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The pseudopotential lattice Boltzmann model (PP-LBM) is a very popular model for simulating multiphase
systems. In this model, phase separation occurs via a short-range attraction between different phases when the
interaction potential term is properly chosen. Therefore, the potential term is expected to play a significant role
in the model and to affect the accuracy and the stability of the computations. The original PP-LBM suffers from
some drawbacks such as being capable of dealing with low density ratios only, thermodynamic inconsistency,
and spurious velocities. In this paper, we aim to analyze the PP-LBM with the view to simulate single-component
(non-)isothermal multiphase systems at large density ratios and in spite of the presence of spurious velocities. For
this purpose, the performance of two popular potential terms and of various implementation schemes for these
potential terms is examined. Furthermore, the effects of different parameters (i.e., equation of state, viscosity,
etc.) on the simulations are evaluated, and, finally, recommendations for a proper simulation of (non-)isothermal
multiphase systems are presented.
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I. INTRODUCTION

Multiphase flows are very common in many engineering
systems, such as gas-liquid flows in evaporators and con-
densers, boilers, and heat pipes. Multiphase flows also are
abundantly present in nature, like rain, clouds, fog, avalanches,
and blood flow. Due to the obvious importance of multiphase
flows, many numerical models were developed to study and
simulate the various flow regimes possible, in particular the
dispersed regimes of bubbles and drops. In the latter cases,
the real challenge is in capturing or tracking the interface
between phases which result from phase separation due
to the physicochemical interactions among the constituent
molecules.

The common models based on the Navier-Stokes (NS)
equations are divided into interface (or front) tracking and cap-
turing categories. In interface tracking methods, the interface is
defined as boundary condition and is tracked directly in each
time step. The most popular interface-tracking methods are
the boundary-fitted grid method [1], the Tryggvasson’s hybrid
method [2], and the boundary element method (BEM) [3].
Usually, the interface tracking methods allow us to accurately
calculate the interface curvature; however, these methods need
complex boundary models and complicated dynamic meshing
algorithms. These limitations are alleviated by using interface-
capturing methods such as the marker-and-cell (MAC) method
[4], the volume-of-fluid (VOF) method [5], and the level set
(LS) method [6]. In these methods, all phases and components
of the flow are modeled as single continuous media with
discontinuous properties at the interface. Solving the full NS
equations with a coupled algorithm to simultaneously resolve
the interface is the main complexity of these methods which
has limited them to relatively simple cases [7]. Generally,
tracking or capturing the interface and generating a dynamic
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mesh are always a challenging issue, especially for rapidly
transient cases, for high-density-ratio flows, and in problems
with complex geometries [8].

As mentioned before, phase separation and forming the
interface are the consequence of molecular interactions. The
effects of these molecular interactions on multiphase flows
are ignored in traditional NS-based methods as they are purely
continuum-based techniques. Therefore, there is a necessity for
alternative techniques to comprehend the connection between
the macroscopic phenomena and the underlying microscopic
interactions. In principle, atomistic methods such as molecular
dynamics (MD) or direct simulation Monte Carlo (DSMC) are
suitable for capturing the microscopic interactions. However,
these techniques are computationally too challenging to be
applied to macroscopic engineering problems. Over the past
three decades, the lattice Boltzmann method (LBM), which is
based on a mesoscopic kinetic equation for particle distribution
functions, has been introduced as an alternative and feasible
tool for simulating multiphase flows [9–13].

There are a number of approaches for simulating multiphase
flows by using LBM: the color-gradient model [9], the
index fluid method [10], the free-energy model [11], and the
pseudopotential multiphase LBM proposed by Shan and Chen
[12,13]. All these approaches have their origins in kinetic
theory, but the last two models have shown the most promise
and capability for simulating multiphase systems. The free
energy model relies on the incorporation of nonequilibrium
dynamics by using the concept of a free energy function. This
model is physically consistent and conserves local momentum.
However, Galilean invariance is not satisfied, some unphysical
effects have been noted in simulations, and the method is
limited by the admissible range of fluid properties (density
ratio, surface tension, and kinematic viscosity), time and length
scales, and by the inability to represent energy transport [14].

The PP-LBM (also called the Shan-Chen or SC model) is
a very popular model in the LB community. In this model, the
fluid interactions are mimicked by an interparticle potential;
consequently, the interaction potentials produce the form of the
equation of state (EOS) of the fluid. Phase separation occurs via
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a short-range attraction between the various phases when the
interaction potentials are properly chosen. In this model, the
interface is captured automatically and molecular interactions
are incorporated as the driving force behind phase separation.
Hou et al. [15] demonstrated that, in comparison with the
free-energy model, the PP-LBM is more stable and has more
accurate results. Yu and Fan [16] extended the PP-LBM to a
multiple-relaxation-time version and showed that their model
is able to significantly enhance the numerical stability at low
viscosities. A critical review of the theory and applications of
the PP-LBM in the simulation of multiphase flows during the
past two decades has been presented in Ref. [17].

In practical problems, density ratios between phases can
vary greatly. For example, the density ratio of a liquid emulsion
is of the O(1), while the density ratio of a water-air system
can be higher than O(1000). The original PP-LBM [12] can
be used to simulate a system with a density ratio of the O(10),
but the simulation fails for higher density ratio systems due to
the generation of either an infinitely large or a negative density
[8]. A low density ratio indeed prevents the PP-LBM model
from being applied to many multiphase flow systems. For
the sake of overcoming this drawback, different researchers
tried to develop the original PP-LBM for high-density-ratio
simulations by incorporating a proper realistic EOS in the
original model [8,18,19].

In addition to the low density ratio, the original PP-LBM
suffers from a thermodynamic inconsistency and large spuri-
ous velocities [20]. In thermodynamic theory, the coexistent
densities for multiphase flows are determined by the Maxwell
construction. However, the coexistent densities obtained by
the original PP-LBM are inconsistent with the Maxwell
construction and the inconsistency increases when operating
too far below the critical temperature. The spurious velocities
denote vortexlike fluid velocities, which are formed in the
vicinity of a curved phase interface. These spurious velocities
are a common problem for many multiphase flow models,
as interface dynamics and transport phenomena across an
interface are seriously affected by them [20]. The amplitude of
the spurious velocities increases as the density ratio goes up,
which causes numerical instability and limits the maximum
density ratios achievable [17]. The spurious velocities can
be reduced by extending the spatial range of the pseudopo-
tential interaction [20,21]. Also, it has been shown that the
thermodynamic inconsistency can be controlled by a proper
implementation of a suitable EOS in the model [19,22,23].
This is achieved by a proper approximation of the potential
gradient and also selecting an accurate force implementation
strategy [19,24,25].

Notwithstanding the great efforts made to study the hy-
drodynamics of multiphase flows [19–31], modeling thermal
multiphase systems at large density ratios is still very challeng-
ing, because many issues should be addressed simultaneously.
The motivation of the present work is to extend the PP-LBM to
simulate (non-)isothermal multiphase systems at large density
ratio in spite of the presence of spurious velocities. In this
paper, we aim to address these issues through a proper
assessment of specific potential terms in the PP-LBM which
have been proposed in the literature to incorporate attractive
(or repulsive) forces between different phases. Here we present
a straightforward and comprehensive analysis of two popular

schemes, i.e., the Shan-Chen potential [12] and the so-called
β-potential terms [23]. By carrying out this analysis, the
effect of spurious velocities on the temperature domain is
investigated and the effects of different parameters on the
simulations are evaluated and, finally, recommendations for
a proper simulation are presented.

The rest of the present paper is organized as follows: The
numerical model is presented in Sec. II. In this section, the
details of interaction potential terms, forcing implementation
schemes, and incorporating equation of states are presented
comprehensively. The numerical results are presented in
Sec. III and, finally, concluding remarks are given in Sec. IV.

II. NUMERICAL METHOD

In this section, the details of numerical methods to solve
a single-component multiphase system are presented. We
first recall the thermal LBM; then details of two alternative
potential terms for simulating multiphase syetsms, various
force implementation schemes, and EOSs are presented.

A. Thermal LBM

The general lattice Boltzmann equation with a single
relaxation time is written as [12,32]:

fi(
⇀

x + ⇀ei�t,t + �t) − fi(
⇀

x,t)

= − 1

τ

[
fi(

⇀

x,t) − f
eq
i (

⇀

x,t)
] + Si, (1)

where fi is the kinetic probability density function and
f

eq
i is the equilibrium distribution, corresponding to the

Maxwellian distribution in the continuum limit [20]. Also,
τ is the nondimensional relaxation time and Si represents a
general source term added to the standard lattice Boltzmann
equation. The discrete velocities ⇀ei in the ith direction for the
D2Q9 lattice are given by ⇀e0 = 0 and ⇀ei = λi(cos θi, sin θi)
with λi = 1,θi = (i − 1)π/2 for i = 1 ∼ 4 and λi = √

2,θi =
(i − 5)π/2 + π/4 for i = 5 ∼ 8. The order numbers i = 1 ∼ 4
and i = 5 ∼ 8 represent the rectangular and the diagonal
directions of the lattice, respectively. The equilibrium density
distribution functions, f

eq
i , are obtained via a low-Mach-

number expansion of the continuum Maxwellian are given
by:

f
eq
i = wiρ

[
1+ (⇀ei · ⇀

ueq)

c2
s

+ (⇀ei · ⇀

ueq)
2

2c4
s

− (
⇀

ueq · ⇀

ueq)

2c2
s

]
i=1∼9

,

(2)

where cs = c/
√

3 denotes the lattice speed of sound and
c = �x/�t is the lattice speed with �x and �t as the lattice
spacing and time interval (both �x and �t are equal to 1 in the
lattice system). Also, wi’s are the weighting factors, equal to
4/9 for i = 0, 1/9 for i = 1 ∼ 4, and 1/36 for i = 5 ∼ 8, and
⇀

ueq is the equilibrium velocity. The local mass density, the local
velocity, and the viscosity in lattice units are calculated as ρ =∑

i fi ,
⇀

u = (
∑

i
⇀eifi)/ρ, and ν = c2

s (τ − 0.5), respectively.
Hence, the viscosity can be changed by choosing a different
relaxation time.

Similarly, by introducing a second distribution function and
when ignoring the viscous dissipation term, a thermal LBM is
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obtained:

gi(
⇀

x + ⇀ei�t,t + �t) − gi(
⇀

x,t)

= − 1

τg

[
gi(

⇀

x,t) − g
eq
i (

⇀

x,t)
] + wi�, (3)

where the gi’s are the energy distribution functions along the
particle velocity directions, τg is the thermal relaxation time,
and g

eq
i denotes the energy distribution equilibrium functions

given by:

g
eq
i = wiρT

[
1 +

⇀ei · ⇀

U

c2
s

]
i=1∼9

, (4)

where
⇀

U is the macroscopic velocity, � is the energy source
term, and T = ∑

i gi/ρ is the temperature. In order to mimic
the macroscopic energy equation, the energy source term
should be defined as [31]:

� = ∇ · (k∇T )

cp

− ∇ · [α∇(ρT )], (5)

where k is thermal conductivity, cp is specific heat, and α =
c2
s (τg − 0.5) is thermal diffusivity. Therefore, by implementing

the Chapman-Enskog expansion, the macroscopic energy
equation for multiphase flows is recovered as:

∂T

∂t
+ ⇀

U · ∇T = ∇ · (k∇T )

ρcp

. (6)

B. Interaction potential for multiphase systems

The force acting on a multiphase system includes external

body forces,
⇀

F body (e.g., gravity), and the mean field interpar-

ticle interaction potential (or force),
⇀

F potential and is written as:
⇀

F = ⇀

F body + ⇀

F potential. In this work, the external body forces

are neglected and therefore,
⇀

F = ⇀

F potential. This interparticle
interaction potential accounts for the phase separation in the
PP-LBM [12,33]. In the following, we review two existing
schemes for interparticle interaction potential terms.

1. The Shan-Chen potential term

In a multiphase system, part of the interaction force acts
between molecules in the same phase, while another part acts
between molecules in different phases. Based on the original
PP-LBM proposed by Shan and Chen [12,13], the interaction
force for a single-component multiphase system is written as:

⇀

F potential,SC = −Gψ(
⇀

x,t)
∑

i

wi
⇀eiψ(

⇀

x + ⇀ei,t), (7)

where G denotes the interaction parameter, with G < 0 repre-
senting an attractive force and G > 0 representing a repulsive
force between particles. Also, ψ(

⇀

x,t) is called the effective
mass or the pseudopotential function, which is a function of
local density and describes the fluid-fluid interactions triggered
by inhomogeneities of the density profile. Here the interaction
is restricted to nearest and next-nearest neighbors. The original
form of ψ(

⇀

x,t) is defined as:

ψ(
⇀

x,t) = ρ0(1 − exp−ρ/ρ0 ), (8)

where ρ0 is a normalization constant, which is usually chosen
as 1. The EOS corresponding to Eq. (7) is named Shan-Chen
EOS and is presented as [12,13]:

pSC = ρc2
s + G

2
c2
s [ψ(

⇀

x,t)]2, (9)

For the potential form in Eq. (8), a van der Waals-type of
EOS is retrieved. As we mentioned in earlier, incorporating
a proper attainable EOS in the model leads to reduction in
spurious velocities and increases the density ratios attainable
[18]. In the framework of the isothermal LBM, a relatively
simple but effective method for incorporating various EOS
into the original PP-LBM was obtained by rewriting Eq. (8) as
[18,34,35]:

ψ(
⇀

x,t) =
√

2
(
pEOS − ρc2

s

)
Gc2

s

, (10)

where pEOS is the pressure. With this method, any EOS can
be incorporated in the interparticle interaction force through
Eq. (10). Hence, different EOSs would give different inter-
particle interaction forces. Note that for the single-component
multiphase simulations, the value of G becomes unimportant
and is canceled out of the computations.

2. The β-scheme potential term

By considering Eq. (7), we can realize that the determina-
tion of the neighbor nodes has a great role in the calculation
of the force term. In the Shan-Chen potential term [Eq. (7)],
only the nearest and next-nearest neighbors are considered.
It has been demonstrated that the relatively large spurious
velocities in the vicinity of the curved interface in the model
result from insufficient isotropy of the interaction force. By
increasing the isotropy, the magnitude of spurious velocities
decreases, the thermodynamic inconsistency reduces, and the
stable temperature range extends [19,20,23,36].

Since finite sets of discrete velocities ⇀ei are defined in LBM,
it is not possible to have a fully isotropic force. For a two-
dimensional case with nearest and next-nearest neighbors, only
an isotropy up to fourth order can be achieved. However, if the
next layers of neighboring nodes are taken into account, the
order of the isotropy increases at the expense of an increase in
computational cost [20,36].

The consequence of the interaction potential of Eq. (7) at
the continuum limit is achieved by letting the lattice scale
approach zero [37]. By implementing a Taylor expansion of
the interaction potential, Eq. (7) is then rewritten as:

⇀

F potential = −G

[
ψ∇ψ + ε

2
ψ∇(∇2ψ) + · · ·

]
, (11)

where ε is the expansion parameter, which is proportional to
the ratio of the lattice spacing to a characteristic macroscopic
length. Equation (11) shows that the interaction potential is
defined as function of the gradient and higher derivatives of
the density field and should include any number of neighbor
nodes for obtaining a higher degree of isotropy. If we ignore
the higher order terms in Eq. (11) and represent the first term in
the right-hand side as −ψ∇ψ = −0.5∇(ψ)2, the interaction
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potential term can be alternatively calculated as:

⇀

F potential = −0.5G
∑

i

wi[ψ(
⇀

x + ⇀ei,t)]
2

⇀ei (12)

The above equation involves the effective mass of nearest
and next-nearest lattices. Gong and Cheng [23,38] found that
the combination of Eqs. (7) and (12) can increase the isotropy
of the interaction force. The new potential term, which is the
so-called β-scheme potential term, is written as follows:

⇀

F potential,β = −β

[
ψ(

⇀

x,t)G
∑

i

wi
⇀eiψ(

⇀

x + ⇀ei,t)

]

− 1−β

2

[
G

∑
i

wi
⇀eiψ(

⇀

x + ⇀ei,t)
2

]
, (13)

where β is the weighting factor. In fact, rather than considering
more neighboring nodes to increase the isotropy, the force and,
consequently, the surface tension are tunable and we can reach
to the optimum fourth-order isotropic solution for the case
with nearest and next-nearest neighbors [23,38]. By choosing
a proper value for β, the thermodynamic inconsistency and
magnitude of spurious velocities reduce greatly [23]. For β =
1, the scheme coincides with Eq. (7), for β = 0, with Eq. (12).

C. Force implementation scheme

In order to mimic the continuous phase behavior as
expressed by the NS equations, usually, a source term taking
care of the mean-field interparticle interaction force is added
to the LBE [see Eq. (1)]. Different implementation schemes
have been presented in the literature to include this force term
in LBM. Selecting a proper method has a great effect on the
numerical stability and accuracy of the solution. In this section,
we introduce the most popular implementation schemes.

1. The Shan-Chen scheme

In this scheme, also called the velocity shifting method, the
incorporation of the force term is realized by means of a shifted
equilibrium velocity

⇀

ueq when calculating the equilibrium
distribution function [12]. In other words, the equilibrium
velocity in Eq. (2) is calculated as:

⇀

ueq = ⇀

u + τ

ρ

⇀

F . (14)

Due to averaging the momentum before and after the
collision step, the actual fluid velocity is calculated as:

⇀

U = ⇀

u + �t

2ρ

⇀

F . (15)

The equivalent macroscopic NS equations corresponding to this scheme are obtained as:

∂ρ

∂t
+ ∇ · (ρ

⇀

U ) = −�t

2
∇ · ⇀

F (16a)

∂

∂t
(ρ

⇀

U ) + ∇ · (ρ
⇀

U
⇀

U ) = −∇p + ν∇ · [ρ(∇ ⇀

U + (∇ ⇀

U )T )] + ⇀

F −�t

2
ε
∂

⇀

F

∂t1
− �t∇ ·

[
1

2
(

⇀

U
⇀

F + ⇀

F
⇀

U ) + τ 2

ρ

⇀

F
⇀

F

]
︸ ︷︷ ︸

⇀
F extra

(16b)

It is clear that the macroscopic NS equations recovered from the Shan-Chen force implementation scheme contain additional
terms.

2. The He scheme

He et al. [39] proposed another idea to incorporate force into the LBM. In their scheme the discrete form of the force is written
as:

Si = wi

[
⇀ei − ⇀

u

c2
s

+ (⇀ei · ⇀

u)

c4
s

⇀ei

]
· ⇀

F�t, (17)

where the equilibrium and the real velocity of the fluid are defined as
⇀

u = ⇀

ueq = ⇀

U = ∑
⇀eifi/ρ. Using this scheme, the

macroscopic NS equations are given by:

∂ρ

∂t
+ ∇ · (ρ

⇀

U ) = −�t

2
∇ · ⇀

F , (18a)

∂

∂t
(ρ

⇀

U ) + ∇ · (ρ
⇀

U
⇀

U ) = −∇p + ν∇ · [ρ(∇ ⇀

U + (∇ ⇀

U )T )] + ⇀

F −�t

2
ε
∂

⇀

F

∂t1
−

(
τ − 1

2

)
�t∇ · [

⇀

U
⇀

F + ⇀

F
⇀

U ]︸ ︷︷ ︸
⇀
F extra

. (18b)

It can be seen that the macroscopic equations recovered from the He scheme contain the additional term
⇀

F extra.
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3. The BG scheme

Buick and Greated [40] proposed a method for introducing a force, in the incompressible limit, into the LBM. In this method,
the discrete form of the force is as:

Si =
(

1 − 1

2τ

)
wi

[
⇀ei

c2
s

]
· ⇀

F�t, (19)

where the macroscopic and the equilibrium velocities are defined the same as in Eq. (15). The resulting macroscopic NS equations
derived from this method are as follows:

∂ρ

∂t
+ ∇ · (ρ

⇀

U ) = 0, (20a)

∂

∂t
(ρ

⇀

U ) + ∇ · (ρ
⇀

U
⇀

U ) = −∇p + ν∇ · [ρ(∇ ⇀

U + (∇ ⇀

U )T )] + ⇀

F +
(

τ − 1

2

)
�t∇ · [

⇀

U
⇀

F + ⇀

F
⇀

U ]︸ ︷︷ ︸
⇀
F extra

. (20b)

It is clear that the momentum equation differs from the true NS equation by an additional term
⇀

F extra.

4. The Guo scheme

This scheme was proposed by Guo et al. [41]. Using this scheme, the discrete form of the force is written in a power series
form as:

Si =
(

1 − 1

2τ

)
wi

[
⇀ei − ⇀

ueq

c2
s

+ (⇀ei · ⇀

ueq)

c4
s

⇀ei

]
· ⇀

F�t, (21)

where the macroscopic and the equilibrium velocity are defined the same as in Eq. (15). By substituting Eq. (21) into (1) and
implementing the Chapman-Enskog expansion, the NS equations are recovered as:

∂ρ

∂t
+ ∇ · (ρ

⇀

U ) = 0, (22a)

∂

∂t
(ρ

⇀

U ) + ∇ · (ρ
⇀

U
⇀

U ) = −∇p + ν∇ · [ρ(∇ ⇀

U + (∇ ⇀

U )T )] + ⇀

F . (22b)

It is obvious that the Guo scheme exactly matches the NS equations.

5. The EDM scheme

The exact difference method (EDM) was directly derived from the Boltzmann equation by Kupershtokh et al. [19]. In this
scheme, the force term in Eq. (1) is obtained by:

Si = f
eq
i (ρ,

⇀

u + ⇀

F�t/ρ) − f
eq
i (ρ,

⇀

u). (23)

Here Si is the difference between the equilibrium distribution functions corresponding to the velocity after and before the
action of particle interaction force. In this method, the equilibrium velocity is expressed in the same form of

⇀

u and the real fluid
velocity is calculated by Eq. (15). The macroscopic NS equations recovered from the EDM scheme are:

∂ρ

∂t
+ ∇ · (ρ

⇀

U ) = −�t

2
∇ · ⇀

F , (24a)

∂

∂t
(ρ

⇀

U ) + ∇ · (ρ
⇀

U
⇀

U ) = −∇p + ν∇ · [ρ(∇ ⇀

U + (∇ ⇀

U )T )] + ⇀

F −�t

2
ε
∂

⇀

F

∂t1
− �t∇ ·

[
1

2
(

⇀

U
⇀

F + ⇀

F
⇀

U ) + �t
τ

ρ

⇀

F
⇀

F

]
︸ ︷︷ ︸

⇀
F extra

. (24b)

One can see that the additional nonlinear terms recovered from the EDM scheme (i.e.,
⇀

F extra) are similar to those in the
Shan-Chen scheme and both schemes are identical in the case of τ = �t .

6. The LBL scheme

Recently, Lycett-Brown and Luo [42] extended the third-order truncation error analysis and presented a general force
implementation scheme which works better under certain circumstances. In this scheme, the discrete form of the force (without
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considering extra terms to control surface tension) is written as:

Si = wi

{[
(⇀ei − ⇀

u)

c2
s

+ (⇀ei · ⇀

u)

c4
s

⇀ei

]
· ⇀

F + γ

(
(⇀ei · ⇀

F )2

2c4
s ρ

−
⇀

F · ⇀

F

2c2
s ρ

)}
, (25)

where γ is a function of the relaxation time and is defined as follows to achieve exact thermodynamic consistency:

γ (τ ) = 1 − 1

4τ
− ρ

4Gc2
s ψ

2τ
. (26)

In this scheme,
⇀

ueq = ⇀

u = ∑
⇀eifi/ρ and the macroscopic velocity is calculated by means of Eq. (15). The macroscopic

equations corresponding to this method are:

∂ρ

∂t
+ ∇ · (ρ

⇀

U ) = 0 (27a)

∂

∂t
(ρ

⇀

U ) + ∇ · (ρ
⇀

U
⇀

U ) = −∇p + ν∇ · [ρ(∇ ⇀

U + (∇ ⇀

U )T )] + ⇀

F

+ ∇ ·
[(

τ − 1

4
− τγ

) ⇀

F
⇀

F

ρ

]
+ ∇ ·

[
c2
s

12

[
(∇ · ⇀

F )
⇀

I + ∇ ⇀

F + (∇ ⇀

F )
T
]]

︸ ︷︷ ︸
⇀
F extra

. (27b)

This scheme reduces to the EDM and the Guo schemes by choosing γ = 1 and γ = 1 − 1/(4τ ), respectively. In the above

described schemes, the term
⇀

F extra again is an additional force added to the NS equations.
Generally, in order to match the present schemes to the NS equations, the external force must be small, while the temporal

and spatial changes of the external force should be constant or vary slightly. However,
⇀

F extra may have a great impact on

the solution due to the velocity gradient. Huang et al. [24] found that the term ρ−1
⇀

F
⇀

F in
⇀

F extra has negligible effect when
simulating single-phase flows. However, this term has a substantial effect on the simulation of multiphase systems and is capable
of enhancing numerical stability. In brief, Different forcing schemes, which have different additional terms, may lead to different
pressure tensors in the PP-LBM and, consequently, the corresponding solution may differ. For more details see Ref. [25].

D. Incorporating EOS

In this work, three of the most popular EOSs for nonideal
flows are considered, viz. the van der Waals (vdW), the
Redlich-Kwong (RK), and the Carnahan-Starling (CS) EOS.
These EOSs are defined as:

vdW : pvdW = ρRT

1 − bρ
− aρ2, (28a)

RK : pRK = ρRT

1 − bρ
− aρ2

√
T (1 + bρ)

, (28b)

CS : pCS = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1 − bρ/4)3 − aρ2,

(28c)

where a and b are attraction and repulsion parameters, respec-
tively. To incorporate these into the PP-LBM, the selected EOS
is substituted into Eq. (10). All three EOSs are two-parameter
cubic EOSs. The RK EOS modifies the attraction term of the
vdW EOS, whereas the CS modifies the hard sphere term of
the vdW EOS [18]. Each EOS has a different performance in
terms of thermodynamic inconsistency, density ratio, spurious
velocities, and temperature range [18,19,24].

At the critical point, the two phases of a substance
become identical. At this point, only one phase exists and the
mathematical conditions [∂pcr/∂Vcr]T ;cr = [∂2pcr/∂V 2

cr]T ;cr =
0 should be satisfied. Thus:

vdW : a = 0.4218R2T 2
cr/pcr, b = 0.125RTcr/pcr, (29a)

RK : a = 0.4275R2T 2.5
cr /pcr, b = 0.0867RTcr/pcr, (29b)

CS : a = 0.4963R2T 2
cr/pcr, b = 0.1873RTcr/pcr. (29c)

In this work, we set R = 1 for the simulations, a = 9/49,
b = 2/21 for the vdW EOS and a = 2/49, b = 2/21 for the
RK EOS, whereas we set a = 1 and b = 4 for the CS EOS.
Therefore, the critical temperature and the density for the
vdW, the RK, and the CS EOSs are equal to: Tcr,vdW = 4/7,
ρcr,vdW = 7/2; Tcr,RK = 0.1961, ρcr,RK = 2.73; and Tcr,CS =
0.09432, ρcr,CS = 0.11911, respectively.

It is worthwhile mentioning that the parameters a, b, and
R in the selected EOSs may affect the numerical stability by
changing the interface thickness. Huang et al. [24] showed that
for the CS EOS the value of R has no effect on the interface
thickness and numerical stability of the model. By decreasing
the attraction parameter, a, the interface width increases [42].
In addition, the densities of the phases are affected by the
parameter b, but the density ratio remains constant. Huang
et al. [24] concluded that a = 1 and b = 4 are proper choices
to have stable simulations with an optimum interface thickness.

The vdW EOS is an improvement over the ideal gas law
and is valid above the critical temperature for a wide range
of pressures and temperatures. Below the critical temperature,
the equation is qualitatively reasonable for the liquid state
and the low-pressure gaseous state [43]. The main advantages
of the RK EOS is that not much information is required
about the substance or the components of a mixture. Its main
drawback is that is not suitable for liquid phase systems or
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vapor-liquid equilibria but just for gases. The RK EOSs can
be used for mixtures and for predicting vapor and liquid
properties by applying mixing rules to the equation of state
parameters [44]. The CS EOS exhibits a better agreement with
experimental data on coexistence curves than the vdW and the
RK EOSs and is one of the best analytical EOSs describing
the behavior of the rigid-spheres model accurately [19,45].

III. RESULTS AND DISCUSSIONS

In this section, the effects of the various formulations of the
potential term on the accuracy and stability of the simulations
are analyzed. The main aim of the analyses is to find out how
to simulate a (non-)isothermal two-phase system with a high
density ratio at low temperature in spite of the presence of
spurious velocities. At first, the heat transfer through a flat
interface is examined, where there are no spurious velocities.
Then the numerical results for a two-dimensional stationary
droplet are presented and the effects of spurious velocities
on the temperature field around a (non-)isothermal droplet
are shown. Furthermore, for the selected potential terms, the
effects of different aspects such as EOS, force implementation
scheme, viscosity, etc., on the results are studied. Finally,
simulation results with optimized parameters for a high density
ratio droplet are presented.

In this paper, all quantities are in lattice units. For all case
studies, the mesh size is 150 × 150. The thermal diffusivities
and specific heats of the liquid and the vapor are set as αliq =
0.01, αvap = 0.1, c

liq
p = 2.62, and c

vap
p = 2.50, unless stated

otherwise. The thermal conductivity k then follows from k =
ρcpα. The reduced temperature and density are defined as
Tr = T/Tcr and ρr = ρ/ρcr, respectively. At the liquid-vapor
interface, thermohydrodynamics properties η (such as thermal
conductivity or specific heat) are calculated by an interpolation
scheme as [38]:

η = ρ liq − ρ

ρ liq − ρvap
ηvap + ρ − ρvap

ρ liq − ρvap
ηliq. (30)

By using the above definition, the properties changes
monotonically within the interface region.

A. Heat transfer through a flat interface

Here an isothermal and a nonisothermal stationary flat
vapor-liquid interface are simulated to ensure that the model is
capable of simulating correct thermal behavior. The domain is
initialized with liquid and vapor phases in the bottom part and
top part of the domain, respectively. The Shan-Chen potential
term [Eq. (7)] and the Guo implementation scheme [41] are
used to calculate the phase separation for τ = 1. Also, it is
assumed that the fluid is following the vdW EOS.

For the case of the isothermal system, the temperature of
the domain is initialized at Tr = 0.8 in the whole domain.
For the case of the nonisothermal system, the top and bottom
boundaries are considered as constant temperature boundaries
and periodic boundary conditions are applied to the lateral
boundaries. In this case, the temperature of the top boundary
(in contact with the vapor phase) and the bottom boundary (in
contact with liquid phase) are set equal to Tr = 0.8 and Tr =
0.7, respectively [46,47]. For this case, the thermal diffusivities
of the liquid and the vapor are set as αliq = αvap = 0.1. By
starting the simulation, heat is transported from the hotter
boundary to the cooler boundary, across the interface.

Figure 1(a) shows the density contour plot in the steady-
state isothermal condition. The thickness of flat interface
is four lattice units and its location is established at x∗ =
0.53 where x∗ is the nondimensionalized spatial coordinate.
According to Fig. 1(a) the predicted density ratio is around 11,
which is in agreement with the theoretical value at Tr = 0.8
based on the coexistence curve of vdW EOS. The temperature
profiles along the vertical centerline of the domain for both
isothermal and nonisothermal cases are shown in Fig. 1(b).
One can see that the temperature remains constant for the case
of an isothermal system, while for the nonisothermal system
the temperature decreases from the hotter wall toward the
cooler wall. Due to the different properties (i.e., ρ and α) of the
phases, the temperature gradient changes at the interface. For
this case, the thermal conductivities of the liquid and the vapor
phases are equal to 1.77 and 0.152, respectively. The numerical
temperature profile for the nonisothermal case agrees well with
the analytical solution.

FIG. 1. A two-phase system with a flat interface obeying the vdW EOS: (a) density contour plot at Tr = 0.8 and (b) temperature profiles
for isothermal and nonisothermal systems.
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FIG. 2. Pressure distribution throughout the flat interface for a
vdW fluid at Tr = 0.9 and 0.8.

Figure 2 shows the pressure distribution throughout the flat
interface when system obeying the vdW EOS. As we can
see the bulk pressures of the liquid and vapor phases are
equal. Physically, these results are consistent and reflect the
fact that under equilibrium conditions the Gibbs free energy
should have the same values in both phases in equilibrium
[48]. However, there are variations of the pressure across the
interface, which are inconsistent with real life. It indicates that
the mechanical stability condition is not satisfied around the
interface [24].

Wagner [49] explained that why the lattice Boltzmann
methods using a force to introduce the nonideal EOS fails to
provide correct prediction for the thermodynamic properties
such as pressure around the interface. In the LBM, the
macroscopic NS equations are recovered by using the second-
order expansion of the lattice Boltzmann equation. A difficult
situation occurs when the LBM is used for simulating strongly
inhomogeneous fluid composition such as near to an interface.
In this case, higher-order density derivatives appear in the NS
equations which are non-negligible and are responsible for
obtaining a true equilibrium solution. However, these terms

are neglected by using a second-order expansion on the lattice
Boltzmann equation. Various attempts have been made to
overcome this problem. For more details we refer the reader
to Refs. [49–51].

B. (Non-)Isothermal stationary droplet

In this section, the effect of spurious velocities on the
temperature field is investigated. The test case is a two-phase
system in a square domain where a stationary circular droplet
with radius r = 30 is suspended in its vapor. The simulations
are done in a fully periodic domain. Similarly to Sec. IIIA, the
simulations are performed for isothermal and nonisothermal
conditions. All necessary assumptions and parameters are the
same as those used in the previous section for the flat interface,
i.e., for the nonisothermal case, and the temperature of the top
(hot) wall is set to Tr = 0.8, where the temperature of the
bottom (cold) wall is equal to Tr = 0.7. Initially, the droplet
is located at the center of the domain, and after a number of
iterations, a steady state is reached.

The density contour plot of the stationary droplet at Tr =
0.8 is shown in Fig. 3(a). It is apparent that the density ratio
is around 10.5, and the thickness of the interface is 4 in
lattice units. The velocity vectors at steady state are shown
in Fig. 3(b). It is clear that eight recirculation regions are
formed around the interface and they are primarily located
in the low-density (vapor) region. The temperature contour
plots for the isothermal and the nonisothermal condition at
steady state are shown in Figs. 4(a) and 4(b). The results
show that, due to the existence of the spurious velocities,
four symmetric hot and cold spots are formed around the
interface. The temperature profiles along the vertical centerline
of the domain for both isothermal and nonisothermal cases
are shown in Fig. 5, compared with the analytical solution.
The humps in temperature profile are due to the unphysical
hot spots and result in deviations from the true physical
behavior.

FIG. 3. (Color online) Simulation of the liquid droplet in the vapor obeying the vdW EOS at Tr = 0.8: (a) density contour plot and (b)
velocity vectors with maximum value equal to 0.0046.
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FIG. 4. Temperature contour plots for (a) an isothermal system at Tr = 0.8 and (b) a nonisothermal system with Tr,hot = 0.8 and Tr,cold = 0.7.

C. Assessment of the Shan-Chen potential term

In this section, the performance and the accuracy of the
Shan-Chen potential [Eq. (7)] on the thermohydrodynamic
behavior of an isothermal stationary droplet with a high
density ratio are assessed. Also, the effects of EOS, force
implementation scheme, and viscosity (relaxation time) on the
simulation results are analyzed and discussed. By selecting
proper parameters, the undesirable effects on the numerical
artifacts can be reduced, which, consequently, enables stable
simulations for a wide range of density ratios.

1. The effect of the EOS

In this part, we compare the simulation results of three
EOSs, i.e., vdW, RK, and CS, for an isothermal stationary
droplet at different temperatures (or density ratios). The Guo
force implementation scheme [38] is used to calculate the fluid
flow for τ = 1. In Table I, we compare the maximum value
of the spurious velocities (umax) and also the maximum and
minimum values of the temperature in the hot and cold spots
around the interface. We can see that at all selected reduced
temperatures, the values of umax for the CS EOS are much
smaller than the vdW EOS and the RK EOS. Also, it is clear
that the rate of increase in spurious velocities with temperature

FIG. 5. Temperature profile along the vertical centerline for
isothermal system obeying the vdW EOS at Tr = 0.8 and nonisother-
mal system with Tr,hot = 0.8 and Tr,cold = 0.7.

for the RK EOS is much higher than the rates for the other
EOSs. All simulations become unstable for Tr < 0.76 due to
a limitation in the Guo scheme which is discussed in greater
details in the next section.

Figure 6 shows a comparison between temperature profile
along the vertical centerline of domain for different EOS
at Tr = 0.85. We can see that the unphysical temperature
humps are virtually absent at Tr > 0.85 when using the CS
EOS. Obviously, the RK EOS and the vdW EOS have good
performance only at high temperatures (or at low density
ratios) while the CS EOS performs better for a wide ranges
of density ratios than the other two EOSs, due to the small
spurious velocities.

To study the effect of the EOSs in some greater detail,
simulations are also carried out for Tr = 0.8 and 0.7 by using
the EDM implementation scheme. For Tr = 0.8 we found
that the interface thicknesses are approximately 5, 6, and
10 in lattice units for the RK, the vdW, and the CS EOSs,
respectively, while for Tr = 0.7 the thicknesses are 4, 5, and 9
for the RK, the vdW, and the CS EOSs, respectively. We found
that by decreasing the temperature, the interface thickness
decreases and for lower temperatures when the interface
thickness is just 3, the simulations become unstable. Also,
the CS EOS leads to a thicker interface in comparison with the
other EOSs. In general, the interface width had a great effect
on the stability of the model. The EOS affects the interface
thickness and, consequently, the stability of the simulations.
The results show that, by decreasing the temperature (or
increasing the density ratio), the simulations with the RK EOS
become unstable sooner than the vdW EOS, which in turn
becomes unstable sooner than the CS EOS. Therefore, the CS
EOS is used for the rest of the simulations.

2. The effect of the force implementation scheme

In this section, the effect of six different forcing schemes,
i.e., the Shan-Chen scheme [12], the He scheme [39], the BG
scheme [40], the Guo scheme [41], the EDM [19], and the
LBL scheme [42], on the numerical results of the isothermal
stationary droplet is discussed. Coexistence curves of the CS
EOS for different relaxation times are presented in Fig. 7.
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TABLE I. Maximum spurious velocities and maximum/minimum temperature obtained from simulation of isothermal stationary droplet
for different EOSs using the Shan-Chen potential term and the Guo force implementation scheme [41].

RK EOS vdW EOS CS EOS

Tr umax Thot Tcold umax Thot Tcold umax Thot Tcold

0.9 0.002176 0.9171 0.8786 0.001053 0.9035 0.8954 0.000122 0.9003 0.8993
0.85 0.005069 0.9231 0.7761 0.002519 0.8647 0.8299 0.000287 0.8516 0.8487
0.8 0.022574 1.2094 0.6731 0.004624 0.8325 0.7621 0.000577 0.8088 0.7917
0.77 N/A N/A N/A 0.006251 0.8488 0.6975 0.002196 0.7924 0.7523

Numerical results for the Shan-Chen force implementation
scheme [Fig. 7(a)] show a good agreement with the analytical
solution when τ = 1 and Tr � 0.75. However, as the tem-
perature is reduced (i.e., smaller than 0.75), the simulation
results begin to deviate from the analytical solution and, finally,
diverges for Tr < 0.55. Also, the scheme remains stable for
τ > 1 until low reduced temperatures (Tr < 0.35), whereas
the solution is unstable at τ = 0.8 for Tr < 0.75. We can see
that the results of the Shan-Chen force implementation are
quite dependent on the relaxation time.

The results for the He [39] and the BG [40] schemes are
presented in Figs. 7(b) and 7(c) respectively. It is clear that
these schemes are stable for a narrow range of temperatures
only (i.e., Tr � 0.85 for the He [39] scheme and Tr � 0.82
for the BG [40] scheme). However, these schemes are almost
independent of the relaxation time and agree well with the
analytical solution when Tr � 0.88. The numerical results
for the Guo scheme [Fig. 7(d)] show that this scheme is
independent of relaxation time and yields satisfactory results
for Tr � 0.85. However, the scheme becomes unstable at
Tr < 0.76 for τ = 1 and at Tr < 0.79 for τ = 0.8 and 1.2.
We conclude that the He [39], the BG [40], and the Guo [41]
schemes are applicable for low density ratio (less than 35).
Thus, since we aim to simulate the problem at high density
ratios, these schemes are not a proper choice and are not
discussed further.

As shown in Fig. 7(e), the EDM scheme gives satisfactory
and stable results for a wide range of reduced temperatures,
irrespective of the relaxation time used. The simulation results
deviate from the analytical solution for Tr < 0.75 and, finally,
become unstable at Tr = 0.55. Comparing the results of the

FIG. 6. (Color online) Temperature profile along the vertical
centerline for isothermal system at Tr = 0.85 for different EOSs.

Shan-Chen and the EDM schemes for τ = 1, we can see
that the results are the same, which is in accordance with
the discussion presented in Sec. IIC. Figure 7(f) shows the
coexistence curve obtained by use of the LBL scheme [42]
compared with the analytical solution. The results indicate that
the scheme is independent of the relaxation time and remains
stable until low temperatures. However, the vapor density is
always overestimated. The general impression is that the EDM
and the LBL implementation schemes perform best in terms
of the density ratio.

The magnitude of the total force term and the distribution
of the extra force terms in the EDM [19] and the LBL schemes
[38] along the vertical centerline of the domain at Tr = 0.8
are shown in Fig. 8(a). At this temperature, the total forces
calculated by these schemes almost exclusively differ due to
the extra force term [see Eqs. (24b) and (27b)]. It is clear
that the total force peaks at the interface and tends to zero in
the bulk regions. Also, the extra force terms only affect the
interface region and are small compared to the total force. The
plots of the extra force term for Tr = 0.9 and 0.8 for the EDM
scheme are shown in Fig. 8(b). As the reduced temperature
decreases, the density ratio and, consequently, the total force
and the spurious velocities grow (see Sec. IIIC3) which in turn
result in an increase of the extra force term.

3. The effect of relaxation time

In this section, the effect of the relaxation time (or viscosity)
on the simulation results is discussed. Table II illustrates the
resulting equilibrium density ratio (ρ∗ = ρ liq/ρvap) as found
in our simulations for the Shan-Chen [12], the EDM [19],
and the LBL [42] force implementation schemes at different
reduced temperatures for τ = 0.8, 1, and 1.2. The data show
that the EDM scheme performs better than the Shan-Chen
scheme when τ < 1, whereas the Shan-Chen scheme is more
stable when τ > 1. The Shan-Chen scheme depends on the
value of τ , which is undesirable, whereas the EDM scheme
is independent of relaxation time for a wide range of Tr .
However, the EDM scheme is sensitive to the relaxation time
at low reduced temperatures. The predicted density ratio as a
function of relaxation time using the EDM scheme is shown in
Fig. 9. The density ratio starts varying with relaxation time for
Tr < 0.7. It is clear that the deviation of the predicted density
ratio from the analytical value is higher at low relaxation
times, which is due to the effect of the coefficient of the term
∇ · [ρ−1

⇀

F
⇀

F ], which is τ 2 and τ�t for the Shan-Chen and
the EDM schemes, respectively. Our results are in agreement
with the data presented in Ref. [24] for high temperatures. By
decreasing the temperature to values lower than 0.7, the effect
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FIG. 7. (Color online) Comparison between the analytical coexistence curve of the CS EOS and the LBM simulation results for τ = 0.8,
1, and 1.2 using (a) the Shan-Chen [12], (b) the He [39], (c) the BG [40], (d) the Guo [41], (e) the EDM [19], and (f) the LBL [42] force
implementation schemes.

FIG. 8. (Color online) (a) Distributions of the total force and the extra force term for the EDM [19] and the LBL [42] schemes at Tr = 0.8
and τ = 1, (b) extra force distributions of the EDM scheme for Tr = 0.9 and 0.8. Results are with reference to the CS EOS.
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TABLE II. Equilibrium density ratio obtained from the Shan-Chen [12], the EDM [19], and the LBL [42] force implementation schemes
at different reduced temperatures for τ = 0.8, 1, and 1.2. (Note: N/A means not applicable and the simulation becomes unstable at this
temperature.)

CS EOS τ = 0.8 τ = 1 τ = 1.2

Tr ρ∗
Exact ρ∗

Shan−Chen ρ∗
EDM ρ∗

LBL ρ∗
Shan−Chen ρ∗

EDM ρ∗
LBL ρ∗

Shan−Chen ρ∗
EDM ρ∗

LBL

0.95 3.1 3.2 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1
0.9 5.5 5.9 5.5 5.3 5.5 5.5 5.3 5.1 5.5 5.3
0.85 8.8 10.9 9.4 8.4 9.3 9.3 8.4 7.9 9.3 8.4
0.8 14.1 24.4 16.3 13.1 16.4 16.6 13.1 11.5 16.1 13.1
0.75 22.9 94.3 30.6 20.7 30.2 30.2 20.6 16.6 30.9 20.5
0.7 38.5 N/A 69.3 33.4 66.8 66.8 33.1 23.6 64.1 32.7
0.65 68.4 N/A 242.8 56.1 197.1 197.4 54.8 33.1 166.2 53.4
0.6 131.9 N/A 1428.4 98.1 878.9 878.7 93.9 46.2 531.2 88.9

of the relaxation time on the predicted density ratio becomes
more pronounced. The results for the LBL scheme in Table II
indicate that the performance of this scheme does not improve
upon increasing the relaxation time. As a result, this scheme
predicts the density ratio with a good accuracy for a wide range
of temperature (i.e., Tr � 0.7). However, the results become
sensitive to the relaxation time at lower temperatures which is

due to the coefficient (τ − 1/4 − τγ ) of the term ∇ · [ρ−1
⇀

F
⇀

F ]
in Eq. (27b).

The maximum value of the spurious velocities as well as the
maximum/minimum values of temperature in the isothermal
domain using the Shan-Chen [12], the EDM [19], and the LBL
[42] force implementation schemes are presented in Tables III
and IV for τ = 0.8 and 1.2, respectively. From the results, we
find that there are no significant differences in the spurious
velocities and the maximum and minimum temperatures
between all the force implementation schemes at Tr > 0.7
for any τ . At lower temperatures, however, the LBL scheme
performs better than the EDM scheme. The results show
that by increasing the relaxation time, the magnitude of the
spurious velocities increases for all schemes. For τ = 1.2 and
Tr < 0.7, the maximum spurious velocities and, consequently,
the deviation of the temperature from the isothermal condition
for the EDM scheme are greater than with the Shan-Chen and

FIG. 9. (Color online) Comparison of the predicted density ratio
using the EDM scheme [19] vs relaxation time at different tempera-
tures with reference to the CS EOS.

the LBL schemes. The performance of the Shan-Chen scheme
and the LBL scheme are almost the same for τ = 1.2 for the
temperatures chosen.

In addition to the relaxation time, the density ratio and
the temperature are other important issues, which affect the
simulation results. From the coexistences curve of the EOS
(see Fig. 7 and Table II), we can see that the density ratio
increases as the temperature decreases. The overall effect is
higher spurious velocities and, consequently, more serious
unphysical behavior in the temperature domain (see Tables III
and IV). Therefore, by decreasing the temperature, the density
ratio increases and the spurious velocities may become high
enough to turn the simulation unstable.

Figure 10 shows the comparison of the achievable lowest
temperature according to the selected force implementation
schemes as function of the relaxation time. Mostly, by in-
creasing the relaxation time, the achievable lowest temperature
decreases. The achievable lowest temperature defines as the
lower limit of the temperature, at which the simulation remains
stable. The reason is that by decreasing the relaxation time, the
collision operator becomes larger, which, consequently, leads
to less numerical stability. Also, it is clear that the stability
of the LBL scheme is better than other schemes for every τ .
Furthermore, the numerical stability of the EDM scheme is
better than that of the Shan-Chen scheme when τ < 1. As
discussed earlier, the EDM and the Shan-Chen schemes are
identical at τ = 1. For τ > 1, the Shan-Chen scheme results
in slightly lower temperature than the EDM scheme.

According to above analyses, the density ratio and, conse-
quently, the surface tension in the Shan-Chen scheme strongly
depend on τ and large differences between the numerical
and analytical results are observed for Tr < 0.85 as well as
τ > 0.7. Therefore, this scheme is not discussed further and the
following results will focus on the EDM and the LBL schemes.

Figure 11(a) shows the maximum value of the spurious
velocities in the isothermal domain as a function of relaxation
time using the EDM and the LBL schemes for Tr = 0.75 and
0.65. It is clear that the spurious velocities increase when
the relaxation time is increased. Also, there is no significant
difference between the maximum values of the spurious
velocities when using the EDM or the LBL schemes. However,
as the temperature decreases to values lower than 0.7, the EDM
scheme predicts larger spurious velocities due to the deviation
from the analytical solution [see Fig. 7(e)].
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TABLE III. Maximum spurious velocities and maximum and minimum values of temperature calculated by the Shan-Chen [12], the EDM
[19], and the LBL [42] force implementation schemes for τ = 0.8 at different Tr .

Shan-Chen EDM LBL

Tr umax Thot Tcold umax Thot Tcold umax Thot Tcold

0.95 0.000074 0.9515 0.9484 0.000026 0.9509 0.9491 0.000015 0.9507 0.9499
0.9 0.000082 0.9016 0.8989 0.000081 0.9013 0.8994 0.000079 0.9005 0.8999
0.85 0.000219 0.8525 0.8442 0.000205 0.8522 0.8498 0.000204 0.8512 0.8489
0.8 0.000418 0.8015 0.7926 0.000401 0.8014 0.7952 0.000415 0.8034 0.7966
0.75 0.000889 0.7604 0.7408 0.000611 0.7542 0.7432 0.000708 0.7571 0.7427
0.7 N/A N/A N/A 0.001101 0.7128 0.6915 0.001087 0.7115 0.6881
0.65 N/A N/A N/A 0.001595 0.6719 0.6415 0.001565 0.6646 0.6335
0.6 N/A N/A N/A 0.002153 0.6195 0.5912 0.002102 0.6163 0.5893

The temperature distributions along the vertical centerline
of the computational domain for isothermal systems at Tr =
0.75 and 0.65 are shown in Figs. 11(b) and 11(c). By increasing
the relaxation time, the unphysical temperature humps (i.e.,
hot and cold spots) become more pronounced. In agreement
with the maximum values of the spurious velocities, the LBL
scheme is able to damp the hot and cold spots better than the
EDM schemes for Tr < 0.7.

Figure 12 shows a comparison between the temperature
profiles along the vertical centerline of the computational
domain when using the EDM and the LBL schemes for
different values of τ and Tr = 0.65. According to this figure
and Tables II and III, the temperature humps are more or
less the same for both schemes. Upon further decreasing the
temperature, these humps are slightly smaller with the LBL
scheme, which is due to the lower predicted density ratio and,
consequently, lower spurious velocities in comparison with the
EDM scheme.

To finish this section, we conclude that the combination of
the Shan-Chen potential term [Eq. (7] with the CS EOS and
the EDM [19] or the LBL [42] force implementation scheme
leads to quantitatively good results for the simulation of two-
phase systems with low density ratios. According to the above
analyses, the EDM scheme predicts liquid and vapor densities
with high accuracy for Tr > 0.7. Also, the scheme behaves
independent of the relaxation time for Tr > 0.7 (see Fig. 9)
and remains stable up to higher density ratios. However, the
EDM scheme is not able to control the dependency of the
method on the relaxation time and, consequently, the results

deviate from the exact solution for Tr < 0.7. On the contrary,
the LBL scheme is a quite stable scheme up to very high and
low density ratios and temperatures and behaves independently
of the relaxation time for Tr � 0.6. The density ratio of the
multiphase system is predicted very well by using the LBL
scheme, although the vapor density is always overestimated
and is higher than the theoretical values.

D. Assessment of the β-scheme potential term

All of the previous results are based on the application of
the Shan-Chen potential term [Eq. (7)]. In this section, we
compare the performance of the potential terms given by the
Shan-Chen force term [Eq. (7)] and the β-scheme force term
[Eq. (13)] with reference to the CS EOS and the EDM [19]
and the LBL [42] schemes as force implementation methods.
The β scheme can be tuned by varying the weighting factor β

which depends on the selected equation of state (EOS) [23].
As discussed earlier, the vapor density is overestimated

by combining the Shan-Chen potential term [Eq. (7)] and
the LBL force implementation scheme [39]. In other words,
the density ratio, ρ∗, is always smaller than the theoretical
one, while the difference, which represents the thermodynamic
inconsistency, increases as the temperature decreases. In order
to increase the thermodynamic consistency of the model
and solve this issue, we propose to use the β-scheme force
[Eq. (13)] and combine it with the LBL implementation
scheme. Considering the overestimation of the vapor density
and lower density ratio compared with the analytical solution,

TABLE IV. Maximum spurious velocities and maximum and minimum values of temperature calculated by the Shan-Chen [12], the EDM
[19], and the LBL [42] force implementation schemes for τ = 1.2 at different Tr .

Shan-Chen EDM LBL

Tr umax Thot Tcold umax Thot Tcold umax Thot Tcold

0.95 0.000039 0.9503 0.9494 0.000032 0.9502 0.9499 0.000034 0.9502 0.9499
0.9 0.000196 0.9012 0.8989 0.000162 0.9012 0.8995 0.000175 0.9009 0.8993
0.85 0.000512 0.8562 0.8445 0.000374 0.8537 0.8466 0.000432 0.8543 0.8461
0.8 0.000706 0.8162 0.7858 0.000727 0.8116 0.7893 0.000838 0.8131 0.7879
0.75 0.001919 0.7852 0.7222 0.001951 0.7795 0.7259 0.001788 0.7808 0.7233
0.7 0.003162 0.7662 0.6528 0.003222 0.7661 0.6542 0.003621 0.7595 0.6531
0.65 0.006002 0.7523 0.5895 0.011002 0.7866 0.6093 0.006842 0.7399 0.5883
0.6 0.008123 0.7324 0.5641 0.013056 0.7935 0.5042 0.012245 0.7299 0.5261
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FIG. 10. (Color online) The lowest reduced temperature pre-
dicted by the Shan-Chen [12], the EDM [19], and the LBL [42]
schemes for different relaxation time with reference to the CS EOS.

we submit the attraction force,
⇀

F potential to be not strong
enough. Therefore, we need to increase the potential force
to decrease the vapor density and approach the density ratio
to the analytical solution. For this purpose and considering the
β-scheme force term [Eq. (13)], we have to choose β < 1.

Figure 13(a) shows a comparison between the analytical
coexistence curves for the CS EOS and numerical data
calculated by the β-scheme force term. Here τ = 1 and the
LBL scheme is used to include force in the model. The liquid
density is calculated with a high accuracy when using both the
Shan-Chen and β-scheme force terms. The results for β = 0.9
in Fig. 13(a) show that also the vapor branch is corrected
quite well, but the scheme becomes unstable for Tr < 0.65. By
slightly increasing the value of β to 0.92 the model remains
stable until Tr = 0.5, whereas the numerical data have lower
accuracy compared with β = 0.9. In Tr = 0.5 the analytical
density ratio is 724.7, whereas the numerical density ratio
using Shan-Chen force term and the β-scheme force term
(with β = 0.92) is 295.1 and 503.2, respectively. There results
show that by using the β scheme the density ratio is improved.
However, ρ∗ = 503.2 is the maximum achievable density ratio
in Tr = 0.5 using the LBL implementation scheme. The reason
is that in order to get a more accurate density ratio we should
decrease the value of β, rendering the method less stable,
while by increasing the value of β the deviation of ρ∗ from
the analytical solution increases. We therefore conclude that
the LBL scheme is not able to handle high potential forces
at low temperatures (Tr < 0.5) to achieve an accurate density
ratio. This issue might be resolved by adding an additional

FIG. 12. (Color online) Temperature profile along the vertical
centerline of the domain resulted from the EDM [19] and the LBL
schemes [42] at different τ for Tr = 0.65 with reference to the CS
EOS.

term to account for higher-order error terms and increasing
the interface width by decreasing the attraction coefficient a in
the EOS as described in Ref. [42]. After all, the LBL scheme is
not able to predict the density ratio accurately in the case of a
sharp interface at lower temperatures—not even by combining
with the β scheme.

A comparison between the maximum value of the spurious
velocities calculated by the Shan-Chen and the β-scheme force
terms (with β = 0.92) is shown in Fig. 13(b). Obviously, there
is no significant difference between the values of spurious
velocities. The spurious velocities with the β scheme at lower
temperatures increase slightly, due to the increase in the
density ratio.

In the following, we report the above simulations but
now with the EDM scheme for the force implementation.
Comparisons between the analytical coexistence curves for
CS EOS with numerical data obtained with the Shan-Chen
[Eq. (7)] and the β-scheme force terms [Eq. (11)] are shown
in Fig. 14(a).

Again, the liquid branch of the coexistence curve is
reproduced well using both the Shan-Chen and the β-scheme
force terms. As discussed before, the combination of the
Shan-Chen force term and the EDM scheme faces problems at
the vapor branch and deviates from the theoretical results at low
temperatures. This deviation becomes larger as the temperature
decreases and, finally, the simulation becomes unstable for
Tr < 0.55. Since the vapor density is underestimated in this
model and the density ratio is higher than the theoretical
solution, we choose β > 1 to decrease the potential force

FIG. 11. (Color online) (a) Comparison of spurious velocities for the EDM [19] and the LBL [42] schemes vs relaxation time. Temperature
hot and cold spots vs relaxation time in an isothermal system calculated by (b) the EDM scheme and (c) the LBL scheme. All results relate to
the CS EOS.
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FIG. 13. (Color online) (a) Comparison of the analytical CS EOS coexistence curve and the numerical curves calculated by the Shan-Chen
and the β-scheme force terms and (b) comparison of the spurious velocities as function of Tr obtained from the Shan-Chen and the β-scheme
terms. Here τ = 1 is used along with the LBL scheme [42] for the force implementation.

[see Eq. (13)] and correct the predicted vapor density. The
β scheme with β = 1.25 gives stable results and coincides
with the theoretical results for a wide range of temperatures.
The calculated density ratio at Tr = 0.4 is equal to 9445, which
is within 10% of the analytical density ratio of 10 500. The
maximum numerical density ratio is much higher than found
in typical real-world applications; even those involving liquid
metals [52]. However, it should be noted that this is an upper
bound and that this method allows us to reproduce such high
density ratios if necessary.

A comparison between the maximum value of the spurious
velocities calculated by the Shan-Chen and the β schemes
is shown in Fig. 14(b). It is clear that the β-scheme force
term gives lower spurious velocities in comparison with
the Shan-Chen force term and the increase of the spurious
velocities at low temperature is smaller. However, the
calculations become unstable for Tr < 0.39 only. Based on
the above analysis, we use the EDM scheme as the force
implementation scheme for the rest of our simulations.

A comparison of the temperature profiles along the vertical
centerline of the domain at isothermal condition with Tr =
0.65 and 0.7 as computed by the Shan-Chen [Eq. (7)] and
the β-scheme [Eq. (13)] terms is shown in Fig. 15. With
both forces, the unphysical behavior of the temperature

becomes more pronounced upon decreasing the temperature.
The unphysical behavior of the temperature decreases in the
simulations using the β scheme is less pronounced than when
using the Shan-Chen force term, which is due to a decrease in
the spurious velocities.

As discussed earlier and as shown in Fig. 9, selecting the
EDM scheme as the force implementation scheme renders
the density ratio sensitive to the relaxation time for Tr < 0.7.
Figure 16 shows the predicted density ratio at Tr = 0.65 and
0.5 as a function of the relaxation time for different values
of β. With the EDM scheme the density ratio changes with
relaxation time for any value of β. In itself, this is undesirable
behavior which becomes more pronounced upon decreasing
the temperature. Small changes in the value of β have a
significant effect on the predicted density ratio, especially at
low temperatures.

The promising point of this analysis is that at a specific value
of the relaxation time, the predicted density ratio coincides
exactly with the analytical solution by choosing a proper value
for β. Alternatively, we can get rid of the unphysical behavior
of the EDM scheme by tuning the value of β such that the
exact density ratio is obtained at any relaxation time.

Therefore, in order to achieve the exact density ratio, the
value of β cannot be hold constant for an EOS over some

FIG. 14. (Color online) (a) Comparison of the analytical CS EOS coexistence curve and the numerical curves calculated by the Shan-Chen
and the β-scheme force terms, (b) comparison of the spurious velocities as function of Tr obtained from the Shan-Chen and the β-scheme
terms. Here τ = 1 and the EDM scheme [19] for the force implementation are used.
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FIG. 15. (Color online) Comparison of the temperature profiles
along the vertical centerline of the computational domain for the
Shan-Chen and the β-scheme terms for τ = 1, at Tr = 0.65 and 0.7.

range of reduced temperatures. As an example, the value of
the density ratio based on the CS EOS at Tr = 0.65 is 68.4.
By setting β = 1.25 the predicted density ratio equals 68.4
at τ = 0.9 and is equal to 59.5 at τ = 2. But by selecting
β = 1.20 the predicted density ratio is equal to 68.1 at τ = 2.
More quantitative comparisons are presented in Table V. In the
table, the values of β which result in the correct density ratio
are presented for various temperatures at different relaxation
times. It is not possible to reach an accurate density ratio for
τ = 1.5 or higher, while the maximum density ratio is obtained
for β = 1.

E. Temperature field with suggested parameters

Finally, we implement all of the suggested parameters to
capture the temperature field in simulating both an isothermal
and a nonisothermal droplet. For this purpose, the CS EOS
is adopted as optimum EOS and the EDM and the β-scheme
term are implemented as force implementation scheme and
potential term, respectively.

In order to evaluate the scheme quantitively, the Laplace
tests for droplets of various sizes are carried out. According
to the Laplace law, the pressure difference between the
inside and outside of the droplet (�p) over 1/r should be
a straight line. Figure 17 shows that the results satisfy the
linear relation well with the slope equal to the surface tension
coefficient σ . The surface tension comes out to be 13.2 × 10−3

FIG. 17. Comparison of the simulation results at Tr = 0.8 and
0.6 with the Laplace law.

and 37.3 × 10−3 for Tr = 0.8 and 0.6, respectively. In the
equilibrium state at Tr = 0.8, cases with radius r = 49.8, 39.7,
29.7, and 19.6 result in density ratios ρ∗ = 13.9, 13.8, 13.7,
and 13.4, respectively. Also, the surface tension coefficients
are equal to 13.27 × 10−3, 13.18 × 10−3, 13.15 × 10−3, and
13.11 × 10−3, consequently. The maximum relative density
ratio and surface tension differences are less than 3.3% and
3.8%, respectively. A similar story is observed for Tr, = 0.6.

Figure 18 shows the temperature profile along the vertical
centerline of the computational domain for different isothermal
temperatures at τ = 0.8. It is clear that the unphysical effects
in the vicinity of the interface are negligible for a wide
range of temperatures (Tr > 0.7). However, by decreasing
the temperature, the unphysical peaks in the temperature
domain become more pronounced. This phenomenon becomes
significant at high density ratio and low temperature, i.e.
Tr = 0.45 where the maximum error is about 14%.

The temperature profiles for two nonisothermal cases are
plotted in Fig. 19. The result for the case similar to that of
Fig. 4 , i.e. Thot = 0.8 and Tcold = 0.7, shows that the numerical
profile has a very good agreement with the exact solution
and there is only a negligible deviation in the vicinity of the
interface near the cooler boundary. For high density ratio,
i.e., Thot = 0.6 and Tcold = 0.5, the deviation from the exact
solution becomes more pronounced and is about 10%.

FIG. 16. (Color online) Comparison of the predicted density ratio when using the EDM vs relaxation time for different values of β at (a)
Tr = 0.65 and (b) Tr = 0.5.
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TABLE V. The values of β to calculate exact density ratio for various temperatures at different relaxation time.

Tr = 0.65 Tr = 0.60 Tr = 0.50 Tr = 0.45
(ρ∗

exact = 68.4) (ρ∗
exact = 131.9) (ρ∗

exact = 724.7) (ρ∗
exact = 2328.1)

τ β ρ∗ β ρ∗ β ρ∗ β ρ∗

0.8 1.25 68.4 1.259 132.8 1.264 726.3 1.265 2334.3
1 1.24 69.6 1.249 132.9 1.252 727.6 1.251 2314.4

1.5 1.22 68.8 1.213 131.4 1.188 721.9 1.000 1055.2

IV. CONCLUSIONS

The PP-LBM was used to simulate single-component
isothermal and nonisothermal multiphase systems with a
high density ratio. In order to include the effect of spurious
velocities, a two-dimensional droplet was considered as a case
study. In this work, some important issues about two most
common interaction potential terms, namely the Shan-Chen
and the β-scheme terms were studied. It was found that the
Shan-Chen potential term predicts good results for multiphase
systems with low a density ratios (i.e.,53 high temperature:
Tr > 0.7) cases if it is combined with the CS EOS and the
EDM or the LBL force implementation schemes. However,
this scheme was not able to control the dependency of the
model on relaxation time and, consequently, the results deviate
from the exact solution for Tr < 0.7. The studies showed
that the EDM force implementation scheme and also the CS
EOS have significant effects on the magnitude of the spurious
velocities and thereby on the stability of the simulations. Also,
the combination of the LBL scheme and the Shan-Chen force
term leads to quantitatively good results for the simulation of
two-phase systems with low density ratios. In fact, the LBL
scheme is a quite stable scheme up to very high density ratios
and behaves independent of the relaxation time for Tr � 0.6.
The density ratio of the multiphase system is predicted very
well by using the LBL scheme, however, the vapor density is
always overestimated and is higher than the theoretical values.

FIG. 18. (Color online) Temperature profile along the vertical
centerline of the domain for different isothermal temperatures for
τ = 0.8.

By selecting the β scheme force term as the interaction
potential term in the model, we could reach to high density
ratios (or low temperatures) for multiphase systems in spite
of the presence of spurious velocities. We showed that by
choosing a proper values for β, the results of the LBL scheme
improve and the vapor density is corrected. However, the
solution was limited to higher and lower temperatures and
density ratios. Furthermore, it was not possible to achieve an
accurate density ratio at low temperatures (Tr < 0.5) by using
the LBL scheme and the density ratio was lower than the
accurate solution.

By combining the β-scheme force term and the EDM
scheme we were able to reduce the dependency of the
force implementation on the relaxation time. Thus, we could
diminish the undesirable dependency of the EDM scheme on
the relaxation time (for low temperatures) by tuning the value
of β and reach to the exact density ratio at any relaxation time.
The β scheme helps to improve the stability of the simulations
and to decrease the effects of the spurious velocities on the
thermohydrodynamic of the multiphase system.
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FIG. 19. Temperature profile along the vertical centerline of the
nonisothermal domain for τ = 0.8. Top plot: Tr,hot = 0.8 and Tr,cold =
0.7; lower plot: Tr,hot = 0.6 and Tr,cold = 0.5.
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