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Viscoelastic Taylor-Couette instability as analog of the magnetorotational instability
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A linear stability analysis and an experimental study of a viscoelastic Taylor-Couette flow corotating in the
Keplerian ratio allow us to elucidate the analogy between the viscoelastic instability and the magnetorotational
instability (MRI). A generalized Rayleigh criterion allows us to determine the potentially unstable zone to
pure-elasticity-driven perturbations. Experiments with a viscoelastic polymer solution yield four modes: one
pure-elasticity mode and three elastorotational instability (ERI) modes that represent the MRI-analog modes.
The destabilization by the polymer viscosity is evidenced for the ERI modes.
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Magnetorotational instability (MRI) is considered as a plau-
sible mechanism that triggers turbulence, responsible for the
angular momentum transport in accretion disks [1]. It occurs
in differentially rotating fluids of high electric conductivity in
the presence of a magnetic field, when the angular velocity
decreases with the radial distance [2]. Though the MRI has
been well studied theoretically and numerically [1,3], its
experimental realization is still technically difficult because
large values of the magnetic Reynolds number Rm = γ̇ τλ and
the inertial Reynolds number Re = γ̇ τν are required [4–6].
Here γ̇ is the shear rate, τλ = d2/λ and τν = d2/ν represent
the magnetic and viscous diffusion times on a characteristic
length d, and ν is the kinematic viscosity of the fluid. The
magnetic diffusivity is given by λ = 1/μσ , where μ and σ are
the magnetic permeability and the electric conductivity of the
fluid, respectively.

Ogilvie and Proctor [7] have highlighted the similarity
between the equations of viscoelastic fluids and those of mag-
netohydrodynamics (MHD). They found that, among all types
of viscoelastic fluids, flows of polymer solutions described by
the Oldroyd-B model [8] are governed by equations identical
to those of MHD in the limit of infinite polymer relaxation
time τ and magnetic diffusion time τλ [7]. The Taylor-Couette
flow of a viscoelastic fluid between two differentially rotating
cylinders represents the flow system where this analogy should
be tested. The inner cylinder of radius a rotates at the
angular velocity �i and the outer one of radius b rotates
at the angular velocity �o. The gap of width d = b − a is
filled with a viscoelastic polymer solution of density ρ and
viscosity μt obtained by dissolving a long-chain polymer in
a solvent of viscosity μs . The polymer has a relaxation time
τ and its contribution to viscosity is defined μp = μt − μs .
The dimensionless control parameters of the flow are the
radius ratio η = a/b, the rotation ratio �o/�i ,the viscosity
ratio S = μp/μt , the inertial Reynolds number Re, and the
Weissenberg number Wi = γ̇ τ , where γ̇ = (�ia − �ob)/d.
The viscous diffusion time is τν = ρd2/μt . The dimensionless
flow equations of a polymer solution satisfying the Oldroyd-B
model read

∇ · u = 0,
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}
, (1)

where u and T represent the velocity field and the polymer
stress tensor, respectively, and ψ is the dimensionless gener-
alized pressure.

Ogilvie and Potter [9] have performed a linear stability
analysis (LSA) for a viscoelastic fluid described by the Eqs. (1)
for three different rotation regimes defined by �o/�i = ηq

with η = 0.95 and S = 0.5; q is the local exponent of the
angular velocity [10]. In the Keplerian regime (q = 3/2), the
instability leads to nonaxisymmetric rotating spiral patterns.
The critical value of Re decreases as Wi increases. This
instability, which is not driven by the centrifugal force but
requires sufficiently large shear and elastic energies, was called
the MRI-analog [9] or elastorotational instability (ERI) [11].
The existence of a finite critical value of Wi for Re → 0
indicates the pure-elasticity-driven instability in the Keplerian
regime. For the anti-Keplerian regime (q = −3/2), only the
pure-elasticity mode is critical, but it is suppressed by the
increase of the shear, i.e., of Re. The instability of the flow with
q = 3 leads to three types of modes: the ERI, the centrifugal
instability, and the pure-elasticity instability modes.

We are aware of only one experiment performed to track
this analogy, in an aqueous polymer solution of polyethylene
oxide (PEO) of 7 × 106 g/mol with relatively large concen-
trations in a Taylor-Couette system with η = 0.903 [11]. The
nonaxisymmetric spiral mode was observed in solutions with
polymer concentrations higher than 0.2% (0.25% and 0.375%)
and the axisymmetric vortex mode was found in solutions
with a concentration of 0.5%. The corresponding values of
S are {0.983,0.991,0.995}. However, no rheological tests of
the working fluids were presented to check if the solutions fit
the Oldroyd-B model. As only three data points in the plane
(Wi,Re) were reported, it is difficult to make a quantitative
comparison of these results with those of [9].1

1The Weissenberg number Wi used in the present work is related to
the Deborah number De used in [9] as follows: De = Wi − �oτ .
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This Rapid Communication aims to confirm the analogy
between the viscoelastic instability and the MRI. It gives
results of the LSA of the flow of polymer solutions sat-
isfying the Oldroyd-B model and experimental results in a
Taylor-Couette system with a radius ratio η = 0.8 when the
cylinders rotate in a Keplerian ratio. A generalized Rayleigh
criterion of the stability of a viscoelastic flow is established to
identify the potentially unstable zone to pure-elasticity-driven
perturbations. The LSA is performed for different values of S.
In experiments, different values of S are obtained using many
solutions of the same polymer in different solvents. The results
from LSA and experiments are compared and confirm the
existence of the ERI modes in the viscoelastic Taylor-Couette
flow in the Keplerian regime; these modes are the MRI-analog
modes.

The analogy between the MRI and the ERI proposed by [7]
requires infinite values of Wi, i.e., it works for ideal inviscid
MHD and for polymer solution of infinite elasticity. In fact,
the modified polymeric stress tensor Tp = T + μp/τ I and the
magnetic stress tensor TM = BB/μ0 (where B is the magnetic
field) satisfy identical equations in the limit of Wi → ∞
and Rm → ∞ [7]. The modified polymeric stress tensor
of the viscoelastic circular Couette flow can be represented
as [7] Tp

ij = Bp1
iBp1

j + Bp2
iBp2

j + Bp3
iBp3

j , where Bpk

(k = 1,2,3) is the polymeric analog of the magnetic field. One
possible set of vectors Bpk reads
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where C = 2η2(1 − μ)Wi/(1 − η2)(1 − η)(η − μ), B0 =
Ê1/2/Wi is a characteristic polymer-analog of the magnetic
field, E = Wi/Re is the solution elasticity, and Ê = ES is the
polymer contribution to the solution elasticity. Since the radial
magnetic field is not active in the destabilization, we compare
the azimuthal component of Bp2 with the pure axial field Bp3.
The latter will dominate the dynamics and the ERI will be
the analog of the standard MRI (SMRI) if Wi � Wi+; for
Wi � Wi+ the ERI will be the analog of the azimuthal MRI,
where Wi+ is given by the condition

√
2C/2r2 = 1. When

both components are comparable, one expects that the ERI
will appear in the form of helicoidal modes, which should be
the analog of helicoidal MRI (HMRI) modes [12].

Equations (1) were linearized about the base flow state
and the perturbations were expanded into normal modes of the
form exp[st + i(kz + mϕ)]. Here s = σ + iω, σ and ω are the
temporal growth rate and the frequency of the perturbations,
k and m are their axial and azimuthal wave numbers,
respectively. The resulting equations were solved using the
Chebyshev collocation method with the MATLAB eigenvalue
solver. We have validated our codes with the Newtonian flow
case and then we solved a few cases of available works for
viscoelastic flows [9,13,14]. We retrieved the results of [13,14]
and our results differ from those of [9] by 10%. We have solved
the equations for many values of η, but we present only the
results obtained for the case η = 0.8, which is the radius ratio
of our experimental system. We plotted the curves of critical
states Tac(K) for different values of S (Fig. 1), where Ta =
Re

√
δ is the Taylor number and K = Wi

√
Sδ is the modified

FIG. 1. Curves of critical states for different values of S for η =
0.8 in the Keplerian regime.

Weissenberg number to take into account the viscosity ratio
and the average curvature δ = 2(1 − η)/(1 + η). For each
value of S, the curve of critical states has a vertical asymptote
K = Kmin(S); it does not intersect the vertical axis K = 0,
in agreement with the stability of the Newtonian flow in the
Keplerian regime. On the other hand, this curve intersects the
horizontal axis (Ta = 0) at Kc(Ta = 0), which corresponds to
the threshold of the pure-elasticity-driven instability [15–17].
For all values of S, Tac decreases when K increases, i.e.,
the more elastic solution requires a slower rotation shear rate
to be destabilized. The critical states have different properties:
There is a value K0 such that for Kmin(S) < K < K0(S) critical
modes are axisymmetric and stationary (m = 0,ω = 0), while
for K > K0(S) critical modes are oscillatory nonaxisymmetric
with different values of m and ω. The largest value of
computed m is m = 3 for all values of S. The curves of
critical states for different S intersect each other at the point
(K∗ ≈ 0.68,Tac

∗ ≈ 1.19), which separates each curve Tac(K)
into two parts where S plays different roles: For K < K∗,
larger values of S (i.e., of polymer viscosity) destabilize
the flow, while for K > K∗, they inhibit the instability. In
the vicinity of the cross point, the viscosity ratio S has no
influence on the critical parameters. The destabilization by
the polymer viscosity is analogous to the dissipation-induced
destabilization of the Chandrasekhar solution in MHD [3].
Indeed, the cross point occurs for oscillatory states (waves)
and it is possible to define the polymeric analog of the axial
Alfvén velocity [18] vA = √

μp/ρλ, the dimensionless form
of which is UA = vAdγ̇ = Re−1√S/E = B0. At the cross
point (K∗,Tac

∗), this polymeric Alfvén velocity is independent
of S; it is determined by the elasticity of the solution.

When presented on a map of (Ê,Ta), the curves of critical
states converge into one curve (Fig. 2). For fluids of small Ê,
the critical mode appears as an axisymmetric vortex with an
axial wavelength smaller than the gap width; when Ê is large,
the critical mode is a nonaxisymmetric mode with an axial
wave number larger than the gap width. In the small gap limit
η → 1, the axisymmetric mode is not critical, which is the
reason why the study in [9] did not report it for η = 0.95.
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FIG. 2. Stability diagram for η = 0.8 in the Keplerian regime:
solid lines, curves of the critical states predicted by LSA for
S ∈ 0.5,0.6,0.7,0.8; closed circles, experimental critical values. The
pictures are typical with the cross section of the four modes. Dashed
vertical line corresponds to Ê0.

In order to discriminate the pure-elasticity mode from
the MRI-analog mode, we derive a stability criterion based
on the Rayleigh discriminant (RD) as in the case of the
centrifugal instability [2]. Let a fluid particle be suddenly
displaced from an orbit r to a new orbit r + dr in such a
way that its fly time is very small compared to the viscous
diffusion time and to the elastic relaxation time. At the new
position, the displaced particle is under the balance between
the centrifugal force, the centripetal pressure gradient, and the
elasticity force from the first normal stress difference N1. The
dimensionless restoring force acting on the particle is df =
−�(r)dr , where �(r) = �c + �e is the generalized RD. For
a Newtonian flow in the Keplerian regime, the centrifugal RD
�c = (1/r3)d(rV )2/dr is positive, so the flow is potentially
stable [V (r) is the azimuthal velocity of the base flow]. The
contribution of the elasticity force is �e = (1/r)(dN1/dr).
For any viscoelastic flow in curved geometry, the elasticity
will amplify the instability if N1 decreases with the radial
distance; otherwise it will inhibit it. For a viscoelastic fluid of
the Oldroyd-B model,

�e(r) = −32Ê

(
1 − μ

1 − η2

)2(
η

1 − η

)4 1

r6
. (3)

The generalized RD has the same structure as the one for
the Taylor-Couette flow with an azimuthal magnetic field
[2,18]. The viscoelastic Taylor-Couette flow is potentially
unstable to pure-elasticity-driven perturbations if Ê > Ê0

when the cylinders rotate in the Keplerian ratio and, for
Ê > Ê1, if the cylinders rotate in the anti-Keplerian ratio. For
η = 0.8, Ê0 = 0.672 and Ê1 = 3.45. The value Ê = Ê0 is
represented by the vertical dashed line (Fig. 2) and separates
the plane (Ê,Ta) into potentially stable and unstable zones
to pure-elasticity-driven perturbations. The point (K∗,Ta∗) in
Fig. 1 corresponds to Ê ∈ [0.32,0.48] < Ê0 for S ∈ [0.3,0.8].
So the critical modes observed for Ê < Ê0 can be attributed to
the flow destabilization by a combination effect of the elasticity
and rotation, which was called ERI. Along the Keplerian

line, the flow satisfies the Velikhov-Chandrasekhar stability
criterion [2,18] when Wi � Wi+. Therefore, these ERI modes
are MRI-analog modes.

The experiments were conducted in a Taylor-Couette
system with η = 0.8 and a gap width d = 1 cm with the aspect
ratio � = L/d = 45, where L is the length of the gap. Both the
inner and outer cylinders are thermalized to the temperature of
T = 20 ◦C ± 0.4 ◦C. The cylinders are driven by two motors in
such a way that their angular velocities are in the ratio ηq . The
working solutions consist of 1000 parts per 106 (by weight)
of high molecular PEO molecules (8 × 106 g/mol) dissolved
in a solvent made by water, 2.5% of isopropyl alcohol and
polyethylene glycol (PEG) (2 × 104 g/mol), the concentration
of which varies from 2.5% to 25% by weight. For visualization,
2% of aqueous Kalliroscope suspension was added into the
solutions. In such a weak concentration, it does not modify
the solution viscosity [19]. The PEO and the PEG have the
same chemical structure H—(O—CH2—CH2)n—OH; they
differ by the degree of polymerization n. In our experiment,
nPEG � 450 and nPEO � 1.8 × 105. The PEO works as a source
of both the elasticity and viscosity while the PEG increases
only the solution viscosity. The viscosity of the solvent μs and
that of the solution μt were measured with a shear rheometer
(MCR 501). The solvent viscosity was constant for all shear
rates. The total viscosity μt of solutions is constant except
for solutions with low PEG concentrations where it shows a
weak shear thinning over two decades of shear rates. So we
assumed that the solutions could be described approximately
by the Oldroyd-B constitutive equation as the shear rates in
the experiment cover only one decade. The relaxation time
was measured from the first normal stress difference (τN1 ) and
by the extensional rheometer CaBER (τe). For each solution,
μt and τe were measured before and after the experiment
in the Taylor-Couette system to verify if the polymers have
experienced any damage, e.g., if there is any decrease of
viscosity and the relaxation time. The molecular relaxation
time was estimated from μp as τM = μp/cRT , where c is
the polymer concentration and R is the universal gas constant.
The relaxation times of the working solutions vary from 0.06
to 0.5 s, so their elasticity E varies from 0.01 to 1.5 and the
viscosity ratio S varies from 0.45 to 0.87. For all solutions,
τN1 < τM < τe and we used τM to compute the experimental
values of Wi, K , and E. For each solution, i.e., for each value
of Ê, the angular velocity of both cylinders was increased
step by step, with a waiting period of 20 min until the vortex
patterns appeared in the flow. The cross section of the flow
patterns was visualized with a vertical laser sheet (pictures in
Fig. 2). The critical values of the angular velocity at which the
patterns were formed in the flow were recorded. The critical
points are represented in the stability diagram (Ê,Tac) (Fig.
2). The experimental data show a net destabilization of the
viscoelastic circular Couette flow in the Keplerian regime.
Weak elastic solutions require large values of shear rate to be
destabilized, while high elastic solutions require a weak shear
rate to be destabilized in the presence of curvature.

Four different modes (gathered by ellipses in Fig. 2) were
observed in the experiment. For small values of Ê, the critical
mode is a stationary axisymmetric (SA) mode composed of
vortices with an axial wavelength smaller than the gap width
[i.e., vortices that are flattened in the gap (Fig. 2)]. For
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intermediate values of Ê, the critical mode is a disordered
wave (DW) mode or a solitary vortex (SV) mode. The DW
mode results from the superposition of spiral vortices that
are created near the top and bottom endplates and propagate
towards the center of the system. For all runs, spiral vortices
are transient, they interact nonlinearly to give rise to waves
disordered in space but periodic in time. Their averaged
axial wavelength is about 1.40 (±0.04) as predicted by LSA.
The SV mode is composed of irregular in space and time
intense localized vortices separated by large zones occupied
by disordered waves; they are strongly nonlinear as a result of
coupling of traveling waves of different wavelengths. Similar
structures have been reported in [20]. For large values of Ê,
the critical mode is a pure-elasticity mode (EM). This mode
appears in the form of a chaotic pattern of irregular vortices
[15,21]. It is located on the right side of the critical value of
Ê0 and thus it is the result of the flow destabilization by the
elasticity force as predicted by the generalized RD. It requires
streamline curvature and a small shear to be triggered. When
the cylinders are rotating in an anti-Keplerian ratio, the same
EM was observed at 4 Tac. The transition from the circular
Couette flow to the SA mode is supercritical; no hysteresis
was found when ramping up and down. The transitions to
the three other modes present a significant hysteresis and are
therefore subcritical. The SA, DW, and SV modes were not
observed in the anti-Keplerian regime, hence they are the ERI
modes that represent the MRI-analog modes. The elasticity
mode is observed in the anti-Keplerian regime and therefore it
is related to the pure-elasticity-driven instability; it is not the
analog the MRI. The fact that the three MRI-analog modes are
observed for Ê < Ê0 highlights the importance of the polymer
viscosity in the flow destabilization of the Keplerian regime.

According to [7], the strict analogy works between non-
viscous ideal magnetic fluids and viscoelastic fluids with
infinite relaxation time. These conditions are not satisfied

in the experiment. The experimental results are in good
agreement with LSA results: Both axisymmetric modes and
nonaxisymmetric modes were observed (although the latter
were observed in a nonlinear regime). The tendency of the
threshold to decrease with the elasticity is recovered. The
discrepancy observed for small values of Ê is related to
the weak shear-thinning behavior of the working solutions. For
large values of Ê, the solutions fit better the Oldroyd-B model.
The SA modes were obtained for low values of Ê, for which the
axial polymeric-analog field Bp3 dominates the field Bp2. This
mode is therefore the analog of the SMRI. The DW and the
SV modes were obtained for values of Ê for which the axial
field Bp3 has the same order of magnitude as the azimuthal
component of Bp2. The DW mode is a nonlinear superposition
of two counterpropagating spirals, hence it is the analog of
the HMRI. The results of [11] reported helicoidal modes in
the same range of E as in our case, but the axisymmetric mode
was observed for large values of E for which LSA predicts
SA modes. This difference may be related to the difference
in values of η and S. The SV mode is a different mode; its
analogy with MRI should be investigated in more detail.

The present study of the viscoelastic Taylor-Couette flow
in the Keplerian regime confirms the analogy conjectured
by Ogilvie and Proctor [7] between ERI and MRI. Among
different critical modes, SA, DW, and SV modes are due to
ERI and are good candidates for the MRI-analog modes.
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