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Looking at a blinking quantum emitter through time slots: The effect of blind times
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Most experimental observations of physical processes are naturally accompanied by “blind” (“dead”) times,
which in principle can distort the result of measurements. Here we analyze how the presence of blind times in
measurements changes the measured statistics of blinking fluorescence of single quantum dots. We show that
information can be extracted even for blinking processes with characteristic times longer than both blind times
and time slots between them.
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Many experiments in various fields cannot be designed
without “blind” times—periods when observation is inter-
rupted, and no information about the process under inves-
tigation can be acquired. These blind times are separated
by time slots between them, periods when observation is
carried out. In other words, during time slots we can “see”
the process, whereas during blind times we cannot. They
follow each other repeatedly in a regular manner, with definite
durations. The question of how blind times affect the result
of an experimental observation (statistical regularities) of
dynamical processes is quite general in natural science and has
already been under discussion for a long time. For example,
in [1] authors went as far as analyzing the contribution
of eyewink to experimental errors. In modern experiments,
this problem may appear because of dead time of detection
systems, intermittence of continuous observation due to the
necessity for data transfer, influence of additional interfering
processes, e.g., earth rotation impeding continuous observation
of astronomical objects, etc. Similar problems of restoring
full data from separate bits are known in statistics [2], signal
processing [3], etc. A deep understanding of this problem
can have applied (sometimes unexpected) significance, for
example, a novel biometric approach for human identification
using eye blinking [4] or the dynamics of blinking vortices [5].
The question of blind times is also naturally applied in
pump-probe spectroscopy with pulsed lasers.

One of the most important fields where statistical analysis
of dynamical processes is very important and blind times
are inevitable is the modern spectroscopy of single quantum
objects and nanostructures (molecules, semiconductor and
dielectric quantum dots, emitting sites of macromolecules,
etc.) [6–9]. The study of such emitters has a strongly marked
interdisciplinary character and opens great prospects for their
broad application: as luminescent labels in life and material
sciences [10,11], nonclassical light sources in quantum com-
puting systems [12,13], nanosensors [14,15], and elements of
nanophotonic devices [16,17]. Super-resolution microscopy
based on single emitter fluorescence was awarded the Nobel
Prize in Chemistry in 2014 [18,19].

An important property of single quantum objects is blinking
of their fluorescence [20–28]. The photoluminescence inten-
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sity trajectory (time track of the number of photons emitted
per bin time, tbin) consists in this case of alternating intervals
of various intensity levels when the emitter is excited by a
cw laser. The simplest case of a two-level system with one
“dark” (of) state is shown in Fig. 1. Blinking times are orders
of magnitude longer than the excited state lifetime (intervals
between successive photons in an on-interval).

The durations of on- and off-intervals in the simplest case
are distributed exponentially, with the probability density
fon,off(t) to encounter an on,off-interval of duration t equal
to

fon,off(t) = (1/ton,off) exp(−t/ton,off). (1)

Here ton,off are the characteristic times of bright and dark
states, respectively. The analysis of experimental on- and
off-distributions gives the opportunity to find the characteristic
times ton,off [20,21]. Note, however, that the off-intensity is
nonzero in real measurements due to background fluores-
cence and dark counts. Moreover, as recent measurements
show [29,30], many quantum emitters manifest transitions
into “grey” states, which are slightly fluorescent but can be
recognized as off-states. As a result, the analysis is subjected
to errors caused by thresholding.

Another way is to analyze the photon distribution function
(PDF), which is the distribution for the number of fluorescence
photons per bin time [31–33]. In the simplest case [Fig. 1(c)],
the PDF consists of two distinct on- and off-peaks. The heights
of those peaks are proportional to the average on,off-interval
durations. Besides, the height and the shape of the plateau
between them are connected to the relations of ton,off to the bin
time [34]. So, if experimental PDFs, such as that in Fig. 1(c),
are at our disposal, it is basically possible to determine ton,off ,
as it was done in [35], avoiding the notorious problem of how
to establish the threshold between on,off-intervals.

Our aim here is to analyze the influence of blind times on the
blinking time constants, which we extract from fluorescence
trajectories. Is it necessary to introduce any modifying factors
to determine the “real” parameters in this case? In this paper
we present computer simulations, experimental results, and
analytical considerations on this issue.

We have simulated 104 different samples of blinking
fluorescence trajectories with one off-state. Two characteristic
cases out of them are analyzed in Fig. 2 (simulation 1
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FIG. 1. Fluorescence trace of a single two-level emitter with
one dark state. (a) Energy scheme of the emitter, (b) simulated
fluorescence intensity trajectory with on,off-intervals, and (c) distri-
bution of fluorescence photon number per bin time for the simulated
trajectory. (d) An intensity trajectory of single emitter blinking
fluorescence observed through time slots. Information during blind
times (grey areas) is lost. Importantly, the time slots are shorter than
the characteristic on-off-times. The blind times are longer than the
time slots and comparable to the average blinking times.

and simulation 2). Random on,off-intervals were distributed
exponentially, both types with equal average durations ton =
toff = 10 s. The simulated trajectories were 104 s long.
Fluctuations within on,off-intervals were smoothed out, and
background fluorescence was neglected, since we wanted to
focus on on-off-durations [Fig. 1(d)]. Then equal regular time
slots of 1.5 s and blind times of 8.5 s [grey rectangles in
Fig. 1(d)] were introduced. Thus, the relation of the times was
as follows: time slot duration (1.5 s) < blind time duration
(8.5 s) < average blinking times (10 s). In this case we
seemingly lose too much information. But we prove that even
in this extreme case the distortion of the parameters is (with
great probability) slight.

We calculated the relations of time cumulatively spent in
the on-state to the total observation time (on-time relations) for
continuous and interrupted observation (r and r ′ hereafter). A
factor to be taken into account was the length of the intensity
trajectory. To study shorter trajectories, we “cut” the ones we
have and treat their pieces: 0–10 s, 0–20 s, and 0–104 s. We
count the on-relations r and r ′ for these pieces of various
lengths. Expectedly, when only a short piece is at our disposal,
fluctuations are great. For long trajectories, r and r ′ both
approach the value ton/(ton + toff) = 10 s/(10 s + 10 s) = 0.5
[such a case is presented in the upper panel of Fig. 2(a),
simulation 1]. However, there are cases when r ′ deviated from
r even for full trajectory length, 104 s [the lower panel of

FIG. 2. (Color online) Results for two simulated intensity trajec-
tories out of 104. (a) On-time relations r and r ′ without and with
blind times; (b) deviation between these relations, ε = [(r − r ′)/r] ×
100%.

Fig. 2(a), simulation 2]. In a single experiment the first case
would give us an idea of some nonstochastic pattern, though
we can see through a number of simulated experiments that
this pattern does not actually take place.

We also wanted to establish the limits of the deviation ε

between r and r ′ due to blind times. In Fig. 2(b), the relative
deviation in percents is presented: ε = [(r − r ′)/r] × 100%.
The longer the trajectory is, the closer to zero the deviation is.

The frequency of occurrence of the deviation was calculated
throughout all the 104 simulations. The result is presented in
Fig. 3: for full trajectory duration, 104 s [Fig. 3(a)] and for a
short piece, 500 s [Fig. 3(b)].

FIG. 3. Distribution of deviations ε = [(r − r ′)/r] × 100% be-
tween on-time relations r and r ′ of continuous and interrupted
observation for (a) full trajectory length, 104 s (Gaussian shape) and
(b) pieces of trajectories of 500 s.
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FIG. 4. A piece of fluorescence intensity trajectory of a single
quantum dot CdSe/ZnS.

As can be seen in Fig. 3(b), the majority of cases demon-
strate the deviation within a range of 20% to 30% for short
trajectories. Larger deviations, even over 100%, can also occur,
but their probability is negligibly small (one occurrence of ε =
120% in 104 trajectories). As for long trajectories [Fig. 4(a)],
the deviation does not exceed 5% with an overwhelming
probability (and is of Gaussian shape). Thus, the introduction
of time slots does not distort the result, but causes more
statistical uncertainty. It holds true even when characteristic
processes are several times longer than time slots.

Let us now demonstrate an experimental example: fluo-
rescence of a single quantum dot (QD) CdSe/ZnS (Lumidot
610 nm, size is 5.2 nm without ligands). QDs were placed
on a cover glass by dilute toluene solution spin-coating. Their
excitation was performed by a tunable dye laser Coherent
CR-599. Fluorescence images and intensity trajectories of
single QDs were acquired with a custom-built luminescence
microscope and highly sensitive cooled CCD PCO Sensicam
EM at room temperature. The bin time was 30 ms. The
trajectory was 10 000 bins long, or 300 s. The general
description of the setup is presented in [10]. The data on single
QD fluorescence were extracted with specially developed
software for the procession of single emitter experiments [11].

We have chosen a single QD with pronounced blinking (see
Fig. 4, where a piece of a fluorescence intensity trajectory is
presented). Blinking times here have multiexponential, and not
single-exponential, distribution and vary from about 0.5 s to
about 5 s, which is typical for this kind of QD [36]. Thus, it
is more convenient to study the PDF, which is presented in
Fig. 5(a). We see on- and off-peaks [compare to Fig. 1(c)].

The regular blind times were introduced into the experimen-
tal trajectory and its pieces were deliberately “cut out” to see
what distortion the presence of blind times brings. Blind times
were chosen to be 0.18 s (six times longer than the bin time),
and time slots 0.06 s (twice the bin time). So, here the relation
is again the following: time slot duration (0.06 s) < blind time
duration (0.18 s) < average blinking times (0.5–5 s). Time
slots are several times less than characteristic on-off-times.

The PDF of this “discontinuously observed” trajectory is
plotted in Fig. 5(b). As can be seen, the effect reduces only to
more statistical uncertainty. The uncertainty increases, as the
total observation time was reduced from 10 000 bins (300 s)
to 2500 bins (75 s).

Now let us come back to the full experimental trajectory
with 10 000 bins and pick 2500 randomly placed bins from it.
Thus, we have another set of the same size, but the positions of

FIG. 5. Fluorescence photon distribution function (a) for a full in-
tensity trajectory, (b) for the same trajectory with regular deliberately
“cut out” blind times and time slots, and (c) for the same trajectory
with random time slots.

the recorded bins are not regular, but random. The distribution
for this set is shown in Fig. 5(c). Again, the shape of the
distribution and the heights of the peaks are not principally
distorted. The distribution only becomes noisier. It means
that basically the same parameters (ton,off) would be extracted
from the experimental results in the three cases: (1) from the
continuously observed trajectory, (2) from the trajectory with
regular time slots, and (3) from the trajectory with randomly
observed bits. Let us once again emphasize that it holds true
even when ton,off are several times longer than time slots.

The total observation time defines the accuracy with which
the parameters can be determined. It should be much bigger
than the time of the characteristic process. If this condition
is satisfied, seemingly, no matter how short the time slots are
in comparison to blinking on-off-times, the conclusion made
above about the reliability of the acquired data still holds. This
can justify the same reasoning for the case of QDs with a wider
range of on-off-times than those in the experiment described
above.

It is worth mentioning that this result can also be applied to
the case of single blinking quantum objects excited by pulsed
lasers. In such an experiment, blind times (between pulses)
are inevitable. Time slots then coincide with pulse durations,
which can be considerably short. Nevertheless, as we show
in the present paper, even if the pulse duration is shorter than
the characteristic time of the process under consideration, the
photon statistics correctly reflects this process if we acquire
enough cumulative pulse time. “Enough” here means that the
total cumulative observation time should be much longer than
the characteristic time of the process of interest. Note that the
problem discussed in the present paper become more important
in the case of slowly varying processes and/or nonergodic
systems (see, e.g., [37]).

We have also developed the analytical approach for the case
of blind times and time slots intermittence, which is outlined
here. First, it is necessary to derive the expressions for the
distributions f (r) and f (r ′) of the on-relations r and r ′ for
continuous and interrupted observation.
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Let us consider an observation interval of a given duration
tobs. The on-relation of value r means that the emitter
cumulatively spends time tobsr in the on-state. This cumulative
time can be realized as a sum of an arbitrary number of
exponentially distributed on-intervals of t duration, fon(t) =
(1/ton) exp(−t/ton), and/or their pieces at the beginning and
ending of the observation interval. The probability for f (r) will
thus contain convolutions of such full and partial intervals. N

full exponentially distributed on-intervals convolved give the
Erlang distribution

fon(N,t) = (1/ton)NtN−1 exp(−t/ton)

(N − 1)!
. (2)

A piece “cut” with a uniform probability from an exponential
on-interval has the distribution of an incomplete � function

fon-piece(t) =
∫ ∞

0

(1/ton) exp(−t ′/ton)

t ′
dt ′ = (1/ton)�(0; t/ton).

(3)
Convolutions of the Erlang distribution and the incomplete
� distribution(s) can be calculated numerically. The total
cumulative time defined by these convolutions should be
tobsr . Besides, there should be an analogous convolution for
off-intervals to result in a cumulative time of tobs − tobsr . The
number of full on-intervals within tobs is here arbitrary, so we
need to take a sum of all possible numbers. Strictly speaking,
it is a sum from 0 to ∞, but, depending on the sizes of ton,off

and tobs, it can be reasonably restricted with a few components.
As a result, the expression is obtained for f (r) substituting the
length of the trajectory for tobs. For a large observation interval
it will approach the δ function δ(r − ton/(ton + toff)). As for the
distribution f (r ′), we need to substitute the time slot duration
instead of tobs. This distribution will be broad for short time
slots.

With the distributions f (r) and f (r ′), we can calculate the
distribution for the deviation ε(r,r ′) = (r − r ′)/r as a function

of two independent variables:

f (ε) = dF (E > ε)

dε
=

d
( ∫ ∞

0 dr
∫ ∞

(1−ε)r dr ′f (r)f (r ′)
)

dε
, (4)

where r ∈ [0; +∞) and r ′ ∈ [(1 − ε)r; +∞) is the area where
E > ε. Thus, we arrive at the sought-for distribution f (ε) for
the deviation ε between the on-relations.

In conclusion, we demonstrate that correct dynamical
parameters and statistical patterns can be obtained from dis-
continuous observation (with blind times) of single quantum
emitter blinking fluorescence. In this case, the deviation of
parameters due to the blind times can be estimated, and with
great probability it is reasonably small, even in the case of short
time slots: time slot duration < blind time < characteristic
blinking times. This deviation has been estimated with the
help of numerical simulations. Analytical calculations for
the expected deviation (errors) of results from the real value
are also possible. The result has also been confirmed with
the analysis of an experimental intensity trajectory of a
single blinking quantum dot CdSe/ZnS on a glass substrate
at room temperature. When blind times are introduced into
its trajectory, it leads to nothing more than higher statistical
uncertainty. The reasoning presented here can also be applied
to the case of pulsed laser spectroscopy of single quantum
blinking particles.
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