
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 92, 030601(R) (2015)

Emergent tilt order in Dirac polymer liquids
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We study a liquid of zigzagging two-dimensional directed polymers with bending rigidity, i.e., polymers whose
conformations follow checkerboard paths. In the continuum limit the statistics of such polymers obey the Dirac
equation for particles of imaginary mass. We exploit this observation to investigate a liquid of these polymers
via a quantum many-fermion analogy. A self-consistent approximation predicts a phase of tilted order, in which
the polymers may develop a preference to zig rather than zag. We compute the phase diagram and key response
functions for the polymer liquid, and comment on the role played by fluctuations.
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Directed line liquids consist of quasi-one-dimensional
objects that are preferentially oriented along a common
direction about which they undergo thermal fluctuations [1–4].
Realizations include systems as diverse as polymer liquids
under uniaxial tension [5–7], two-dimensional lamellar smec-
tics [8], step edges on crystal surfaces [9], interfaces in
the Kardar-Parisi-Zhang (KPZ) universality class [10], and
vortex lines in planar type-II superconductors [11]. Quantum
many-body physics provides powerful tools for analyzing
the thermal equilibrium properties of classical systems of
strongly interacting directed line liquids, by means of the
well-known mapping between the configurations of classical
directed lines in D-dimensional space and the world lines
of nonrelativistic quantum particles moving in D − 1 spatial
dimensions [1,5–7]. For example, in Refs. [1,5,7] this mapping
has been used to relate the structure of nonintersecting, but
otherwise noninteracting, two-dimensional directed polymer
liquids to the properties of the noninteracting one-dimensional
Fermi gas. As discussed in Ref. [6], the properties of three-
dimensional directed polymer liquids follow from a mapping
onto a two-dimensional system of fermions interacting via a
Chern-Simons potential.

The two-dimensional directed polymers that we consider
in the present Rapid Communication have an energetic
preference to be straight, i.e., an energy cost to be bent. To
date, by contrast, attention has primarily been focused on
directed polymers that have an energetic preference to be short,
i.e., an external tension controls the mean length. Unlike the
Kratky-Porod [12] model, which features a curvature-based
bending energy, the polymers in the current model bend only
by a fixed angle. This model of zigzagging directed lines may
also capture the effect of crystalline anisotropy in step edges on
crystal surfaces. As we shall see, the appropriate quantum ana-
log of the zigzagging directed line liquid consists of relativistic
quantum particles, which, accordingly, are governed by the
Dirac equation. This analogy, combined with a self-consistent
field approximation, enables us to obtain information about
local polymer density and alignment in the form of the
mean values and correlations of these quantities. Inter alia,
we shall also see that the interplay of bending rigidity and
repulsive interactions leads to polymer alignment. This kind
of interplay has long been known to promote striking collective
phenomena, such as nematic [13] or smectic [8] ordering.

To identify the quantum analog appropriate to a single
zigzagging directed line, we recall—following Feynman and

Hibbs [14] (and further developments in Refs. [15–17])—that
the (discretized) Feynman path-integral representation of the
quantum propagator Z(Cf ,Ci) between the initial state Ci

and the final state Cf of a relativistic particle consists of a
sum over zigzagging paths. For a particle of mass μ taking a
path with τ turns, the amplitude is (iεμ)τ and the propagator
is thus given by

Z(Cf ,Ci) = lim
ε→0

1

2ε

∑
(iεμ)τ , (1)

where the sum is taken over all paths consistent with the initial
and final states, ε is the lattice constant (i.e., the polymer Kuhn
length), and we have chosen units such that � = c = 1. The
state C refers to the combination of the positional coordinate
x of the particle and its motion direction σ (≡ ±). As we are
interested in polymer phenomena on length scales much larger
than the Kuhn length, we now take the continuum limit ε → 0.
It has been shown [14] that, in this limit, for a particle propagat-
ing for time L,Z is given by the matrix element 〈Cf |e−iLĥ|Ci〉,
where the (1 + 1)-dimensional Dirac Hamiltonian h is given,
in the Weyl representation, by −iσz∂x − μσx , in which

σx ≡
(

0 1
1 0

)
and σz ≡

(
1 0
0 −1

)
(2)

are the Pauli matrices, and the discrete degree of freedom is
the direction of motion.

For a zigzagging directed line, the classical partition
function Z(Cf ,Ci) associated with the line statistics has a
form similar to Z(Cf ,Ci), i.e.,

Z(Cf ,Ci) = 1

2ε

∑
(εm)τ . (3)

Here, we interpret the weight εm as a Boltzmann factor,
which has an exponential dependence on the reciprocal of
the temperature. Replacing iμ by m in Eq. (1) transforms
Z into Z. Therefore, in the continuum limit we have that
Z = 〈Cf |e−LĤ |Ci〉, in which the imaginary-time Dirac Hamil-
tonian H in the Weyl representation is given by

H = mI + σz∂x − mσx =
(

∂x + m −m

−m −∂x + m

)
. (4)

Here, we have added the term mI to H , where I is the identity.
This term has the effect of shifting the eigenspectrum by a
constant. Although the statistics of each polymer is not affected
by the mI term, this term is necessary if we are to arrive at
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FIG. 1. (Color online) Schematic representation of the model.
Directed lines, which are indistinguishable, are labeled 1 . . . 5. The
weight associated with each line configuration depends on the number
of turns, with each turn being assigned weight m. Each interaction
vertex is assigned a weight controlled by the interaction strength v0.

the continuity equation, examined below. In turn, this arrival
is necessary for the interpretation of the imaginary-mass Dirac
equation as an equation for the probability density of a single
particle.

By analogy with the well-known equivalence between
the Feynman path integral and time-dependent Schrödinger
equation, we may analyze the statistics of the zigzagging
directed line in terms of the time-dependent imaginary-mass
Dirac equation

−∂l� = H� (5)

for the doublet �. We note that the Hamiltonian H has
been considered in Refs. [18,19] in connection with polymer
solutions. The orientation of a polymer segment (see Fig. 1),
which we shall call its tilt, corresponds to the velocity of the
quantum particle. It is associated with the operator dx̂/dl =
[Ĥ ,x̂] = σ̂z. The thermal average of the polymer direction is
therefore captured by the quantum expectation value 〈σ̂z〉.

To pass to the nonrelativistic (i.e., large-mass) limit of
the imaginary-mass Dirac equation, we note that it reduces
to a single second-order partial differential equation—the
telegrapher’s equation—which, combined with the continuity
equation, ∂l(�1 + �2) + ∂x(�1 − �2) = 0, forms an equiva-
lent description. Its solution is known [20], and captures a com-
bination of diffusive and propagating (i.e., wavelike) motion.
In the aforementioned limit, the telegrapher’s equation reduces
to the diffusion equation ∂l�1,2 = (2m)−1∂2

x�1,2 [20–22],
i.e., the quantum analog is governed by the (nonrelativistic)
Schrödinger Hamiltonian (2m)−1∂2

x . To summarize, in the
real-time nonrelativistic limit the Dirac equation becomes
the Schrödinger equation, whereas in the imaginary-time
nonrelativistic limit the telegrapher’s equation becomes the
diffusion equation [17].

To analyze the many-polymer liquid, we make use of results
for the one-polymer system, which follow from the separation-
of-variables solution of the imaginary-mass Dirac equation.
Thus, we hypothesize the separated solutions

�nk(x; l) = Re(ψnk e−lEnk eikx), (6)

where k is the (real) momentum, and the eigenvalues Enk and
constant tilt doublets ψnk may, in general, be complex. By

inserting Eq. (6) into the imaginary-mass Dirac equation (5),
we arrive at the reduced eigenproblem,(

ik + m − Enk − m

− m −ik + m − Enk

)
ψnk = 0, (7)

which has nontrivial solutions provided Enk = m ∓ √
m2 − k2

(for n = 1,2). For k < m, Enk are real and the separated
solutions have the form

�nk(x; l) = (Re ψnk)e−lEnk cos kx − (Im ψnk)e−lEnk sin kx,

whereas for k > m they have the distinct form

�nk(x; l) = (Re ψnk)e−lm cos(kx ∓ l
√

k2 − m2)

− (Im ψnk)e−lm sin(kx ∓ l
√

k2 − m2), (8)

resulting from Enk being complex. The latter form results
from the fact that the imaginary-mass Dirac Hamiltonian is
non-Hermitian, and thus has both real and imaginary parts to its
eigenvalue spectrum. Such a non-Hermitian Hamiltonian does
not describe an isolated quantum system, although analogous
Hamiltonians can be used to model certain open quantum
systems [23]. Non-Hermitian Hamiltonians have also been
applied to sheared directed line liquids under tension, via
the mapping to a nonrelativistic quantum system subject to
an imaginary vector potential [24–26]. When we come to
study the response of zigzagging directed line liquids to
shear stress, we shall—following Refs. [24–26]—introduce
the stress s coupled to the tilt operator σz, so that H →
H + sσz; equivalently, k → k − is, i.e., here, too, s serves
as an imaginary vector potential.

We pause to mention a well-known simplification that
holds for bulk properties of long systems, viz., ground-
state dominance. Using bra-ket notation, a polymer segment
localized at position x with tilt label σ corresponds to the
quantum state |xσ 〉. We then define the eigenstates |nk〉 =∫

dx
∑

σ |xσ 〉ψnk(σ )eikx , and express the transfer-matrix op-
erator appearing in the partition function Z in the eigenstate
basis as follows:

e−LĤ =
∑
n,k

|nk〉e−LEnk 〈nk| ≈ |gs〉e−LEgs〈gs|, (9)

where |gs〉 denotes the eigenket for which Re(E) is minimized.
The series in Eq. (9) is indeed dominated (for large L) by a sin-
gle ground state, provided the ground state is nondegenerate.
By using the expression F = −T ln Z for the thermodynamic
free energy F of the polymer system, together with Eq. (9),
we obtain F = T LEgs. For a single zigzagging directed line,
the ground state is (n,k) = (1,0), so that Egs = 0, and the
components of the tilt doublet are (ψ(+),ψ(−)) = (1,1)/

√
2.

Prior to giving our analysis of the many-polymer liquid,
we note a simple, self-consistent variational argument for the
many-body ground-state energy Egs of the interacting liquid
consisting of N polymers at mean density ρ. As a consequence
of thermal fluctuations, each polymer occupies a characteristic
width w in the x direction. In analogy with work on lamellar
smectics [8,27], we replace the interacting many-line system
by a single line in a harmonic external potential. For the
relativistic system, the Dirac oscillator [which is defined using
a linear potential term, V (x) = xσz] is a solvable analog of
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the nonrelativistic harmonic oscillator [28–30]. Replacing the
mass of the Dirac oscillator by an imaginary value, its energy
eigenvalues acquire the form Eλ∓ = m ∓

√
m2 − 2|λ∓|w−2

(for positive integers λ− and non-negative integers λ+) [29,30].
Thus, given the lowest-energy state λ− = 1 and the self-
consistency condition ρ = w−1, we conclude that

Egs/N = E1− = m −
√

m2 − 2ρ2, (10)

from which the polymer liquid free energy follows. Note that
this self-consistent spectrum breaks down as ρ → √

2m/2,
i.e., the value at which the square root in Eq. (10) becomes
imaginary.

Returning to our main goal, we now formulate the statistical
mechanics of the zigzagging directed polymer liquid in terms
of quantum many-particle physics. To do this, we choose the
polymers to be identical (i.e., indistinguishable). We focus on
joint probability densities for the polymer segments that, in the
quantum analogy, correspond to the real and positive subset of
wave functions �(X; 
) [where X ≡ (x1, . . . ,xN ), and 
 ≡
(σ1, . . . ,σN )]. Specifically, we consider a polymer liquid in
which two segments that are tilted in the same direction cannot
occupy the same location in space. Thus, two polymers cannot
“comove,” but they may cross (see Fig. 1). For each crossing,
we assign a statistical weight controlled by an interaction
strength v0. In a quasi-two-dimensional polymer system, the
polymers may be able to pass over and under each other, with
a corresponding energy cost. However, this energy may be
sufficiently large such that two polymers staying on top of each
other (i.e., comoving) is highly improbable. In the quantum
analogy, this system corresponds to the sector of many-body
quantum states that are symmetric under pairwise exchange
of particles: |x1,x2, . . . ; σ1,σ2, . . .〉 = |x2,x1, . . . ; σ2,σ1, . . .〉,
etc., i.e., bosonic states, with the additional constraint that
|x1,x1, . . . ; σ1,σ1, . . .〉 = 0, etc.

Within the quantum analogy, this system can be usefully
addressed using Girardeau’s extension [31] of his one-
dimensional (1D) mapping [32] between hard-core bosons and
noninteracting fermions. For a system possessing only spatial
degrees of freedom [1,5,7] (i.e., without tilt), this mapping
proceeds by using the factor B(X) = ∏

n<m sgn(xn − xm)
in the transformation |X〉B = B(X)|X〉F between symmetric
(boson, B) and antisymmetric (fermion, F ) states. The Pauli
principle, operative for the Fermi states, translates into a local
hard-core repulsion for the Bose states, so that two bosons
are excluded from occupying the same point in space [32].
This mapping may be extended to states with tilt, using
|X,
〉B = B(X)|X,
〉F , i.e., by introducing a sign of −1 into
the fermionic state under the exchange of the position (but
not tilt) labels [31]. Thus, the bosonic state |X,
〉B indeed
vanishes if (xi,σi) = (xj ,σj ) for any pair of particles, but it
need not vanish if σi 	= σj .

To explore structure in the polymer liquid, we now derive
the corresponding quantum many-particle Hamiltonian in
the occupation number representation. First, we define the
states |{αnk}〉 = ∏

nk (ĉ†nk)
αnk |0〉, where αnk are the particle

occupation number of the states |nk〉, ĉ
†
nk are the corre-

sponding creation operators, and |0〉 is the no-particle state.
As we are considering Fermi statistics, the operators ĉ

†
nk

obey anticommutation relations. Using the eigenstates ψnk(σ )

FIG. 2. (Color online) Single-particle energy spectrum of the
fermion analogy in the absence (solid lines) and presence (dashed
lines) of an external shear stress. Note the large degeneracy for
|k| � m, which the shear eliminates. In the v0 = 0 case, the many-
body ground state is constructed by filling the Fermi sea (red). For
ρ < m/π , the low-energy excitations are of the particle-hole type
(shown by arrows), and involve single-particle states near the Fermi
points k = ±kF .

of the single-particle Hamiltonian, we construct the field
operators ψ̂σ (x) = ∑

nk ψnk(σ )eikx ĉnk , in terms of which the
many-body Hamiltonian Ĥ has the form [cf. Eq. (4)]

Ĥ =
∫

dx

{∑
σσ ′

ψ̂†
σHσσ ′ψ̂σ ′ + v0ψ̂

†
+ ψ̂

†
−ψ̂−ψ̂+

}
, (11)

where all of the field operators have argument x. Next, by
analogy with quantum statistical mechanics, we introduce
l-dependent operators ψ̂σ (x; l) ≡ eĤl ψ̂σ (x) e−Ĥl and the par-
tition function Z ≡ Tr e−LĤ (where the trace Tr is taken
over all N -particle states), and thermal expectation values of
operators Ô are given by Z−1Tr Ô e−LĤ.

Thus, the zigzagging polymer liquid maps to an interacting
N -fermion fluid described by the Hamiltonian (11). For the
case v0 = 0, the exact ground state of this Fermi fluid has
only the N lowest-energy single-particle states occupied. The
nature of this ground state changes qualitatively as the value
of the Fermi wave vector kF (which is related to the density
via ρ = kF /π ) is increased to m. For kF < m, the Fermi sea
fills the bottom portion of the spectrum and the real part of the
total energy is given by Re E = mN − ∑

k<kF

√
m2 − k2 (see

Fig. 2). For kF > m, there are many degenerate ground states,
all with Re E = mN − ∑

k<m

√
m2 − k2; in these states all

single-particle states with n = 1 and k < m are occupied, with
the rest of the occupied states being arbitrarily chosen from
the doubly degenerate band that has Re E = m and k > m (see
Fig. 2). For kF > m, a unique ground state can be achieved
by imposing a shear stress s (see Fig. 2). Thus, for s 	= 0, the
ground state is nondegenerate for any particle density.

Using these fermion ground states, we calculate the corre-
lations of density in the zigzagging directed line liquid with
v0 = 0 using the exact expression

〈Ô(q,ω)Ô(−q, − ω)〉 = Re
∑
knn′

On(q+k) − On′k

En(q+k) − En′k − ω
,

where Ô is an operator (e.g., ρ̂ ≡ ∑
σ ψ̂†

σ ψ̂σ ), and Onk is
the expectation value of Ô in the single-particle state nk.
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FIG. 3. (Color online) Wave-vector-dependent zigzagging poly-
mer density correlation function 〈ρ̂(q)ρ̂(−q)〉 for ω = 0 (i.e., wave
vector transverse to the preferred polymer direction) with v0 = 0. The
cases kF /m = (0,0.5,0.99) are shown using, respectively, dashed,
thick, and thin lines. Whereas in the low-density limit, the result
for directed polymers without bending rigidity, i.e., from Ref. [1], is
recovered, at higher densities, the polymer bending rigidity has an
effect on the structure of the polymer liquid. Furthermore, at kF = m,
the Kohn-type anomaly at q = kF changes its character.

We compute these correlation functions using the complex
basis (6). For ω = 0, the results are plotted in Fig. 3.

Next, we study the uniform tilt susceptibility in analogy
with the Stoner theory of itinerant magnetism, which addresses
a repulsive spin- 1

2 Fermi gas [33]. To do so, we use a
self-consistent approximation and ignore fluctuations, which
we recognize destroy true long-range order in one-dimensional
Fermi systems—instead, we expect the true ground state to
have long-range tilt correlations. For zigzagging directed lines,
the self-consistent equation (SCE) results from the Hartree-
Fock approximation of the interaction: v0〈ψ̂†

−ψ̂−〉ψ̂†
+ψ̂+ +

v0〈ψ̂†
+ψ̂+〉ψ̂†

−ψ̂− [34]. Rewriting this expression in terms of
the expectation value 〈ζ̂ 〉 of the tilt operator ζ̂ ≡ ψ̂

†
+ψ̂+ −

ψ̂
†
−ψ̂−, the relevant term becomes −sscζ̂ , where

ssc = v0

2
〈ζ̂ 〉, (12)

which is the SCE, expressed in terms of self-consistent field ssc.
We evaluate 〈ζ̂ 〉 in the ground state by using a (nonorthogonal)
transformation to the eigenbasis of the Hamiltonian [35] to
obtain

〈ζ̂ 〉 = 1

π
Im

[√
m2 − (kF + issc)2

]
. (13)

Substituting this expression into the SCE (12), we find a
nontrivial solution if and only if (1 + g2)k2

F > m2, where
g ≡ v0/2π (see Fig. 4). In this region, the SCE (with its
neglect of fluctuations) predicts a tilt of the polymer system in
equilibrium (see Fig. 4). Note that for kF > m, this solution
exists even for the case v0 = 0; this results from the fact that
an applied stress s breaks the degeneracy between the two
bands, as shown in Fig. 2, leading to a polymer-system tilt that
increases with density beyond m/π . The critical line shown in
Fig. 4 corresponds to an Ising-like continuous phase transition
in the mean-field approximation. Accordingly, (i) the Ising
order parameter (i.e., the tilt) scales as the square root of the

distance to the critical line, 〈ζ̂ 〉 = π−1
√

k2
F − m2(1 + g2)−1,

(ii) on the critical line, the tilt scales with the shear stress as

〈ζ̂ 〉 ∼ 1
π

( 2gm2

1+g2 )
1/3

s1/3, and (iii) the uniform tilt susceptibility
diverges on approach to the critical line [see Fig. 4(b)], as seen

FIG. 4. (Color online) Left: Phase diagram in the plane spanned
by density ρ and interaction v0, obtained using the self-consistent
solutions of the tilt in the ground state. The density plot shows the
degree of tilt order 〈ζ̂ 〉 in the titled phase, i.e., above the phase
boundary line. Right: Uniform tilt susceptibility near the phase
boundary, exhibiting a divergence characteristic of a continuous phase
transition.

in the expression

χ =
⎧⎨
⎩

1
π

kF√
m2−k2

F −gkF

for 〈ζ̂ 〉 = 0,

1
π

m2g

1+g2
1

(1+g2)k2
F −m2 for 〈ζ̂ 〉 	= 0.

(14)

The thermodynamics of the zigzagging directed line liquid
follow from the polymer free energy T LEgs . For example,
for kF < m, g = 0, and s = 0, the compressibility is given
by T

√
m2 − (πρ)2/(π2ρ3). Its vanishing as ρ → m/π is an

additional signature of the crossover to a tilted state.
We note that the model described here addresses the

structure of the zigzagging polymer liquid on mesoscopic
length scales, i.e., between the molecular structure of the
polymer fluid and its larger-scale collective properties. We also
note that Eq. (11) is a variant of the Thirring model [36]. As is
well known, the original Thirring model can be solved exactly
by using a mapping onto the bosonic sine-Gordon model [37].
However, using the same bosonization methods, the Hamilto-
nian (11) does not map onto a realizable Hamiltonian for a Bose
system because the one-particle energy, Eq. (4), maps onto a
complex term. Thus, it remains an open question whether the
many-body problem analyzed here is exactly solvable.

Let us also comment on the role of dimensionality in this
model. (i) It would be interesting to explore whether extensions
of the Hamiltonian (4) could be applied to higher-dimensional
systems of directed lines. (ii) Although possible [6], the
transmutation of quantum statistics in higher-dimensional
systems requires a more elaborate construction. (iii) In two-
dimensional directed polymer liquids, fluctuations eliminate
true long-range order, though vestiges of it remain in the form
of long-range correlations.

We conclude with a discussion of the physical content
of the Dirac polymer liquid model. This model indicates
the possibility of a different type of order (i.e., tilt order)
in a liquid of directed polymers having bending rigidity.
Within such a liquid, we find that this tilt order results from
an interplay between bending rigidity and strong polymer-
polymer repulsion. To treat this repulsion, we use an analogy
between directed polymers and quantum particles. Within this
analogy, the orientational degree of freedom of a polymer
segment maps onto the intrinsic spin of a quantum particle.

030601-4



RAPID COMMUNICATIONS

EMERGENT TILT ORDER IN DIRAC POLYMER LIQUIDS PHYSICAL REVIEW E 92, 030601(R) (2015)

The analogy enables us to examine the directed polymer liquid
using techniques known from the study of one-dimensional,
two-band Fermi liquids. As a result, we are able to describe
the emergence of order in the polymer liquid in terms of
a Stoner-like theory of itinerant magnetism [33], subject
to fluctuations. It is noteworthy that, for sufficiently high
polymer densities, even weak interactions lead to tilt order.
Thus, for the polymer liquid, we find phenomenology quite
reminiscent of that central to Onsager’s description [38] of the

isotropic-nematic transition. We emphasize the necessity of
sufficient polymer rigidity for the emergence of tilt order that
we have discussed here.
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