined in the previous section and equipped with the boundary
conditions ∂ypy(y,t)|y=0,1 = 0. The probability density func-
tion py(y,t) converges towards the stationary equilibrium dis-
tribution ψ0(y), solution of the elliptic problem Ly[ψ0(y)] =
0, ∂yψ0(y)|y=0,1 = 0,

∫ 1
0 ψ0(y) dy = 1. Integrating once with

respect to y, this equation returns:

ε∂yψ0(y) − ν sin(2πky) ψ0(y) = C, (34)

where the constant C should be vanishing because of the
boundary conditions and of the vanishing acoustophoretic
force at the walls. Therefore,

ψ0(y) = 1

Z(+)
exp [−Peν cos(2πky)/2πk], (35)

where Z(+) = ∫ 1
0 exp [−Peν cos(2πky)/2πk] dy and Peν =

ν/ε = νPe. In the expression of the transverse equilibrium
distribution, the acoustophoretic intensity ν can be rescaled
into an effective Peclét number Peν [32].

For large Peν � 10, the Frobenius distribution can be ap-
proximated by means of Gaussian functions. The distribution
ψ0(y) becomes progressively (as Peν increases) localized at the
local minima (stable nodes) y∗

n,k of the potential cos(2πky),
where

y∗
n,k = 1 + 2n

2k
, n = 0, . . . ,k − 1. (36)

Expanding the acoustophoretic potential up to the second or-
der around each y∗

n,k , cos(2πky) = −1 + 4π2k2(y − y∗
n,k)2 +

O[(y − y∗
n,k)4], the transverse equilibrium distribution can be

approximated by the equation:

ψ0(y) =
√

Peν

k

k−1∑
n=0

e−β(y−y∗
n,k )2

, (37)

where β = πPeνk. Figure 2 depicts the stationary Frobenius
distribution for k = 1 and k = 3 compared with the results of
numerical simulations of the Langevin equations of motion
(7) at time t = 20, obtained from an ensemble of 105 particles
initially located at x = 0, y = yc = 1/3.
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FIG. 2. Stationary transverse distribution ψ0(y) vs y at Peν =
103 for two different values of k. Solid lines represent Eq. (37),
and symbols (◦) are the results of Langevin simulations. (a) k = 1;
(b) k = 3.
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The equilibrium distribution becomes localized in a Gaus-
sian way around the stable nodes y∗

n,k of the acoustophoretic
force, with a square variance (around each node) equal to

σ 2
y = 1

2β
= 1

2πPeνk
. (38)

Given the Frobenius distribution ψ0(y), it is possible to obtain
the estimate of the effective axial velocity Ve through Eq. (23).
For Peν → ∞, the effective axial velocity converges towards
the asymptotic value V ∗

e = k−1 ∑k−1
n=0 u(y∗

n,k) corresponding
to the arithmetic average of u(y) sampled at the stable
nodes: V ∗

e = 1.5 at k = 1, V ∗
e = 1.125 at k = 2, and V ∗

e =
1.05555556 at k = 3. Figure 3(a) depicts the comparison of
V ∗

e − Ve as a function of the rescaled Peclét number Peν

obtained from Langevin simulations of stochastic particle
dynamics and the theoretical prediction of homogenization
analysis Eq. (23) where the expression (35) for the Frobenius
distribution has been used. In point of fact, using the Gaussian
representation (37) it is possible to obtain an analytic approx-
imation of Ve that applies for high values of Peν . Inserting
Eq. (37) into Eq. (23), and developing the relatively tedious
quadrature involved, one finally obtains:

Ve = 6

k
√

π

k−1∑
n=0

[
[y∗

n,k − (y∗
n,k)2] I1(n)

+ 1 − 2y∗
n,k

2
√

β
I2(n) − 1

β
I3(n)

]
, (39)

100

10-1

10-2

10-3

10-4

10410310210110010-1

V e* -V
e

Peν

(a)

(b) 10-1

10-2

10-3

10-4

104103102101

V e* -V
e
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FIG. 3. V ∗
e − Ve vs the effective Peclét number Peν for different

values of k = 1,2,3. Symbols in (a) refer to Langevin simulations: (•)
k = 1, (◦) k = 2, (�) k = 3. The solid lines in (a) correspond to the
theoretical prediction in Eq. (23). (b) Comparison of the theoretical
prediction (dashed lines) with the Gaussian approximation (39) and
(40) for the effective velocity (solid lines). The arrow indicates
increasing values of k = 1,2,3.

where

I1(n) =
√

π

2
[erf[

√
β(1 − y∗

n,k)] + erf(
√

βy∗
n,k)]

I2(n) = e−β(y∗
n,k )2 − e−β(1−y∗

n,k )2
(40)

I3(n) = −
√

β

2
[y∗

n,ke
−β(y∗

n,k )2 + (1 − y∗
n,k)e−β(1−y∗

n,k )2
] + 1

2
I1(n).

Figure 3(b) depicts the comparison of the Gaussian
approximation Eqs. (39) and (40) against the theoretical
expression. The Gaussian approximation is extremely accurate
starting from Peν � 102. From scaling analysis it follows that
|V ∗

e − Ve| ∼ O(ε) = O(Pe−1
ν ).

It can be observed in Fig. 3(a) that the Langevin simulations
for k = 3 are limited to values of Peν of order 102. These
simulations have been obtained starting from an initial particle
distribution localized at x = 0 and y = yc = 1/3. Indeed,
for k = 3, the relaxation dynamics towards the stationary
distribution is extremely slow (for generic initial conditions)
as thoroughly discussed in the next two sections.

V. AXIAL DISPERSION REGIMES

This section analyzes long-term or large-distance disper-
sion properties along the axial coordinate deriving from the
interplay between the axial velocity field [that we assume to
be of Poiseuille type u(y) = 6(y − y2)] and the transverse
acoustophoretic potential.

Three different dispersion regimes can be observed, re-
ferred to as Case-I, Case-II, and Case-III dispersion, respec-
tively, depending on the structure and location of the stable
nodes {y∗

n,k}k−1
n=0 of the acoustophoretic potential with respect

to the shape of the axial velocity profile.
The analysis is organized as follows. The first paragraph

discusses the spectral solution of Eq. (26) for the b field,
controlling the value of the effective dispersion coefficient
through Eqs. (30) or (32).

The physical conditions under which each of these three
regimes can be observed are developed in paragraph V B. The
theoretical expression (30) deriving from moment analysis is
compared with numerical results obtained from the numerical
solution of the Langevin equation of motion (7). Paragraph V C
develops a theoretical analysis of the b-field equation aimed
at predicting the occurrence and the properties of these three
dispersion regimes.

Finally, paragraph V D completes the picture, discussing the
influence of the intensity ν of the acoustophoretic potential on
dispersion properties.

A. b-field equation: Numerical spectral analysis

The equation for the b-field (26) can be solved using
Fourier methods. Let r(y) = ψ0(y)b(y), so Eq. (26) can be
rewritten as Ly[r(y)] = ψ0(y)[Ve − u(y)]. Because of the
boundary conditions ∂yr(y)|y=0,1 = 0, r(y) can be expanded
in cosine-Fourier series,

r(y) =
N∑

n=0

rn cos(nπy), (41)
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truncated up to a given order N . In this way, Eq. (26) becomes
a linear system in the Fourier coefficients of r(y):

N∑
m=0

Lm,n rn = Fm , n = 0,1, . . . ,N, (42)

where:

Lm,n = −ε(mπ )2δm,n + νDm,n,

Dm,n = −mπ

σ 2
m

CSS(n,m,2k), (43)

where δm,n are the Kronecker symbols, σ 2
0 = 1, σ 2

m = 1/2,
m = 1,2, . . . , and

CSS(n,m,q) =
∫ 1

0
cos(nπy) sin(mπy) sin(qπy) dy

= σ 2
n

2
[̂δn,m−q − δ̂n,m+q], (44)

where δ̂n,m are the extended Kronecker symbols, δ̂m,n = 1,
if |n| = |m| and δ̂m,n = 0 otherwise. Given the cosine-Fourier
representation of the stationary Frobenius distribution ψ0(y) =∑∞

n=0 ψ0,n cos(nπy), the forcing term Fm entering Eq. (42) can
be expressed as:

Fm = 1

σ 2
m

N∑
n=0

Gm,nψ0,n, m = 0,1, . . . ,N, (45)

where:

Gm,n = 1
2

[
Ve

(
C

(0)
m+n + C

(0)
m−n

) − 6
(
C

(1)
m+n + C

(1)
m−n

−C
(2)
m+n − C

(2)
m−n

)]
, (46)

and C(h)
n = ∫ 1

0 yh cos(nπy) dy, h = 0,1,2, n ∈ N. Equation
(42) can be represented in matrix form as L r = F, where
r = (r0, . . . ,rN )t , F = (F0, . . . ,FN )t , and L = (Lm,n)Nm,n=0.
Since the matrix L is singular—due to the fact that the
corresponding operator Ly admits a conservation eigenvalues
λ0 = 0 and, consequently, the linear system (26) possesses an
uncountable set of solutions differing from each other by an
additive constant—a solution of Eq. (42) can be obtained by
solving the equivalent system

L̂ r = F, (47)

where

L̂m,n = Lm,n + δ0,0, m,n = 0, . . . ,N. (48)

The choice of the truncation order N in the Fourier expansion
depends on the Peclét number. We use N = 400 for low Pe
values (usually � 102) up to N = 4 × 103 for higher values
(up to Pe = 106).

Let us express the reciprocal of the dispersion Peclét
number as εe = ε + εconv, i.e., as the combination of two
contributions: ε deriving from axial diffusion and εconv repre-
senting the convection-enhancement induced by the interplay
among axial velocity, acoustophoretic potential, and thermal
fluctuations. Given the Fourier representation of r(y), the term

εconv can be expressed as:

εconv =
∫ 1

0
r(y) [u(y) − Ve] dy

=
N∑

n=0

rn

[
6C(1)

n − 6C(2)
n − VeC

(0)
n

]
. (49)

As moment predictions are validated in the next paragraph
against numerical simulations of stochastic particle dynamics,
let us briefly summarize the setup for these simulations.
Equations (7) are simulated numerically using the classical
Euler-Langevin algorithm, with a time step of ht = 2 × 10−3.
As ensemble of Np particles {(x(h),y(h))}Np

h=1 is considered with
Np = 105 up to Np = 106, depending on the simulations.

The initial conditions {(x(h)
0 ,y

(h)
0 )}Np

h=1 at t = 0 are localized
at the “inlet section” x = 0, i.e., x

(h)
0 = 0, h = 1, . . . ,Np,

while for the transverse coordinate several configurations are
considered: either localized at a single point, i.e., y

(h)
0 = yc,

h = 1, . . . ,Np, or considering {y(h)
0 }Np

h=1 uniformly distributed
through the transverse section. The choice of the initial
particle distribution does not influence the estimate of the
asymptotic transport properties but has a deep impact on
transient dispersion properties as addressed in Sec. VI.

B. Dispersion regimes

For the transport problem under investigation, three dif-
ferent dispersion regimes can be identified that correspond
to three qualitatively different asymptotic behaviors of εe

vs Pe for large Peclét numbers. Throughout this subsection
we consider the normalized case ν = 1 and use the notation
s(y) = ν sin(2πky) to indicate the acoustophoretic force. The
influence of ν is discussed in subsections V C and V D.

The first regime, referred to as Case-I dispersion, occurs
whenever the values of the axial velocity are the same at
all the stable nodes {yn,k}k−1

n=0 and the velocity u(y) in the
neighborhood of every y∗

n,k is at least locally quadratic. There-
fore, the two analytic conditions defining Case-I dispersion are
(i) u(y∗

n,k) = u∗, ∀n = 0, . . . ,k − 1 and (ii) ∂yu(y)|y=y∗
n,k

= 0,
∀n = 0, . . . ,k − 1.

The prototype of this situation is represented by an
acoustophoretic contribution s(y) = sin(2πy), i.e., k = 1,
since there exists a single stable node exactly at the abscissa
of the local maximum of the Poiseuille profile u(y) (channel
midpoint y∗

0,1 = 1/2), as depicted in Fig. 4(a).
Axial dispersion in this case can be viewed as a constrained

Taylor-Aris dispersion in which the acoustophoretic potential
near the stable nodes shrinks the spatial range of influence
(represented by the transverse variance σy) of Brownian
fluctuations. This constraint is progressively more effective
for increasing Pe values and annihilates the fluctuations for
Pe → ∞ since limPe→∞ σ 2

y = 0.
Since the axial velocity profile is at least locally quadratic

near each y∗
n,k , Brownian particles experience an axial velocity

in the neighborhood of each stable node as it would be locally
uniform. As for uniform parallel flows (plug flows), Taylor-
Aris dispersion theory predicts εconv = 0, it is expected that
εconv → 0 as Pe diverges.
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FIG. 4. (a) Schematic representation of the physical conditions
giving rise to Case-I dispersion, occurring for k = 1. (b) De/D vs
Pe (at ν = 1) for k = 1. Solid line represents the moment prediction,
and symbols (•) are the results of Langevin simulations.

Therefore, if one considers the ratio of the effective
dispersion coefficient De to the diffusivity D,

De

D
= εe

ε
= 1 + εconv

ε
, (50)

we expect from physical reasons that De/D → 1 both for very
small and very large Pe. For intermediate Pe values, since εe �
ε, the graph of De/D should display a unimodal behavior with
a local maximum at some Pe value. This qualitative picture
justifies the numerical results reported in Fig. 4(b) obtained via
Langevin simulations (symbols •), quantitatively confirmed by
moment analysis (solid line).

To sum up, Case-I dispersion is characterized by the the
following asymptotic property:

lim
Pe→∞

De

D
= 1, i.e., lim

Pe→∞
εconv = 0. (51)

Case-II dispersion displays some analogies with respect to
Case I, namely the axial velocity profile at all of the stable
nodal points attains the same value. Conversely, for Case II
no conditions are set on the derivatives of u(y) at {y∗

n,k}k−1
n=0,

Consequently, the axial velocity in the neighborhood of the
stable nodes behaves generically as a shear flow.

The analytical conditions defining the occurrence of Case-
II dispersion are (i) u(y∗

n,k) = u∗, ∀n = 0, . . . ,k − 1, and (ii)
Dumax = maxn=0,...,k−1|∂yu(y)|y=y∗

n,k
> 0.

Condition (ii) ensures that there exists at least one stable
node at which ∂yu(y) strictly differs from zero (local shear-
flow behavior).

For Poiseuille profiles u(y), a typical situation that satisfies
the conditions of Case-II dispersion occurs for k = 2, as
depicted in Fig. 5(a). Observe that also the case k = −1,
depicted in Fig. 5(b) falls in this class of dispersion problems.

As for Case I, axial dispersion develops as a constrained
Taylor-Aris problem, in which Brownian particles experience,
at least at some stable node of the potential, a local shear flow,
while the spatial range of influence of velocity nonuniformities
shrinks progressively as Pe → ∞.

This observation suggests that Case-II dispersion should
be characterized by a behavior of the ratio De/D vs Pe that
is “intermediate” between the Taylor-Aris divergence and the
collapse of De towards D observed for Case I. The typical
dispersion patterns in Case II are depicted in Fig. 6.

As can be observed, the ratio De/D admits a local
maximum for intermediate values of the Peclét number,
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FIG. 5. Schematic representation of the physical conditions
originating Case-II dispersion, occurring for k = 2 (a) and
k = −1 (b).

while it converges for Pe → ∞ towards a limiting value that
is definitely greater than 1. A theoretical and quantitative
explanation of this phenomenon is developed in the next
paragraph based on the properties of the b-field in the
neighborhood of the stable nodes.

To sum up, the qualitative property characterizing Case-II
dispersion is therefore:

lim
Pe→∞

De

D
= κD > 1, i.e., lim

Pe→∞
εconv = ε∞

conv > 0. (52)

Finally, let us consider the generic situation in the presence
of multiple stable nodes, namely that the axial velocities at the
stable nodes differ from each other. This condition is referred
to as Case-III dispersion. Mathematically, Case-III dispersion
can be defined by the following conditions: (i) k > 1 and (ii)
�u∗

max = maxm,n=0,...,k−1|u(y∗
n,k) − u(y∗

m,k)| > 0.
The simplest model accounting for these conditions occurs

for k = 3 in a Poiseuille flow (Fig. 7), although for k � 3 all
the acoustophoretic potentials meet these conditions.

Figure 8 depicts the behavior of the axial mean-square
displacement 〈(x − 〈x〉)2〉(t) as a function of time t at k = 3,
for three different values of the Peclét number, obtained from
Langevin simulations starting from a uniform distribution of
the initial transverse positions at the inlet section x = 0. A
slight increase in Pe, from Pe = 60 to Pe = 70 and Pe = 100
determines a huge increase of the axial dispersion.
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FIG. 6. De/D vs Pe for Case-II dispersion. Solid lines represent
moment predictions, and symbols (• and ◦) denote Langevin
simulation results. Line (a) and (•): k = 2; line (b) and (◦): k = −1.
Horizontal dotted lines correspond to the limit values for Pe → ∞.
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FIG. 7. Schematic representation of the physical conditions
giving rise to Case-III dispersion for k = 3.

The numerical estimate of εconv and of the ratio De/D as
a function of Pe for k = 3 is depicted in Figs. 9(a) and 9(b),
respectively. Moment analysis and Langevin simulations are
in excellent agreement with each other and indicate that:

εconv ∼ De

D
∼ C eμkPe, for Pe � 1, (53)

where C is a positive constant and μk > 0, i.e., the axial
dispersion coefficient De scales exponentially with the Peclét
number. The scaling relation (53) represents the signature of
Case-III dispersion.

This is the first physical example, to the best of our
knowledge, where an exponential increase of the dispersion
coefficient with the Peclét number has been reported and
predicted. This phenomenon is a consequence of the fact
that the velocity experienced by Brownian particles in the
channel v = [s(y),u(y)] consists of the superposition of a
solenoidal axial component u(y) and of a potential one s(y).
The exponential divergence of εconv is peculiar of this interplay,
since it can be observed neither in purely solenoidal fields
nor in purely potential (irrotational) ones. The theoretical
explanation of the exponential scaling (53) observed in Case-
III dispersion, as well as the prediction of the exponent μk ,
is developed in next paragraph by re-elaborating the b-field
equation (26).
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FIG. 8. Axial mean-square displacement 〈(x − 〈x〉)2〉(t) vs time t

at k = 3, ν = 1 (Case-III dispersion regime) for three different values
of the Peclét number. Line (a): ε = 1.66 × 10−2, Pe = 60; line (b):
ε = 1.143 × 10−2, Pe = 70; line (c) ε = 10−1, Pe = 102.
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FIG. 9. (a) εconv vs Pe for k = 3 (ν = 1) obtained from moment
analysis (solid line a). Dashed line (b) represents the theoretical
exponential scaling εconv ∼ ePe/3π , see Eq. (80) in subsection V C.
(b) De/D vs Pe: comparison of the prediction of moment theory
(line) with the results of Langevin simulations (symbols •).

C. b-field equation: Theoretical analysis

The starting point for a theoretical investigation of the
dispersion regimes phenomenologically described in the pre-
vious paragraph is the b-field equation (26), controlling via
Eqs. (30) or (32) the behavior of εe. For notational simplicity
set s(y) = ν sin(2πky).

Expanding the expression forLy[ψ0(y) b(y)], enforcing the
fact that the Frobenius distribution satisfies the homogeneous
equation Ly[ψ0(y)] = 0, Eq. (26) can be rewritten in the form:

−s(y) ∂yb(y) + 2ε[∂y log ψ0(y)] ∂yb(y)

+ε ∂2
y b(y) = Ve − u(y). (54)

Because of the boundary conditions, and of the fact that s(y)
vanishes at y = 0,1, equation Ly[ψ0(y)] = 0 implies

−s(y) ψ0(y) + ε ∂yψ0(y) = 0, (55)

thus,

ε[∂y log ψ0(y)] = s(y). (56)

Substituting this expression into Eq. (54) one obtain for b(y)
the simpler equation

s(y) ∂yb(y) + ε ∂2
y b(y) = Ve − u(y), (57)

that can be easily solved by quadrature by setting g(y) =
∂yb(y), obtaining a first-order equation for g(y),

ε ∂yg(y) + s(y) g(y) = Ve − u(y), (58)

subjected to the boundary constraints g(y)|y=0,1 = 0.
In point of fact, the functional structure of Eq. (58) is fully

sufficient to achieve a qualitative theoretical explanation of the
dispersive behavior in two of the three regimes without solving
explicitly this equation.

First, consider Case-I dispersion, taking k = 1 as the
paradigmatic prototype of this regime. Set y∗ = y∗

0,1 = 1/2.
Figure 10(a) shows the behavior of the function r(y) =
ψ0(y) b(y) solution of the b-field equation for two values of
Pe. As Pe increases, r(y) localizes in the neighborhood of the
stable node y∗.

Since εconv = ∫ 1
0 r(y) [u(y) − Ve] dy, the behavior of r(y)

or of b(y) in the neighborhood of y∗ controls the properties of
εconv for high Peclét values.
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Let u∗ = u(y∗). Since u(y) is locally quadratic, by condi-
tion (ii) defining the Case-I regime in the previous paragraph,
we can set, in general,

u(y) = u∗ + u′′(y∗)

2
(y − y∗)2 + O[(y − y∗)3]. (59)

Moreover,

Ve = u∗ + O(ε) (60)

and

s(y) = s ′(y∗)(y − y∗) + O[(y − y∗)2]. (61)

As y∗ is an internal point in (0,1), ε∂yg(y) ∼ O(ε) and the
solution of Eq. (58) in the neighborhood of y∗ can be expressed
as:

g(y) = Ve − u(y)

s(y)
+ O(ε) = − u′′(y∗)

2 s ′(y∗)
(y − y∗) + O(ε).

(62)

As a consequence, the field b(y) behaves quadratically in the
neighborhood of y∗:

b(y) = − u′′(y∗)

4 s ′(y∗)
(y − y∗)2 + C, (63)

where C is some immaterial additive constant. In the case k =
1 for the Poiseuille profile, u′′(y∗) = −12, s ′(y∗) = −2πν,
and Eq. (63) becomes

b(y) = − 3

2πν
(y − y∗)2 + C . (64)

Figure 10(b) compares the theoretical prediction (64) with the
b(y) profile obtained by the direct solution of Eq. (26) using
spectral methods. The agreement is excellent.

For large Pe values we can use Eq. (64) to predict the
behavior of the effective dispersion coefficient. From Eq. (32),
substituting the expression (62) for g(y) and the Gaussian
approximation (37) for ψ0(y), one obtains for the Poiseuille
flow:

εe = ε + ε

(
9

π2ν2

) √
Peν

∫ 1

0
(y − y∗)2e−β(y−y∗)2

dy︸ ︷︷ ︸
σ 2

y

. (65)
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FIG. 10. Case-I dispersion (k = 1). (a) r(y) vs y for Pe = 103

[solid line (a)], and Pe = 3 × 103 [dashed line (b)]. (b) b(y) vs y in
the neighborhood of y∗ = 1/2. Solid lines represent the theoretical
predictions based on Eq. (64) and symbols the results of moment
analysis. Line (a) and symbols (•): Pe = 103; line (b) and symbols
(◦): Pe = 3 × 103.
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FIG. 11. De/D − 1 vs Pe for k = 1 (Case-I dispersion). Symbols
are the results of moment analysis and solid lines the theoretical
prediction Eq. (65) valid for large Pe. Line (a) and (◦): ν = 1; line
(b) and (•): ν = 0.3; line (c) and (�): ν = 0.1.

The integral term entering Eq. (65) is simply the transverse
variance σ 2

y given by Eq. (38). As a consequence, from Eq. (65)
we infer the following properties in Case-I dispersion: (i) For
large Pe, εe → ε and (ii) εe/ε − 1 ∼ Pe−1. Figure 11 depicts
the behavior of De/D − 1 for high Peclét values obtained from
Eq. (65) compared with moment-analysis results, confirming
the theory.

Case-II dispersion can be treated in a similar way.
Figure 12(a) depicts the typical profile of the field r(y) at high
Peclét value, showing localization around the stable nodes.
Consequently, also in this case, a purely local analysis of the
field b(y) is sufficient to predict dispersion properties for high
Pe values.

For technical simplicity, consider the case (as for k = 2)
where the stable nodes fall inside the interval (0,1). Let
u∗ = u(y∗

n,k), n = 0, . . . ,k − 1, and consider any y∗ = y∗
n,k

(for fixed n) stable node of the acoustophoretic potential. In
the neighborhood of y∗, we have for large Pe:

u(y) = u∗ + u′(y∗)(y − y∗) + O[(y − y∗)2], (66)

while Eqs. (60) and (61) apply also in this case for Ve and
s(y), respectively. For any internal y∗, ε(∂yg) ∼ O(ε), and,
consequently, in the neighborhood of y∗,

g(y) = −u′(y∗)

s ′(y∗)
+ O(ε). (67)
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FIG. 12. Case-II dispersion (k = 2). (a) r(y) vs y for Pe = 103.
(b) b(y) vs y in the neighborhood of y∗

0,2 = 1/4. Solid line represents
the theoretical prediction based on Eq. (68) and the symbols the
results of moment analysis: (•) Pe = 103; (◦) Pe = 3 × 103.
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It follows from Eq. (67) that b(y) is locally linear,

b(y) = −u′(y∗)

s ′(y∗)
(y − y∗) + C, (68)

where the value of the additive constant C is physically
immaterial. Figure 12(b) compares this result with spectral
simulations of the field b(y) for k = 2 in the neighborhood of
y∗ = 1/4.

Obviously Eq. (67) applies to each y∗
n,k , so g(y) =

−[u′(y∗
n,k)/s ′(y∗

n,k)] + O(ε) in the neighborhood of each stable
node y∗

n,k . In the symmetric case where all the factors
[u′(y∗

n,k)/s ′(y∗
n,k)] are equal for n = 0, . . . ,k − 1 one obtains

a particularly simple expression for the dispersion coefficient.
This is the case of k = 2 in the presence of a Poiseuille flow.
From Eq. (67) the following asymptotic value of the axial
dispersion coefficient can be inferred:

εe = ε + ε

∫ 1

0
ψ0(y)g2(y) dy = ε + ε

[
u′(y∗)

s ′(y∗)

]2

. (69)

This theoretical argument shows that for Case-II dispersion the
ratio εe/ε remains bounded and converges for Pe → ∞ to a
limit value that is strictly greater than 1. In the symmetric
case where Eq. (69) applies, this limit value equals 1 +
[u′(y∗)/s ′(y∗)]2. For instance, in the case of a Poiseuille flow
profile at k = 2, y∗ = 1/4,3/4, u′(y∗) = 4, s ′(y∗) = −4πν so
for ν = 1 one obtains:

lim
Pe→∞

εe

ε
= 1 +

(
3

4π

)2

= 1.057 . . . , (70)

in perfect agreement with the simulation results reported in
Fig. 6.

Consider now Case-III dispersion, i.e., whenever there is
more than a single stable node and the axial velocities at
these nodes different from each other. Let y∗ = y∗

n,k any
of these nodes for a fixed value of the integer n � k − 1.
Close to y∗, u(y) = u(y∗) + u′(y∗)(y − y∗), but Ve = um +
O(ε), where um = k−1 ∑k−1

n=0 u(y∗
n,k) �= u(y∗). Therefore, if

one neglects ε∂yg(y) in Eq. (58), one would obtain g(y) =
[Ve − u(y)]/s(y) → ∞ for y → y∗. This result is indeed
correct in the limit for Pe → ∞, as both r(y) and b(y) diverge
at any y = y∗ for Pe → ∞ [see Fig. 13(a)]. Nevertheless, in
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FIG. 13. Case-III dispersion. (a) 10−8 × r(y) vs y for k = 3.
The arrows indicate increasing values of Pe = 1.8 × 102, 1.9 ×
102, 1.95 × 102, 2 × 10−2. (b) εconv vs Pe for different values of
k (k > 3, ν = 1). Solid lines a: k = 4,;b: k = 6; and (c) k = 8.
The corresponding dashed lines represent the theoretical scalings
εconv ∼ ePe/kπ .

order to obtain an expression for the scaling or εconv with Pe a
more refined analysis of Eq. (58) is required.

The general solution of Eq. (58) is given by:

g(y) = e−S(y)/ε

{
A + 1

ε

∫ y

0
[Ve − u(η)] eS(η)/ε dη

}
, (71)

where A is an integration constant and S(y) = ∫ y
s(η) dη.

Because of the boundary constraint at y = 0, g(0) = 0 implies
A = 0 so Eq. (71) becomes:

g(y) = e−S(y)/ε

ε

∫ y

0
[Ve − u(η)] eS(η)/ε dη . (72)

Observe that this expression satisfies the other constraint at
y = 1 identically. This stems from the fact that the Frobenius
distribution can be expressed as:

ψ0(y) = eS(y)/ε/Z(+), Z(+) =
∫ 1

0
eS(y)/ε dy, (73)

so g(1) = (Z(+)e−S(1)/ε/ε)
∫ 1

0 [Ve − u(η)] ψ0(η) dη = 0.
Using Eq. (73), the function g(y) can be expressed as:

g(y) = 1

ε ψ0(y)

∫ y

0
[Ve − u(η)] ψ0(η) dη, (74)

so

εconv = 1

ε2

∫ 1

0

W 2(y)

ψ0(y)
dy,

W (y) =
∫ y

0
[Ve − u(η)] ψ0(η) dη. (75)

The function W (y) is a “window” function W (0) = W (1) = 0,
bounded for any y, and converging for Pe → ∞ towards a
piecewise constant function W∞(y) [see Figs. 14(a) and 14(b)],
given by:

W∞(y) = 1

k

∫ y

0
[Ve − u(y∗

n,k)]δ(η − y∗
n,k) dη. (76)

It follows from Eq. (75) for large Pe,

εconv = 1

ε2

∫ 1

0

dy

ψ0(y)
∼ Z(+) Z(−)

ε2
, (77)

where Z(−) = ∫ 1
0 e−S(y)/ε dy. The integral Z(−) is analogous

to Z(+), but with a reverse potential, making the unstable
nodes stable and vice versa. Consequently, both Z(+) and Z(−)

possess the same exponential scaling with Pe, controlled by the

-0.1

-0.05

 0

 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

W
(y

)

y

(a)

-0.1

-0.05

 0

 0.05

 0.1

 0  0.2  0.4  0.6  0.8  1

W
(y

)

y

(b)

FIG. 14. Case-III: window function W (y) vs y. The arrows
indicate increasing values of Pe. (a) k = 3, Pe = 102, 2 × 102, 3 ×
102. (b) k = 5, Pe = 102, 2 × 102, 4 × 102.
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FIG. 15. (a) Case I, De/D vs Pe at k = 1 for different
values of ν. The arrow indicates decreasing values of ν =
1,0.3,0.2,0.15,0.12,0.1. (b) Case III, εconv vs Pe at k = 3 for different
values of ν. Solid lines a: ν = 1; b: ν = 0.7; c: ν = 0.5; and d:
ν = 0.3. The corresponding dashed lines represent the theoretical
scalings εconv ∼ ePeν/kπ with the exponent μk given by Eq. (80).

value of eS(y)/ε and e−S(y)/ε at the unstable and stable nodes,
respectively, i.e.,

Z(−) ∼ Z(+) =
∫ 1

0
e−Pe ν cos(2πky)/(2πk) dy ∼ ePeν/2πk. (78)

It follows from Eq. (78) that:

εconv ∼ (ePeν/2πk)2

ε2
∼ ePeν/πk, (79)

which indicates that the exponent μk entering Eq. (53) is given
by:

μk = Pe ν

π k
. (80)

The theoretical prediction expressed by Eq. (80) is in perfect
agreement with the numerical data depicted in Fig. 9(a) for
k = 3 and in Fig. 13 for k > 3.

D. Influence of the acoustophoretic intensity ν

Particle motion in the overdamped regime Eq. (7) depends
on two parameters: the particle Peclét number and the
dimensionless acoustophoretic intensity ν. In this paragraph
we address succinctly the influence of the latter.

There are two contrasting effects of ν on dispersion,
occurring for Cases I and II and for Case III, respectively.
In Cases I and II, lower values of ν determine higher values
of the ratio De/D for intermediate Peclét numbers (Pe > 1).
Moreover, in Case II, an asymptotic higher values of the limit
ratio κD can be observed and reported in Figs. 15(a) and
16(a). This is a consequence of the fact that that as ν de-
creases, Taylor-Aris dispersion [i.e., De = D + V 2H 2�TA/D,
where �TA is the Taylor-Aris coefficient and �TA = 1/105
in two-dimensional (2D) Poiseuille flow], that is controlled
exclusively by the solenoidal axial velocity, becomes more
pronounced at intermediate Peclét values.

Specifically, the local theory developed in the previous
paragraph provides the expression for the limit value of εe/ε

in Case-II dispersion (k = 2):

lim
Pe→∞

εe

ε
= κD = 1 +

(
3

4 π ν

)2

, (81)

in perfect agreement with numerical analysis [Fig. 16(b)].
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FIG. 16. Case-II dispersion (k = 2). (a) De/D vs Pe for dif-
ferent values of ν. The arrow indicates decreasing values of ν =
0.7, 0.5, 0.3, 0.2, 0.1. (b) Limit value κD vs ν. Symbols (•) represent
the numerical estimate based on the data reported in panel (a), and
the solid line the theoretical prediction Eq. (81).

Conversely, the amplitudes of the potential barriers between
neighboring stable nodes, which control the exponential
scaling characterizing Case-III dispersion Eq. (79), decrease
with ν as predicted by Eq. (80) and confirmed numerically
[Fig. 15(b)].

VI. ANOMALOUS TRANSIENT AXIAL DISPERSION

The presence of different axial velocities at the stable
nodal points, which represents the main signature of Case-III
dispersion, implies an interesting short or intermediate term
dispersive dynamics. In point of fact, the occurrence of
exponentially high values of the dispersion coefficient with
Pe is related one to one with the extremely slow relaxation
of the marginal axial distribution px(x,t) = ∫ 1

0 p(x,y,t) dy

towards the equilibrium Frobenius eigenfunction ψ0(y) that
controls the onset of the long-term or large-distance transport
described by the effective transport parameters Ve and De

Eq. (10). This implies, in passing, that the transient properties
and not the long-term dynamics are the crucial dispersive
features controlling the design and optimization of practical
acoustophoretic microflow devices in Case-III conditions.

Figure 17 depicts the typical axial dynamics in Case-III
dispersion. This figure shows the temporal behavior of the
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FIG. 17. σ 2
x (t) vs t for k = 3, ν = 1, ε = 10−2. Solid lines

reproduce the results of Langevin simulations: starting from a
uniform initial transverse distribution [line (a)], a localized transverse
distribution at yc = 1/2 [line (b)], a localized transverse distribution
at yc = 0.2 [line (c)]. Dashed lines represent the scalings σ 2

x (t) ∼ t

[lines (d) and (e)], σ 2
x (t) ∼ t2 [line (f)], and σ 2

x (t) ∼ t3 [line (g)].
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mean-square axial displacement σ 2
x (t) = 〈(x − 〈x〉)2〉(t) in

Case-III conditions (k = 3, ν = 1) obtained from Langevin
simulations considering Np = 106 particles. Several different
initial conditions are considered, belonging to two classes of
inlet transverse distributions: (i) x(h) = 0 and the y(h)’s, h =
1, . . . ,Np, uniformly distributed throughout the cross section
(referred to as U conditions); (ii) x(h) = 0 and y(h) = yc, h =
1, . . . ,Np, i.e., all the particles of the ensemble are injected
at the same transversal location yc, thus py(y,0) = δ(y − yc)
(referred to as L conditions).

The dynamics of σx(t) can be subdivided into three
subregions:

σ 2
x (t) �

⎧⎪⎨
⎪⎩

2 ε t 0 < t < t∗

B tγ t∗ < t < t∗∗

2 ε∗ t t � t∗∗ ,

(82)

where B is a constant independent of time.
Initially (t < t∗), an initial transient occurs controlled by

diffusion. Consequently, σ 2
x (t) = 2 ε t . Asymptotically, i.e.,

for t � t∗∗, the long-term or large-distance regime sets up
and, consequently, σ 2

x (t) � 2 ε∗ t , where ε∗ is the reciprocal
of the dispersion Peclét number thoroughly analyzed in the
previous two sections.

The intermediate regime, occurring for t ∈ (t∗,t∗∗), is
characterized by a superdiffusive scaling, σ 2

x (t) ∼ tγ , with
an exponent γ � 2 that depends on the initial transverse
distribution. For an initial uniform transverse distribution
(U condition), line (a) in Fig. 17, a ballistic dispersion is
observed, namely γ = 2, while for localized initial transverse
distributions (L conditions), lines (b) and (c) in Figs. 17,
a superballistic anomalous dispersion occurs, characterized
by an exponent γ = 3. The manifestation of this superbal-
listic behavior becomes more pronounced as Pe increases
as depicted in Fig. 18. While at ε = 8 × 10−3, line (a) in
Fig. 18, corresponding to Pe = 125, σ 2

x (t) starts to deviate from
the superballistic scaling at t∗∗ � 2 × 104, at ε = 6 × 10−3

(Pe = 166.67), line (b) in this figure, this regime in neatly
observable over more than two decades t ∈ (t∗ = 103,105),
implying t∗∗ � 105.

The spatial structure of the probability density function as
it evolves along the channel at intermediate scales is depicted
in Fig. 19 for the two classes of initial conditions considered.

108

106

104

102

100

10-2

10-4

10510410310210110010-1

σ2 x(
t)

t

(a)

(b)

FIG. 18. σ 2
x (t) vs t for k = 3, ν = 1. Solid lines reproduce the

results of Langevin simulations: (a) ε = 8 × 10−3 and (b) ε = 6 ×
10−3. The dashed line represents the scaling σ 2

x (t) ∼ t3.

FIG. 19. (Color online) Contour plot of p(x,y,t) at ε = 3 × 10−2

for two different initial conditions at different time instants. Panels
(a) to (c): L conditions, yc = 1/2, at t = 0.5 (a), t = 5 (b), and
t = 100 (c). Panels (d) to (f): U conditions at t = 0.5 (d), t = 1 (e),
and t = 50 (f).

Two-dimensional plots of p(x,y,t) for Pe = 100, corre-
sponding to the σ 2

x data depicted in Fig. 17 are reported in
Fig. 20 starting from a L condition at yc = 1/2.

The difference between the two intermediate scalings start-
ing from U and L initial conditions is related to qualitatively
different relaxation properties in the transverse direction. In
U conditions, the transverse relaxation is very fast as uniform
initial conditions allow particles to reach the stable nodes and
to distribute according to the stationary Frobenius distribution
ψ0(y) without crossing potential barriers. In this case the
intermediate scaling region is associated exclusively to the
axial relaxation towards a Gaussian profile. Consequently, in
the intermediate-scale region it can be assumed that py(y,t) =
ψ0(y).

At intermediate time scales, axial diffusion is negligible
with respect to the deterministic motion induced by the flow.
This means that the axial dynamics of a particle located in
the transverse position y can be approximated for t < t∗∗ by
xy(t) = u(y)t and, consequently,

σ 2
x (t) =

∫ 1

0
ψ0(y) [Vet − u(y)t]2 dy = S2 t2, (83)

where S2 = ∫ 1
0 ψ0(y) [Ve − u(y)]2dy. For large Pe values, this

expression can be further simplified by approximating ψ0(y)
with a combination of δ functions centered at the stable nodes
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FIG. 20. (Color online) Contour plot of the logarithm of p(x,y,t)
at ε = 10−2 at different time instants. Panels (a) t = 50, (b) t = 250,
(c) t = 2500, (d) t = 5000.

y∗
n,k , and Ve with V ∗

e , so the prefactor S2 can be expressed as:

S2 = 1

k

k−1∑
n=0

[Ve − u(y∗
n,k)]2. (84)

Figure 21(a) depicts the comparison of Langevin simula-
tions and the theoretical prediction based on Eqs. (83) and (84)
where the asymptotic expression (84) for S2 has been used at
ε = 5 × 10−3 for two values of k. It can be observed that the
agreement of the simple model (84) with the simulations of
particle motion is fully satisfactory even for relatively small Pe
values (Pe � 200). This is further supported by the comparison
of the estimate of the prefactor S2 obtained from stochastic
simulations and expression (84) depicted in Fig. 21(b).

L conditions are slightly more difficult to handle, as a
localized initial distribution implies that particle ensembles
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FIG. 21. (a) σ 2
x (t) vs t for ε = 5 × 10−3, ν = 1, at intermediate

time scales starting from an initially uniform transverse distribution.
Symbols represent the results of Langevin simulations, solid lines
the theoretical predictions based on Eqs. (83) and (84). Line (a)
and (•): k = 3, line (b) and (◦): k = 9. (b) Prefactor S2 vs k. Solid
line represents the theoretical prediction in Eq. (84) and symbols (•)
the value of S2 obtained from the fitting of Langevin simulations at
ε = 5 × 10−3.

achieve the stationary transversal distribution performing a
series of tunneling processes across the potential barriers
separating two neighboring stable states.

In order to simplify the analysis, consider the case k = 3
where yc = 1/2, i.e., where the particles are injected at
the midpoint stable node. The intermediate scaling behavior
σ 2

x (t) ∼ t3, observed under L conditions, is the combination
of ballistic dispersion deriving from axial velocity differences
at the stable nodes and the tunneling dynamics in the trans-
verse direction to achieve the stable transversal distribution
expressed by the Frobenius eigenfunction ψ0(y).

Let y
u,∗
n,k , n = 1, . . . k − 1 be the unstable nodes separating

y∗
n−1,k from y∗

n,k , and set y
u,∗
0,k = 0, y

u,∗
k,k = 1. Within the basin

of attraction of each stable node the convergence towards
y∗

n,k is fast compared to the characteristic time scales of the
intermediate regime, which is order of O(t∗∗ − t∗). Therefore,
to achieve a physical and qualitative explanation of the
anomalous behavior of σ 2

x (t), it is possible to use a very crude
approximation for py(y,t), as a combination of δ functions
centered at the stable nodes (as developed for U conditions),

py(y,t) =
k−1∑
n=0

πn(t) δ(y − y∗
n,k), (85)

where πn(t) � 0, n = 0, . . . ,k − 1,
∑k−1

n=1 πn(t) = 1, represent
the probability of finding a particle in the attraction interval
(yu,∗

n,k ,y
u,∗
n+1,k) of the stable node y∗

n,k , i.e.,

πn(t) =
∫ y

u,∗
n+1,k

y
u,∗
n,k

py(y,t) dy. (86)

For the case study considered (k = 3), π0(0) = π2(0) = 0,
π1(0) = 1.

The difference with respect to the U conditions is that now
πn(t) depends on time t , and also the time dependence of the
mean axial velocity V (t) should be taken into account. This
transient effect, enhanced by particle tunneling, makes σ 2

x (t)
to deviate from purely ballistic dispersion.

The time evolution of π0(t) = π2(t) (these two quantities
are equal by symmetry for the case study considered) is rather
easy to estimate as it is related to particle tunneling across the
unstable nodes y

u,∗
1,3 [for π0(t)] and y

u,∗
2,3 [for π2(t)].

From a macroscopic balance over the attraction interval of
y∗

0,k , it follows that π0(t) equals the time integral of the particle
flux (tunneling flux) at the unstable node y

u,∗
1,3 , i.e.,

π0(t) =
∫ t

0
Jtun(τ ) dτ, (87)

where

Jtun(t) = ε ∂yp(y,t)|y=y
u,∗
1,3

, (88)

where p(y,t) is the solution of the transverse advection-
diffusion dynamics (33) equipped with homogeneous Neu-
mann conditions at the end points and with the initial condition
py(y,0) = δ(y − yc), yc = 1/2.

It can be shown numerically, integrating Eq. (33), that
Jtun(t) in the intermediate-scale region, i.e., apart of a very
early initial dynamics irrelevant for t > t∗, is practically
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FIG. 22. (a) Tunneling flux Jtun vs Pe: symbols (•) represent
the results of numerical simulations using the transversal trans-
port equation (33); the solid line (b) is the exponential behavior
Jtun = Ae−FPe, with F = 0.1055. (b) Comparison of the theoret-
ical predictions (dashed lines) based on Eq. (90) with Langevin
simulations (solid lines). The arrow indicates decreasing values of
ε = 10−2, 8 × 10−3, 6 × 10−3.

constant, so Eq. (87) simplifies as:

π0(t) = Jtun t. (89)

Figure 22(a) depicts the behavior of Jtun vs Pe. As expected
from rate-process theory [33], Jtun ∼ e−F Pe, where F is a
constant.

Under L conditions for k = 3, it follows from the impulsive
approximation (85) that:

σ 2
x (t) =

2∑
k=0

πn(t) [V (t) t − u(y∗
n,k) t]2, (90)

where

V (t) =
2∑

n=0

πn(t) u(y∗
n,k). (91)

Enforcing Eq. (89), it follows that:

σ 2
x (t) � S3 t3 ∼ Jtun t3, (92)

providing a theoretical explanation for the superballistic
dispersion enhanced by tunneling.

Figure 22(b) depicts the theoretical prediction for σ 2
x (t)

based on Eqs. (89)–(91) compared with Langevin data. We
use in Eq. (89) the value of Jtun obtained from the solution
of the transverse transport dynamics (33). The theoretical
prediction overestimates the scaling prefactor S3 by a factor
of 2 at ε = 10−2. This overestimation is due to the “crude”
impulsive approximation (85) for py(y,t) that is certainly
less accurate for small Pe values, as it corresponds to the
asymptotic behavior for Pe → ∞. Indeed, as Pe increases, the
prediction for the prefactor S3 improves [see Fig. 22(b)]. In
point of fact, Eq. (85) could be refined simply replacing the
δ functions with the corresponding Gaussian pulses of finite
width, improving, as a by-product, the estimate of S3. In any
case, this tedious calculation does not add anything new to the
physical understanding of the phenomenon and is left to the
scrupulous reader as an algebraic exercise.

VII. CONCLUDING REMARKS

This article has developed a comprehensive analysis
of particle transport and dispersion in two-dimensional
acoustophoretic channels. The extension to three-dimensional
devices, also in the presence of secondary vortices, will be
developed elsewhere.

The model system considered represents a simple but ab-
solutely nontrivial example of interaction between solenoidal
and irrotational velocity components with noise. Theoretical
analysis of the b-field equation has provided a complete quali-
tative and quantitative theoretical prediction of the asymptotic
dispersive behavior based on the localization properties of
the steady field b(y). This analysis is conceptually similar
to the study of eigenfunction localization in simple mixing
systems possessing a convection-enhanced spectral branch
[6].

Transient dynamics of the mean-square axial displacement
has revealed anomalous superdiffusive properties that have
been interpreted by theoretical arguments (tunneling across
potential barriers).

As this simple model system has shown interesting and
new scaling properties in the dispersive dynamics, it is
expected that the interplay between solenoidal and irrota-
tional fields coupled with stochastic fluctuations (diffusion)
in more complex settings will lead to a manifold of dif-
ferent physical phenomenologies still to be discovered and
characterized both in the light of a comprehensive theory
of stochastic fluctuations in the presence of deterministic
vector fields and for their potential use in microtechnological
applications.

APPENDIX

Consider Eq. (26), multiply it by b(y) and integrate over y

in the interval [0,1]:

∫ 1

0
ψ0(y)[Ve − u(y)] b(y) dy =

∫ 1

0
b(y)Ly[ψ0(y) b(y)] dy.

(A1)

Set s(y) = ν sin(2πky), so

∫ 1

0
b(y)Ly[ψ0(y) b(y)] dy

=
∫ 1

0
b(y)

{ − ∂y[s(y)ψ0(y)b(y)] + ε∂2
y [ψ0(y)b(y)]

}
dy

=
∫ 1

0
∂y{b(y)[−s(y)ψ0(y)b(y)] + ε∂y[ψ0(y)b(y)]}dy︸ ︷︷ ︸

=0

+
∫ 1

0
{s(y)ψ0(y)b(y)∂yb(y)−ε∂yb(y) ∂y[ψ0(y)b(y)]} dy

= −ε

∫ 1

0
ψ0(y)[∂yb(y)]2 dy +

∫ 1

0
b(y) ∂yb(y)[s(y)ψ0(y)

−ε∂yψ0(y)]dy. (A2)
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But ψ0(y) is the Frobenius eigenfunction, the solution of equa-
tion Ly[ψ0(y)] = 0. Therefore, −s(y)ψ0(y) + ε∂yψ0(y) =
A = const. Because of the boundary conditions, since

s(y)|y=0,1 = 0, the constant A is identically vanishing, which
implies that the second integral in Eq. (A2) is also vanishing.
Thus Eq. (31) follows.
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