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Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly
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Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas
with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the
model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles
exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy
both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially
occupied by them. The transition between these phases is continuous at small concentrations of the small particles
and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the
central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical
Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of
small or large particles display a minimum in the disordered phase.
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I. INTRODUCTION

Models for fluids with only repulsive interactions have
been studied in the literature for quite a long time [1],
both on a lattice and in the continuum. Although attractive
interactions are essential to produce liquid-gas transitions,
models with only repulsive interactions may show transitions,
which resemble the melting of a solid phase. If the repulsive
interactions are of the hard-core excluded volume type, all
allowed configurations of the system have the same energy
and thus the model is athermal. The continuous versions
of these models are known as hard-sphere models, and a
fluid-solid transition was found in their phase diagram. It
is worth recalling that in the seminal work by Metropolis
et al., where Monte Carlo simulations were introduced, the
hard-sphere gas was studied [1,2].

Athermal lattice models with excluded volume interactions
have also been widely studied before. In these models the
localization of particles is constrained to sites of a lattice.
A model where a particle excludes others from only its site
corresponds to an Ising lattice gas without the interaction term,
and no phase transition is found. If a particle placed on a
site of the square lattice excludes other particles from its four
first-neighbor sites, at low densities the sites of both sublattices
are equally occupied, but as the density is increased one of the
sublattices will be preferentially occupied by the particles. One
may associate the disordered low-density phase to a fluid and
the ordered phase to a solid, so that the transition may be seen
as a melting of a solid phase. This model has been thoroughly
investigated by a variety of techniques [3]. On the square
lattice, the universality class of the transition was an object
of some discussion in the literature [4]. Accurate estimates
of the thermodynamic behavior of the model using transfer
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matrix and finite-size scaling techniques show a continuous
transition between the disordered and the ordered phase, which
is in the Ising universality class [5], as one should expect
from symmetry considerations. This model may be generalized
by increasing the range of the excluded volume interactions,
and discontinuous phase transitions are found if this range is
large enough. We refer to recent simulational investigations
of this family of models where comprehensive surveys of
the literature may be found [6,7]. Although the transfer
matrix formalism may lead to precise estimates for the critical
behavior of such athermal models, Monte Carlo methods with
cluster algorithms may also furnish good results. As examples,
we mention the Ising lattice gas with first-neighbor exclusion
on the cubic [8] and triangular [9] lattices.

Here we consider another generalization of the lattice gas
with first-neighbor exclusion, introducing also small particles,
which exclude only the site they occupy. This mixed lattice
gas was studied, using series expansion techniques on the
square lattice, by Poland [10]. He found evidences for a
tricritical point in the phase diagram of the model: while for
low densities of small particles the transition is continuous,
it becomes discontinuous as the density is increased. A slight
modification of this model, where the large particles occupy
elementary squares of the lattice and the small particles are
located on the center of edges, has been exactly solved in
the grand-canonical formalism. In a particular case of this
model, when the fugacities of the small (z1) and large (z2)
particles obey the relation z2 = (1 + z1)2, Frenkel and Louis
were able to show that it may be mapped on the Ising model
with vanishing magnetic field and thus its solution in two
dimensions is known [11]. It should be mentioned that the fact
that a model very similar to the original can be mapped on
the Ising model at a particular point of the critical line is a
strong additional evidence that the transition is in the Ising
universality class. In particular, for z1 = 0 the Frenkel-Louis
model corresponds to the model with only large particles
when their fugacity is unitary. A variant of this model was

1539-3755/2015/92(3)/032101(8) 032101-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.032101
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proposed and studied by Lin and Taylor [12]. In this model,
the small particles are triangles such that one of their sides
occupies an edge of the lattice and the opposite vertex is
located at the center of an elementary square, so that up to
four small particles may be placed in an elementary square
of the lattice. If finite interaction energies between the large
(square) particles on first-neighbor sites and between large
(square) and small (triangle) particles, which share a lattice
edge are introduced, this model shows a lower critical solution
point. We also notice that a decorated lattice model for
hydrogen-bonded mixtures, which can be mapped on the three-
dimensional Ising model and which shows both upper and
lower critical solution points has been studied by Wheeler and
Anderson [13].

More recently, the solution in the grand-canonical formal-
ism of the model on a Bethe lattice with arbitrary coordination
number was obtained [14]. The general features of the phase
diagram are consistent with the findings of Poland [10]. In
the parameter space defined by the two activities z2 and
z1 of large and small particles, respectively, a continuous
transition is found for small values of z1, and it becomes
discontinuous if z1 is sufficiently large. Since the slope of
the critical line is negative at low values of z1, becoming
positive at higher values, a reentrant behavior of the transition
is seen in this region of the phase diagram. At even higher
values of the activity of small particles, the transition becomes
discontinuous and thus a tricritical point is found. Another
interesting feature of the model is that the isobaric curves,
where the total density of particles is considered as a function
of the density or the activity of small particles, shows a
minimum in the fluid phase. We recall that perhaps the
most studied situation in nature where a density anomaly is
found happens in water close to the freezing point, where a
maximum of the isobaric curves of the density as a function
of the temperature is seen. The Bethe lattice solution of the
mixed lattice gas model leads to a minimum of the density
as a function of another fieldlike thermodynamic variable: the
activity of small particles. Although the physical situation in
water is of course quite distinct from the model we study here,
it is noteworthy that several recent studies of simple effective
models for water suggest that the density anomaly may be due
to effective interparticle interaction potentials with two length
scales [15], a feature that is also present in the mixed lattice
gas model.

Through transfer matrix and finite-size scaling calculations,
we show here that the thermodynamic behavior of the model
on the square lattice is qualitatively the same found in the
Bethe lattice solution. Our results suggest that the critical
line is in Ising universality class, similarly to the model with
large particles only, and that the tricritical point belongs to the
tricritical Ising (Blume-Emery-Griffiths [BEG]) class.

In Sec. II, we define the model more precisely and describe
its transfer matrix solution on strips of finite widths, for both
periodic and helical boundary conditions. We also discuss
the factorization of this transfer matrix in a product of
sparse matrices, which reduces the computational effort to
handle them. Our results for the phase transitions and other
thermodynamic properties of the model in the two-dimensional
limit may be found in Sec. III. Section IV is devoted to final
discussions and conclusion.

FIG. 1. (Color online) Strip of width L = 4, with periodic
(dashed red) and helical (dotted blue) boundary conditions. The lower
and upper rows of sites determine the states of the transfer matrix.
They are (0,2,0,1) and (0,0,0,1), respectively. The corresponding
element is z

1/2
2 z1. The partially overlapping dot-dashed boxes are the

states [(2,0,1,0) and (0,1,0,0)] for helical boundary conditions, and
the corresponding matrix element is 1, since a single empty site is
added.

II. DEFINITION OF THE MIXED LATTICE GAS MODEL
AND ITS TRANSFER MATRIX

We will use the transfer matrix formalism to study the
model with both particles placed on a square lattice. This
will be accomplished by solving the model on strips of finite
width L. For periodic boundary conditions, the states of the
transfer matrix will be defined by the configuration of the L

lattice sites in the same row of a cylinder. As an example,
for L = 4 we have a total of 26 states, but this number
reduces to 9 if the rotation symmetry is considered. These
states, with their multiplicity indicated between curly brackets,
are: (0,0,0,0)-{1}, (0,0,0,1)-{4}, (0,0,0,2)-{4}, (0,0,1,1)-{4},
(0,1,0,1)-{2}, (0,1,0,2)-{4}, (0,1,1,1)-{4}, (0,2,0,2)-{2}, and
(1,1,1,1)-{1}. In our notation, 0 represents an empty site,
while 1 and 2 correspond to sites occupied by small and
large particles, respectively. To avoid frustration in the solid
phase, we restrict ourselves to even widths. The transfer
matrix is obtained considering two adjacent rows of L sites
in a particular configuration of particles and checking if
the excluded volume interactions are satisfied. If this is the
case, the corresponding element of the transfer matrix will be
given by TL(i,j ) = Kz

n1/2
1 z

n2/2
2 , where n1 and n2 are the total

numbers of small and large particles in both rows, respectively,
and K is the number of ways (considering the excluded
volume) of placing the row j over the row i, by keeping i

fixed and rotating j . Defining the matrix elements in this way
assures that the transfer matrix is Hermitian. For L = 4, some
elements of the transfer matrix, with the states ordered as
presented above, are given by:

T4(1,2) = 4z
1/2
1 , T4(2,2) = 4z1,

(1)
T4(3,9) = 0, T4(5,8) = z1z2.

Besides adopting periodic boundary conditions, we also
considered helical boundary conditions, where the rightmost
site of a row is linked to the leftmost site of the row above. Both
boundary conditions are illustrated in Fig. 1. As happens for
periodic boundary conditions, for helical boundary conditions,
the states are determined by the configuration of two sets of L
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sites, where the second one is shifted by one site only to the
right of the first set, as is also shown in Fig. 1. Thus, while for
periodic boundary conditions at each application of the transfer
matrix L new sites are added to the lattice, for in the helical
case a single site is added. This has the advantage of leading to
a sparser matrix, since L − 1 sites of both configurations are
coincident. In Fig. 1, two successive site sets, used to define
the transfer matrix elements for helical boundary conditions,
are enclosed by dashed and dotted rectangles.

A. Number of states

The numbers of states for lattices of successive widths are
related by simple recursion relations. Let us call n(L)

σ1,σL
the

number of states in a strip of width L and free boundary
conditions, such that the first site is in the configuration σ1

and the last site in the configuration σL. Since σi = 0,1,2,
we have a total of nine of these numbers of configurations,
where six are independent due to reflection symmetry. The
total number of configurations will be n

(L)
f = ∑

σ1,σL
n(L)

σ1,σL
, for

free boundary conditions. For periodic boundary conditions,
the occupancy of the sites 1 and L should obey the excluded
volume constraint, so that the number of states in this case will
be given by n(L)

p = ∑′
σ1,σL

n(L)
σ1,σL

, where the prime restricts the
sum to terms such that σ1 + σL � 2. The numbers of states
obey a set of nine linear recursion relations:

n
(L+1)
σ1,0

= n
(L)
σ1,0

+ n
(L)
σ1,1

+ n
(L)
σ1,2

, (2a)

n
(L+1)
σ1,1

= n
(L)
σ1,0

+ n
(L)
σ1,1

, (2b)

n
(L+1)
σ1,2

= n
(L)
σ1,0

. (2c)

Iterating these recursion relations with the starting values
n(1)

σ1,σL
= δσ1,σL

, we may obtain the numbers of states for
increasing values of the widths for both boundary conditions,
which are shown in Table I. The states for helical boundary
conditions coincide with the ones for free boundary conditions.
It is easy to reduce these recursion relations to a single one:

n
(L+1)
σ1,1

= 2n
(L)
σ1,1

+ n
(L−1)
σ1,1

− n
(L−2)
σ1,1

, (3)

with the remaining numbers of states being given by n
(L)
σ1,0

=
n

(L+1)
σ1,1

− n
(L)
σ1,1

, and n
(L)
σ1,2

= n
(L)
σ1,1

− n
(L−1)
σ1,1

. The characteris-
tic polynomial associated to the linear recursion relation
(3) will be: r3 − 2r2 − r + 1 = 0, which has three real roots.
Although, of course, the roots may be found analytically, we
will not give the expressions here since they are rather long.
The approximate numerical values are r1 = 2.2469797, r2 =
−0.80193776, and r3 = 0.55495811. Therefore, in general,
we have that:

n
(L)
σ1,1

= Aσ1r
L
1 + Bσ1r

L
2 + Cσ1r

L
3 , (4)

where the coefficients are determined by the initial conditions.
To obtain the actual numbers of states for finite widths, it
is more practical to iterate the recursion relations directly,
but explicit expressions such as (4) are useful to obtain the
asymptotic number of states for L � 1, which is dominated
by the leading root of the characteristic equation, n(L) ≈
rL

1 ≈ 2.2469797L. The coefficient of this asymptotic behavior
will be different for free and periodic boundary conditions.

TABLE I. Numbers of states of the transfer matrix for strips of
width L for free (nf ) and periodic (np) boundary conditions.

L nf np

1 3 2
2 6 6
3 14 11
4 31 26
5 70 57
6 157 129
7 353 289
8 793 650
9 1782 1460
10 4004 3281
11 8997 7372
12 20 216 16 565
13 45 425 37 221
14 102 069 83 635
15 229 347 187 926
16 515 338 422 266
17 1 157 954 948 823
18 2 601 899 2 131 986
19 5 846 414 4 790 529
20 13 136 773 10 764 221

This may be compared with the result for the model with
large particles only, where we have, for periodic boundary
conditions [5], that the numbers of states n(L) are given by a
Fibonacci sequence starting with 1 and 3 n1(L) = F1,3(L) ≈
[(1 + √

5)/2]L ≈ 1.6180L. As expected, the number of states
increases much faster with the width when small particles are
present.

In order to reduce the amount of memory and computer
time demanded, for periodic boundary conditions, we use
a method proposed by Todo and Suzuki [16] that consists
in decomposing the matrix TL in L + 1 sparse matrices, so
that TL = T̃

(L+1)
L · T̃

(L)
L · · · T̃ (2)

L · T̃
(1)
L . Here, instead of adding

a complete row in the strip, each matrix T̃
(i)
L , with i = 2, . . . ,L

acts adding a new lattice site to the row. The matrix T̃
(1)
L creates

a site i = 1 in a new row h, just above the site i = 2 from the
row h − 1, accounting for the NN exclusion between particles
in these sites. Then, T̃ (2)

L adds the site i = 2 in the row h (above
the site [3,h − 1]), imposing the exclusion with particles in the
site below it and the site i = 1 in the row h. The other matrices
up to T̃

(L)
L work in the same way. Finally, the matrix T̃

(L+1)
L

imposes the NN exclusion between particles in the sites L and
1, and translate the labels i → i − 1, completing the formation
of the row h. More details may be found in Ref. [5], where
this method was applied to the case of large particles only.
As an example of the power of this method, the number of
nonvanishing terms in the symmetric matrix for L = 14 is
Ms = 31895812, whereas the sum of such terms in the fifteen
sparse matrices is Msp = 6706321, the ratio r = Ms/Msp is
r ≈ 4.7. For L = 16 this ratio is r ≈ 15.6 and for L = 18 it is
r ≈ 56.8. This method allows us to work with strips of widths
up to L = 18 in computers with 16GB of RAM. The numerical
method we used to find the two dominant eigenvalues of the
transfer matrix was a variant of the power method [17].
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FIG. 2. (Color online) Finite-size and extrapolated transition
lines, calculated from the fixed point of the phenomenological
renormalization transformation, considering the pair of strip sizes
L,L′ = L + 2. In the main plot, the differences between the estimates
are almost not visible. In the inset the region close to the minimum
is amplified, so that the finite-size effects are seen. For a given value
of z1, as the width of the strip increases the estimates for the critical
value of z2 decrease. The estimated tricritical point, discussed below,
is represented by the black circle.

After performing some numerical calculations for periodic
and helical boundary conditions, we realized that the first,
combined with the factorization of the transfer matrix, are
more efficient, allowing us to handle strips of larger widths
with the same computational effort. We will, therefore, present
results for periodic boundary conditions only. Notice that to
perform the factorization of the transfer matrix, no block
diagonalization using the symmetries is done.

III. RESULTS FOR PERIODIC BOUNDARY CONDITIONS

A. Phenomenological renormalization

The inverse correlation length of the model for a strip of
width L, is given by:

ξ−1
L = ln

(
λ1

λ2

)
, (5)

where λi is the ith largest eigenvalue of the corresponding
transfer matrix. From previous results [10,14], we may expect
to find continuous and discontinuous transition lines between
ordered and disordered phases. Phenomenological renormal-
ization [18] states that the estimates for these transitions can
be obtained from the fixed point of the recursion relation:

ξL

L
= ξL′

L′ . (6)

As discussed above, due to the symmetry of the crystalline
phase, only even strip sizes must be considered, so that L′ =
L + 2 is used. The transition lines are shown in Fig. 2, where
a very small dependence on the size L is observed. For a fixed
value of z1, we may expect this dependence to be:

z2(L) = z2c + a1L
−x1 + a2L

−x2 + · · · , (7)

TABLE II. Estimates for the location of the tricritical point, using
the condition ξL−2

L−2 = ξL
L

= ξL+2
L+2 .

L z1 z2

6 2.879392 11.838332
8 3.055064 12.967494
10 3.194821 13.918518
12 3.286902 14.570770
14 3.348568 15.019111
16 3.391375 15.335858
...

...
...

∞ 3.559(2) 16.60(4)

where z2c and the amplitudes ai should be functions of z1,
while the exponents are expected to be constant along the
critical line. For z1 = 0, Guo and Blöte [5] found that xi =
2 + i and, in fact, for small z1, we have verified that x1 ≈ 3
and x2 ≈ 4. Then, assuming that these exponents hold for the
whole transition curve, we obtain the values of z2c from Eq. (7).
The resulting transition line (TL) is also shown in Fig. 2, but
no clear difference is observed from the ones for a given L

at this scale, due to the small finite-size corrections. Indeed,
the maximal difference between the extrapolated TL and the
line for the pair (16,18) is ≈0.1%, which gives us an idea of
the error bars in these estimates. In accordance with the Bethe
lattice solution of the model [14], the critical line initially
has a negative slope that approaches −1 when z1 approaches
zero. Increasing z1, this curve reaches a minimum, located at
z1 ≈ 0.3805 and z2 ≈ 3.5976—larger than the one found in
the Bethe lattice (z1 ≈ 0.26 and z2 ≈ 1.55)—and then starts
to increase. Finally, we expect the curve to reach the tricritical
point, beyond which the transition becomes discontinuous.
The estimated tricritical point is also shown in the figure, and
the methods we used to obtain this estimate will be discussed
below.

The estimates for the location of the tricritical (TC) point
using results for finite-size strips may be obtained from the
condition ξL−2

L−2 = ξL

L
= ξL+2

L+2 [19]. The values of zT C
1 and zT C

2
found for different L’s are show in Table II. Assuming that

zT C
i (L) = zT C

i + bi,1L
−yi,1 + bi,2L

−yi,2 + · · · , (8)

where i = 1,2, we may find the exponents yi,1 considering that
bi,j = 0 for j > 1 and performing a three-point fit. Namely,
we solve for zT C

i , bi,1, and yi,1 in

zT C
i (L + l) = zT C

i + bi,1(L + l)−yi,1 , (9)

with l = 0,−2, and 2. The values of yi,1 are not constant,
but converge toward asymptotic values as L increases, as
shown in Fig. 3. Due to finite-size effects, for L = 8, negative
exponents are found, which do not make sense. Extrapolating
the exponents for L > 8, we find the same asymptotic value
yi,1 ≈ 1.75 for both i = 1 and i = 2 (see Fig. 3). Therefore,
we will assume that yi,1 = 7/4. Inserting this exponent in
Eq. (8) and assuming that bi,j = 0 for j > 2, the value of yi,2

can be obtained from a four-point fit (for the unknowns zT C
i ,

bi,1, bi,2, and yi,2). These exponents are shown in the inset
of Fig. 3. Unfortunately, they do not present a monotonic

032101-4



TRANSFER-MATRIX STUDY OF A HARD-SQUARE . . . PHYSICAL REVIEW E 92, 032101 (2015)

0 0.0005 0.001 0.0015 0.002 0.0025 0.003

1/LΔ

-0.5

0.0

0.5

1.0

1.5

2.0

y1,1
y2,1

0.08 0.12 0.16
1/L

3.5

4.0

4.5

5.0 y1,2
y2,2

FIG. 3. (Color online) Exponents of finite-size corrections
[Eq. (8)] for the tricritical point activities estimated from phenomeno-
logical renormalization. In the main plot y1,1 and y2,1 are extrapolated
with � = 3.38 and � = 2.98, respectively. The behaviors of y1,2 and
y2,2 are shown in the inset.

behavior, possibly due to the small strip widths we could
handle, so we cannot extrapolate them, but we may see that
y1,2 � 5 and y2,2 � 4. Considering different exponents in
the ranges 5 � y1,2 � 7 and 4 � y2,2 � 6, we obtain several
estimates of the tricritical point, leading to zT C

1 = 3.557(3)
and zT C

2 = 16.60(2). These values and their respective error
bars are also calculated considering different L’s in the fit
(not only the three largest strip sizes). We notice that these
values of the activities at the tricritical point are much larger
than the ones found on the Bethe lattice with coordination
q = 4 (zT C

1 = 1.16956 and zT C
2 = 3.02938) [14]. It is, indeed,

expected that mean-field approximations underestimate the
critical activities.

Beyond the tricritical point the transition becomes dis-
continuous and, at first sight, we should not extrapolate the
coexistence line in the same way we did for the critical line
(below the TC point). Actually, from finite-size scaling, we
expect exponential corrections at coexistence [20], instead of
the power-law behavior [e.g., Eq. (7)] at criticality, namely

z2(L) = z2c + a1e
−b1L + · · · . (10)

However, performing a three-point fit considering this correc-
tion form, we have found a coexistence curve whose maximal
difference from the one obtained as above [using Eq. (7)] is
smaller than 0.02%. Thus, both approaches lead to very similar
coexistence lines in the thermodynamic limit.

B. Conformal anomaly

The free energy per site of the system for a strip of width
L is given by

f (L) = 1

L
ln λ1. (11)

Conformal invariance theory states that at criticality

f (L) ≈ f∞ + πc

6L2
, (12)

0 1 2 3 4
z1

0.5

0.6

0.7

c

  (8, 10)
(10, 12)
(12, 14)
(14, 16)
(16, 18)

Increasing L

FIG. 4. (Color online) Central charge c as a function of z1,
calculated from f (L′) − f (L) along the finite-size critical line for
the pairs L,L′ indicated. The dashed horizontal lines indicate the
Ising critical (bottom) and tricritical (top) values.

where c is the central charge. Figure 4 shows this quantity
as a function of z1 along the finite-size critical lines and we
can see a crossover from c ≈ 0.5 at small z1 to c ≈ 0.7 near
the TC point. Moreover, as the widths of the pair of strips
become larger, the estimates for c approach c = 1/2 at low
values of z1 and the crossover is steeper. Therefore, in the
thermodynamic limit we expect that c = 1/2 for z1 < zT C

1
and c = 7/10 at z1 = zT C

1 , in good agreement with the critical
and tricritical Ising universality classes, respectively, similar
to what is found, for example, for the BEG model [21].

The central charge curve, for a given pair (L,L′), has a
maximum close to c = 7/10 that should be located exactly
at the tricritical point when L → ∞. Thus, we may use the
condition ∂c

∂z1
= 0 as an alternative estimate of this point. The

values obtained in this way are shown in Table III. Performing
extrapolations similarly to what was done in the previous
subsection, we find yi,1 ≈ 2.37. Moreover, exponents y1,2 �
4.5 and y2,2 ≈ 9.9 are found. From a three-point extrapolation
considering these exponents, we obtain zT C

1 = 3.5541(3)
and zT C

2 = 16.5827(3), which agree with the estimates from
phenomenological renormalization shown above, but are more

TABLE III. Tricritical point estimates from the maxima of the
central charge curves (Fig. 4) and the maximum values of the central
charge cmax.

(L,L′) z1 z2 cmax

(6,8) 3.461580 15.844423 0.700552
(8,10) 3.503228 16.172684 0.702456
(10,12) 3.522518 16.327104 0.702901
(12,14) 3.532852 16.410446 0.702867
(14,16) 3.538962 16.459910 0.702677
(16,18) 3.542843 16.491393 0.702447
...

...
...

∞ 3.5541(3) 16.5827(3)
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accurate. These values will hereafter be used as the location of
the TC point.

Table III also shows the central charge at the maximum
as a function of L, where a nonmonotonic behavior can be
observed, preventing us to extrapolate this quantity in a reliable
way. Nevertheless, the values in Table III are very close to
c = 7/10 and they are approaching this limit for the larger
widths.

C. Densities of particles

The densities of particles for the fluid (F ) and solid (S)
phases can be obtained from

ρF
i (L) = zi

∂f F (L)

∂zi

, and ρS
i (L) = zi

∂f S(L)

∂zi

, (13)

with i = 1,2, and f F (L) and f S(L) being the free energies of
the system in fluid and solid phases, respectively. We calculate
these densities along the finite-size transition lines (TLs) in the
following way: along the TL obtained for the pair (L − 2,L),
we determine the densities for the strip width L. The resulting
densities curves are displayed in Fig. 5(a). For small z1 (and
ρ1, i.e., in the critical line) a very small finite-size dependence
is observed in the curves for the F phase, while for large
ρ1 (i.e., in the coexistence line) some L dependence appears.
Assuming finite-size corrections in the form

ρi(L) = ρi + ai,1L
−vi,1 + ai,2L

−vi,2 + · · · (14)

from three- and four-point fits, we obtain the exponents vi,1 ≈
2.8 and vi,2 ≈ 4. Then, using these exponents to extrapolate
the transition line for the fluid phase, we find the extrapolated
curves shown in Fig. 5(b). It is worth noticing that as z1 and,
consequently, ρ1 goes to zero (on the critical line) the density
of large particles approaches the value ρ2 = 0.367742 . . .

estimated by Guo and Blöte [5] for ρ1 = 0.
Along the density curves for the solid phase, we may

observe a reentrant behavior, with the region below and above
the turning point related to the critical and coexistence lines,
respectively. At odds with the fluid phase, in the coexistence
region (large ρ2) negligible finite-size effects are observed,
while strong corrections appears for small ρ2 (in the critical
curve). In this last region, below the turning point, if we
assume that corrections are given by Eq. (14), we find the
exponents vi,1 ≈ 1 and vi,2 ≈ 3, which lead to extrapolated
critical curves in very nice agreement with the ones for the
fluid phase. This indicates that below the TC point we have in
fact a critical situation where the densities of the two phases
must be equal. Moreover, this confirms that the correction
form assumed [Eq. (14)] with the exponents associated is in
fact appropriate.

Although the Eq. (14) still works on the coexistence line for
the solid phase (large ρ2), the exponents change to vi,1 ≈ 0.3
and vi,2 ≈ 1.3. The extrapolated coexistence curves with these
exponents are also shown in Fig. 5(b).

The densities of particles for strips of size L calculated
at the extrapolated tricritical point are shown in Table IV.
It is interesting that, although the error bars are increasing,
the values of the densities do not change with the strip size.
This allows us to conclude that ρT C

1 = 0.378(1) and ρT C
2 =

0.2037(8) without extrapolations. As expected, these values
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(14,16,18)
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Fluid Solid

FIG. 5. (Color online) (a) Transition (critical and coexistence)
lines calculated for strips of size L in the densities’ space, for the
fluid (full) and solid (dashed lines) phases. (b) Extrapolated critical
(full) and coexistence (dashed) lines considering three-point fits for
the sizes (L − 2,L,L + 2) and the exponents indicated in the text. The
square is placed at the localization of the tricritical point estimated
by Poland [10].

are larger than the ones found in the Bethe lattice solution for
coordination q = 4 (ρ1 ≈ 0.2985 and ρ2 ≈ 0.1117).

In accordance with the solution on the Bethe lattice, the total
density of particles for a fixed pressure—we may identify the
reduced grand-canonical free energy f∞ in Eq. (12) with the
reduced pressure—as a function of the fugacity z1 or of the

TABLE IV. Densities of small ρ1 and large ρ2 particles calculated
at the tricritical point.

L ρ1 ρ2

10 0.3780(5) 0.2038(3)
12 0.3780(7) 0.2037(4)
14 0.3780(9) 0.2037(5)
16 0.378(1) 0.2037(7)
18 0.378(1) 0.2037(8)
...

...
∞ 0.378(1) 0.2037(8)
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FIG. 6. (Color online) Total density of particles ρ = ρ1 + 2ρ2,
calculated on a strip of size L = 18, against z1 for several values of
pressure P . From the left to the right, curves correspond to increased
pressures. The minima in the densities curves define the mD line
(dashed).

density ρ1 of small particles has a nonmonotonic behavior,
it displays a minimum in the fluid phase, as shown in Fig. 6.
These curves may be obtained fixing the value of the dominant
eigenvalue of the transfer matrix (this corresponds to a fixed
value of the pressure), so that z2 and ρ may be found as
functions of z1. Since at larger widths the finite-size effects
in these calculations are rather small, we have done them for
strips of width L = 18 without extrapolations. The locations
of these minima originate a curve similar to the temperature of
maximal density (TMD) curve delimiting the density anomaly
in waterlike fluids [22], so we will call these minima as mD
(minimal density) points. Notice that in the case of water, the
curves that exhibit a maximum are the isobars of the density
as a function of the temperature. Here we also have isobars,
but the density is expressed as a function of an activity, which
is also a fieldlike variable in the thermodynamic sense, or of
the conjugated density, which is a monotonic function of the
activity. The mD curves seem to start at z1 = 1/3 as z2 → 0
and then they are increasing functions of z1. Although it is very
difficult to calculate the minima close to the tricritical point,
it seems that the curves end exactly at this point. For small
z1, the mD’s obtained for different strip sizes have negligible
corrections, but close to the tricritical point they present an
appreciable L dependence. Thus, we estimated the mD curve
in the thermodynamic limit using a three-point fit.

D. Phase diagrams

Figure 7 summarizes our results, showing the extrapolated
critical line, coexistence line, and mD curve in the reduced
activity fraction variables zi/(1 + zi) in the main plot and
activities z1, z2 in the inset. The phase diagram in the density
variables is shown in Fig. 7(b). Although these phase diagrams
are qualitatively similar to the ones we obtained previously in
the Bethe lattice solution of the model [14], as expected the
transition lines are shifted to larger activities (or densities)
on the square lattice. Also, we notice that the lines of the

0 0.2 0.4 0.6 0.8 1
z1/(1+z1)

0.8

0.9

1

z 2
/(1

+z
2)

0 2 4 6
z1

0

20

40

z 2

TC point

TC point

(a)

0 0.1 0.2 0.3 0.4 0.5
ρ2

0

0.2

0.4

0.6

0.8

1

ρ 1

TC point

(b)

FIG. 7. (Color online) (a) Phase diagram in the variables zi/(1 +
zi) (main plot) and zi (inset), with i = 1,2. Critical, coexistence and
mD lines are indicated by continuous (red), dashed (blue), and dotted
(black) lines, respectively. (b) Phase diagram in the densities ρ1 and
ρ2 space. The densities of fluid (blue) and solid (green) phases at the
same point of the coexistence line are connected by tie lines.

densities of coexisting phases meet at an angle in the Bethe
lattice solution, while in our results for the square lattice they
meet tangentially. This is expected, since the classical value of
the tricritical exponent associated to the behavior of the order
parameter ρ is β2 = 1 and the estimates for this exponent
in two dimensions, one below the upper tricritical dimension
d = 3, is smaller than 1 [23].

IV. CONCLUSION

In this paper we study a model of a mixed lattice gas with
two kinds of particles. Small particles exclude only the site
they occupy, while large particles exclude, besides their site,
its four (square lattice) first neighbors also. The model with
only large particles is well studied in the literature [3–5] and
displays a continuous transition between a fluid phase where
sites of the lattice are occupied at random to a solid phase
where one of the two sublattices is preferentially occupied by
the particles. As the small particles are introduced, a line of
continuous transitions is found, which ends at a tricritical point,
beyond which the transition is discontinuous. Using transfer
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matrix and finite-size scaling techniques, we estimate the ther-
modynamical behavior of the model extrapolating data of its
solutions on strips of finite widths to the two-dimensional limit.

The phase diagrams we found both in activity variables
and densities spaces are qualitatively similar to the ones we
found before in the Bethe lattice solution [14], but some
characteristics close to the tricritical point are distinct, since at
two dimensions nonclassical tricritical exponents are expected,
leading to changes as compared to the mean-field behavior, as
was discussed above. It is interesting to compare our results
with the ones obtained by Poland using high-density series
expansions [10]. Our estimate for the density of small particles
at the TC point [ρT C

1 = 0.378(1)] is higher than the value
obtained by Poland (ρT C

1 = 0.29 ± 0.02), but our estimate for
the density of large particles at this point [ρT C

2 = 0.2037(8)]
is consistent with the one he found (ρT C

2 = 0.20 ± 0.01).
We notice that we obtained estimates for the localization
of the tricritical point with different methods, which lead
to consistent results. In particular, the estimate by Poland
is not close to our results for the critical line in the density
variables, it is below all curves shown in Fig. 5, where it
is represented by the black square. Also, the critical line in
the phase diagram in the activity variables, Fig. 7(a), has a
negative slope at small values of z1, which becomes positive
after a minimum. Thus, the same reentrant behavior found in
the Bethe lattice solution of the model [14] is also found in

our results for the square lattice. This shows that, when their
density is low, the small particles facilitate the ordering of the
large ones—namely, they act as an effective entropic attractive
force among the large particles—regardless the structure of
the underlying lattice. It may be mentioned that in a study
of the isotropic-nematic transition for polydisperse rods, the
critical curve also has a nonmonotonic behavior in the space of
two fugacities, although the mean length of the rods changes
monotonically along the curve [24].

Our estimates for the central charge are consistent with the
Ising universality class on the whole critical line, in accordance
with the very precise results obtained with similar techniques
by Guo and Blöte for the model at the particular point of the
critical line with large particles only [5] and with results of a
similar model, which may be mapped, in a particular case, on
the Ising model [11]. The estimates for the central charge at
the tricritical point are close to the value of the tricritical Ising
(BEG) universality class.
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