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Dynamical traps in Wang-Landau sampling of continuous systems: Mechanism and solution
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We study the mechanism behind dynamical trappings experienced during Wang-Landau sampling of continuous
systems reported by several authors. Trapping is caused by the random walker coming close to a local energy
extremum, although the mechanism is different from that of the critical slowing-down encountered in conventional
molecular dynamics or Monte Carlo simulations. When trapped, the random walker misses the entire or even
several stages of Wang-Landau modification factor reduction, leading to inadequate sampling of the configuration
space and a rough density of states, even though the modification factor has been reduced to very small values.
Trapping is dependent on specific systems, the choice of energy bins, and the Monte Carlo step size, making it
highly unpredictable. A general, simple, and effective solution is proposed where the configurations of multiple
parallel Wang-Landau trajectories are interswapped to prevent trapping. We also explain why swapping frees the
random walker from such traps. The efficacy of the proposed algorithm is demonstrated.
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I. INTRODUCTION

Wang-Landau sampling (WLS) [1,2] is increasingly be-
coming an important tool for simulating a wide range of
slow-relaxing, glassy systems which are not tractable by more
conventional techniques such as molecular dynamics (MD) or
Monte Carlo (MC) sampling using the Metropolis algorithm.
To date, WLS has been applied to a wide variety of systems
ranging from random bond and random field systems [2–4],
atomic fluid [5] and clusters [6], liquid crystals [7], poly-
mers [6,8,9], and proteins [10–12] to lipid membranes in
explicit solvent [13,14]. In MD and MC sampling, one
frequently encounters the problem that the system gets trapped
in some local minimum due to the presence of large barriers
on the energy landscape [11,15,16,29]. WLS (and related
entropic sampling techniques [17–19]), on the other hand,
circumvents this problem by sampling from the density of
states (DOS) instead of the Boltzmann distribution. Since
there are no energy barriers to overcome, the system readily
moves back and forth between the high- and the low-energy
regions of phase space, thereby ensuring efficient sampling.
Due to the effectiveness of such multicanonical techniques,
related methods such as the replica-exchange multicanonical
algorithm [20–23] and statistical-temperature MC [24,25]
are very efficient for simulating systems with rough energy
landscapes.

Although WLS is initially believed to be free of the problem
of slow relaxation, there is increasing evidence that WLS is
subjected to another kind of slowing-down when applied to
continuous systems. In an early study, Brown and Schult-
ess [26] reported that for the ferromagnetic Heisenberg model,
WLS is expensive when sampling from rare configurations
close to the ground state. Jayasri et al. [7], in their study of
liquid crystals, reported that WLS becomes extremely slow
even for moderately large systems because the system often
gets stuck in certain regions of configuration space. In their
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study of polypeptides and Lennard-Jones clusters using WLS,
Poulain et al. [6] also reported similar trappings of their
systems.

II. MODELS AND THE WANG-LANDAU METHOD

To examine the nature of these trappings, we consider two
systems. The first is the two-dimensional L × L square lattice,
frustrated XY model,

H = −
∑
〈i,j〉

Jij cos(θi − θj ), (1)

where θi ∈ (−π,π ) (i = 1, . . . ,L2) are XY spins, and 〈i,j 〉
denotes summation over nearest-neighbor pairs. The periodic
boundary condition is used for both lattice dimensions. Jij

are identical independent random variables sampled from a
Gaussian distribution with 0 mean and unit variance. Single-
spin MC moves are used. The second system is an 8-mer
poly-alanine molecule in a medium with dielectric constant
ε = 2. We used the Amber99 force field [27] and simulated
using a modified version of the MOSAICS package [28].
Torsion angle moves were used. We choose these two systems
as illustrations because they are simple enough yet possess
rough energy landscapes with many local minima. WLS
studies of the poly-alanine molecule have also been reported
by Poulain et al. [6].

Simulations were performed using the standard WLS
algorithm [1,2]. In WLS, the quantity of interest is the DOS,
g(E), or the number of all possible states at energy E. Once
g(E) is known, the partition function can be calculated,

Z =
∑

{configurations}
e−E/kBT =

∑
E

g(E)e−E/kBT , (2)

where kB is the Boltzmann constant, T is the temperature,
and most thermodynamic quantities can be obtained from Z.
WLS estimates g(E) via a random walk in the energy space.
Trials for a state with energy Ei to a state with energy Ef are
accepted according to the transition probability,

p(Ei → Ef ) = min

(
1,

g(Ei)

g(Ef )

)
. (3)
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If g(E) is the true DOS, Eq. (3) obeys detailed balance.
However, g(E) is initially unknown, and one makes a guess at
it. Whenever an energy E is visited according to the transition
rule, Eq. (3), the DOS is updated as g(E) ← f · g(E), where
f is called the modification factor. The role of the modification
factor is to gradually refine the initially inaccurate DOS. One
begins the simulation with a large f (usually f = f0 = e1 ≈
2.718 28) and gradually lowers it, in stages, to 1. When f = 1
is reached, detailed balance for Eq. (3) is recovered, and
one obtains the true DOS for g(E). In practice, one works
with ln g(E) to prevent numerical overflow, and the update
rule is ln g(E) ← ln g(E) + ln f . In our simulations, we start
from ln f0 = 1 and lower the modification factor according to
ln fi+1 ← 1

2 ln fi upon completing the ith stage of simulation.
In the original formulation of WLS, one computes an energy

histogram and uses its “flatness” as a criterion to proceed
to the next stage of simulation. However, as this criterion
has been found to be quite arbitrary by several subsequent
studies [29–33], we use the criterion discussed in [33] to
lower ln f . Another modification we adopted here is the one
suggested by Zhou et al. [34], that for continuous systems the
DOS should be linearly interpolated if the energy falls between
the centers of two energy bins. Hence in our analysis the DOS
is piecewise linear. The case of a piecewise constant DOS is
discussed at the end of this paper.

III. TRAPPINGS DURING WANG-LANDAU SAMPLING

Figures 1(a) and 1(b) show examples of the DOS where the
system exhibits signs of being trapped for the XY model and
poly-alanine molecule, respectively. The main feature is the
high spikes, which are formed because the random walker
stays for an inordinate amount of time in a single energy
bin, resulting in most of the modification factor ln f being
accumulated there. We have checked that the system is capable
of proposing new configurations with fairly large changes in
energy at the MC step size we have used [cf. Fig. 3(b) and
discussion below]. Nevertheless, during the period when the
random walker is stuck in a spiked bin, we found that all
its MC moves result in small energy changes. The reason is
not the choice of a small MC step size, but the fact that the
random walker has wandered close to a stationary point in
configuration space. To ascertain that the random walker was
close to a stationary point, we computed its energy gradient
and found it to be very small indeed.

Figure 2 is a schematic illustrating the mechanism of
trapping and how a spike develops. Suppose, as shown in the
inset, that the system is at a local minimum with configuration
C and energy E. Let E lie within the bin b as shown.
As the random walker is at a local minimum, the proposed
energy E′ must be >E, and the change in energy is small
because the first derivative vanishes. Due to the steepness
of the DOS, the acceptance ratio exp[ln g(E) − ln g(E′)] is
very small, the move is mostly rejected, and ln f is added to
the bin b. This process repeats itself, with the DOS at bin b

constantly increasing but the configuration hardly changing.
If the system can propose a move to an energy, say E′′ or
higher, then the move may be accepted and the random walker
can escape the trap. But this is highly improbable due to the
vanishing of the gradient. The situation becomes more serious

FIG. 1. (Color online) Spikes in the DOS for (a) the frustrated
XY model (L = 16) and (b) the 8-mer poly-alanine. For both, we
performed 10 stages of WLS, where each stage is simulated for
5 × 106 updates per spin/angle, and the modification factor ln f is
halved at at each stage. Shown are the DOS values from a single
trajectory at the end of the tenth stage.

as the system size increases because one usually increases
the bin width in order to cover a wider energy range and
reduce the computational cost; however, the change in energy

FIG. 2. Schematic illustrating how the random walker gets
trapped inside a spiked bin.
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FIG. 3. (Color online) Comparison of behaviors between a
trapped and normal segments of the trajectory for the XY model
(L = 16). (a) Autocorrelation function and infinity norm of force
along the segments. (b) Scatterplot of proposed energy change �E

versus proposed angle change �θ . (c) Energy distribution of accepted
moves.

produced by single-spin or a set of small torsion angle moves
remains similar and, therefore, becomes smaller relative to the
increasing bin width.

Figures 3(a)–3(c) illustrate, for the XY model (L = 16), the
typical behavior of a trapped trajectory, compared to “normal”

(i.e., not trapped) behavior. The trapped segment is taken from
a continuous period of time when the random walker is inside
a spiked bin (≈8 × 105 steps in this case). The normal segment
is of a similar length and taken from along the same trajectory
but starting at a slightly earlier time, before the random walker
gets trapped. To monitor the configuration of the system, we
computed the autocorrelation function,

C(τ ) = 1

L2

L2∑
i=1

cos [θi(0) − θi(τ )], (4)

where τ denotes the number of MC steps that have elapsed
since the start of the segment. The results are shown in
Fig. 3(a). For the trapped segment, C(τ ) remains close to unity
throughout, meaning that its configuration hardly changes; for
the normal segment, C(τ ) decays to 0 very quickly. The inset
in Fig. 3(a) plots the component of the force ∂H/∂θi with the
largest magnitude (i.e., infinity norm) versus τ . The force on
the trapped segment is almost 0 throughout. Figure 3(b) is a
scatterplot showing the proposed energy change �E versus
the proposed angle change �θ . As mentioned above, with
the MC step size we are using, the random walker is able
to, under normal conditions, propose new configurations with
fairly large changes in energy, as shown by the large dispersion
of blue points (i.e., normal segment). However, when trapped,
�E is very small compared to the normal segment and is
distributed asymmetrically with very few energy-lowering
moves. The acceptance rate is ≈1% and ≈60% for the trapped
and normal segments, respectively. The energy distributions
of the accepted moves are shown in Fig. 3(c). For the trapped
segment, the histogram is very narrow and asymmetric, with
almost only energy-lowering moves being accepted. We also
examined other cases of trappings, for both the XY model
(varying over a range of MC step sizes) and the alanine peptide
molecule, and found the above behavior to be general in both
systems.

Spikes are usually formed during the early stages of the
simulation when the DOS is still rough. A small random bump
on the DOS like the one in Fig. 2 can serve as a “seed”
for spike growth if the random walker accidentally visits a
local minimum (or maximum, where similar arguments apply)
whose energy happens to lie within the same energy bin as the
bump.

Spikes do not necessarily have to form in the same bin
every time. This is because there are other local minima and
maxima that reside in other energy bins. In addition, as shown
in the inset in Fig. 2, the random walker can sample other
configurations, such as D, with the same energy E. This means
that spiking does not always occur in an energy bin where a
spike was previously observed. Therefore spiking events are
highly unpredictable.

A large amount of simulation time is wasted when the
random walker is trapped because it spends less time sampling
other parts of the configuration space. When a spike is
discovered at the end of one’s simulation one should discard
the results knowing that it suffers from bad sampling, as shown
later in our calculation of the specific heat capacity. A simple
fix to the problem would be to vary the energy bin width and/or
sampling step size. Unfortunately, it is not possible to know
a priori the appropriate bin width and step size to choose to

023306-3



YANG WEI KOH, ADELENE Y. L. SIM, AND HWEE KUAN LEE PHYSICAL REVIEW E 92, 023306 (2015)

avoid spiking (if at all possible), unless inordinately large step
sizes are used in conjunction with small bin widths. Even then,
this is not a feasible general solution, as large moves make it
difficult to sample low-energy basins, while using small bin
widths is impractical, especially for systems with large energy
ranges.

IV. PROPOSED SOLUTION: TRAJECTORY SWAPPING

Here, we introduce a general solution. We propose running
multiple trajectories of WLS in parallel, each starting from a
different random seed (or initial condition). Periodically, one
randomly pairs the configuration of each trajectory with a new
DOS from another trajectory. If the random walker happens to
be trapped in a spike, this swapping resets the configuration to a
“safe” region of energy space and stops the spike from growing
further. The idea is similar to that of the replica-exchange
MC [35], where a low-temperature state trapped in a local
minimum is swapped with a higher temperature one, enabling
it to escape and sample other regions of configuration space.
Swapping among different WL random walkers also ensures
that the sampling is uniform in energy space. Our method is
simple to implement and completely general, applicable to any
energy binning or sampling step size. The DOS values from
all the trajectories can be averaged at the end of the simulation
so no computational resources are wasted.

Recently, Vogel et al. [13] proposed a parallel WL method
to extend WLS to large-scale problems. In their method,
different random walkers in overlapping energy windows are
run in parallel and occasionally exchanged so as to allow the
entire energy range to be sampled simultaneously and quickly.
The purpose of our current work, on the other hand, is to use
parallelization and swapping as a way to prevent trapping. In
addition, each of our random walker samples the entire energy
range, and we do not define a separate transition probability
for the exchange of two random walkers. The method of Vogel
et al. may also be effective in spike prevention. However, the
general focus and actual implementation of the two works are
different.

We tested our algorithm on the frustrated XY model.
Let �α = (θα

1 , . . . ,θα
L2 ) and gα(E) denote, respectively, the

configuration and DOS of the αth trajectory, where α =
1, . . . ,N denotes the random seed of each trajectory. Every
(T × L2)th MC step, a shuffling algorithm randomly permu-
tates the trajectory index, α → α′, and assigns �α′

as the new
configuration of gα(E). The main factors affecting the efficacy
of the algorithm are the time interval between swaps T × L2

and the total number of trajectories N . Swapping should be
as frequent as possible so that spikes do not have the chance
to build up. Using more trajectories reduces the probability of
swapping two trajectories which are simultaneously trapped
in the same energy bin. On the other hand, as we implemented
the algorithm using message passing interface, the swapping
process requires communication between different processors
and incurs computational overhead, so one should also try to
keep T large and N small.

As our swapping between trajectories is accepted with
probability 1, strictly speaking, it violates the transition rule of
WLS. However, as the number of swaps we performed is very
small compared to the entire length of the trajectory, no serious

error is introduced, as shown by our numerical experiments
below.

V. NUMERICAL SIMULATIONS

In our simulations, we consider one set of Jij for each
L [36] and study the effects of T , N , and random shuffling on
the prevention of spike occurrences. The energy binning for the
DOS is chosen such that the bins are narrow enough to support
the energy distribution g(E)e−βE near zero temperature. Such
narrow bin widths easily induce spiking in the original WLS
algorithm. Admittedly, the original WLS might not induce
spiking for other choices of bin widths, but we did not perform
an exhaustive study of this issue, due to the unpredictability
of spiking, as previously discussed. All N trajectories are
launched from the same initial configuration. Each ln f stage is
simulated for 5 × 106 × L2 MC steps, and ln f is halved after
each stage. We then count the percentage of the N trajectories
that have a spiked DOS after the tenth ln f stage.

The results are summarized in Table I. For each L, we
studied N = 8, 16, and 32 and T = 250, 1000, 5000, and
∞, where T = ∞ means no swapping (i.e., original WLS).
Each entry in the table shows the percentage of spiked DOS
in the order L = 16/32. For T = ∞, more than half of the N

trajectories exhibit spiking. For each of the rest of the N − T

entries, the percentage is averaged over five runs, where each
run uses a different seed for the random shuffler. As expected,
a large N (32) and small T (250) are the most effective
in preventing spike formation. Between N and T , the latter
is more important in preventing spikes. We found that is it
important to keep T < 1000 because otherwise swapping is
ineffective. Increasing N has a comparatively more gradual,
albeit still significant effect in preventing spikes.

We checked the accuracy of the DOS of our swapping
algorithm by computing the specific heat capacity per spin,
cv , for L = 16. From the five runs at N = 32 and T = 250,
we took one run and continued the swapping simulation until
ln f ≈ 5.96 × 10−8 [37]. The cv values of all 32 trajectories
were calculated and averaged, giving 〈cv〉. The value of
ln g(E) in any spiked bin is replaced by the average of its
two neighboring bins. The same is repeated for T = ∞,
and results of replica-exchange MC calculations are used
as the benchmark. The results are shown in Fig. 4(a).
T = 250 and replica-exchange MC agree very well, even at
low temperatures as shown in the inset. On the other hand, the

TABLE I. Reducing spikes in the DOS by swapping. N , number
of trajectories; T , number of MC steps (per spin) between swaps.
Each N -T entry is ordered L = 16/32 and shows the percentage of
the spiked DOS averaged over five runs of the random shuffler. Values
in parentheses are standard deviations. For T = ∞ (no swapping),
only one run was performed for each N and L.

T

N 250 1000 5000 ∞
8 13(10)/0(0) 58(10)/5(6) 70(10)/48(20) 88/75
16 9(8)/0(0) 49(10)/1(3) 64(10)/25(9) 69/69
32 1(1)/0(0) 31(10)/0(0) 66(6)/38(10) 75/69
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FIG. 4. (Color online) (a) Specific heat capacity per spin of the
XY model for a fixed set of Jij (L = 16). The 〈cv〉 for T = 250 and
T = ∞ is calculated by averaging over 32 trajectories. For replica-
exchange Monte Carlo (open circles), 〈cv〉 is computed by averaging
over 25 independent runs. Inset: Closeup view near zero temperature
of T = 250 (filled circles) and replica-exchange (open circles). Error
bars indicate the standard deviation. The bars for replica exchange are
smaller than the circles. (b) For T = ∞. Converged: 〈cv〉, averaged
over 14 converged trajectories. Unconverged: 〈cv〉, averaged over 18
unconverged trajectories. Error bars indicate the standard deviation.

〈cv〉 of T = ∞ suffers from large fluctuations. We found that
the trajectories of T = ∞ can be separated into two types:
(i) Those with no spikes in their DOS give a 〈cv〉 that has
successfully converged, as shown by the red (“converged”)
curve in Fig. 4(b); and (ii) trajectories with spikes in their
DOS sometimes spend entire or even a few ln f stages confined
either within the spiked bin itself or “bouncing” between the
spike and the edge of the DOS. When the random walker
manages to escape, the ln f has already been lowered so
much that the current modification factor does not effectively
improve the DOS, and thus the DOS is effectively frozen at
an earlier ln f stage. The 〈cv〉 values computed from these
trajectories are therefore unconverged, as shown by the blue
(“unconverged”) curve in Fig. 4(b). Our observation also
explains why the annealing method of Poulain et al. [6] was
successful. By reincreasing the ln f , their random walker is
allowed to redo those earlier ln f stages when it was trapped.

VI. DISCUSSION

As mentioned above, the phenomenon of trapping is highly
dependent on how the simulation is being set up, i.e., the
kind of system, the energy binnings, the MC step size, etc.
We would like to highlight two scenarios in which we think
there is an increased likelihood of encountering trapping.
The first is when it is preferable to use a small MC step
size to achieve a good acceptance rate. In our study of the
poly-alanine molecule, we found that the molecule sometimes
folds into very tight conformations where small MC step sizes
are necessary to enable the molecule to gently unfold (large
moves will give rise to the “lever-arm” effect resulting in steric
clashes). If small step sizes are used, then one needs to be aware
of the trapping mechanism we have discussed above.

The second scenario is when one is interested in low-
temperature behavior, which in WLS means sampling from
low-lying energy states. To illustrate, we ran 200 indepen-
dent, nonswapping trajectories for the XY model (L = 16)
discussed above. At the end of the 15th ln f stage, we
checked whether there was a spike in their DOS and, if there
was, the energy bin at which the spike occurs. The energy
distribution of the spike locations is shown in Fig. 5. Spiking
occurs predominantly at an energy range near the ground
state at E ≈ −346. This energy range corresponds roughly to
the temperature T = 0.01. In the inset in Fig. 5, the energy
probability distribution P (E) = g(E)e−E/T at T = 0.01 is
shown, and we see that the distribution is supported in an
energy region where spiking is dominant. Hence, one should
be aware of the possibility of trapping when one investigates
low-temperature phenomena.

On the other hand, trapping might not be so important when
one studies high-temperature behavior. We use the same XY

model as an example. In Fig. 4, we see that the transition
temperature is around T = 0.4. In the inset in Fig. 5, we plot
the P (E) at T = 0.4. It is shown that the distribution lies
quite far away from the energy region where spiking occurs.

FIG. 5. (Color online) Distribution of spike locations with re-
spect to energy for the frustrated XY model (L = 16). Inset: Energy
probability distribution P (E) = g(E)e−E/T at temperature T = 0.01
(corresponding to E ≈ −346, where spiking is dominant) and at
T = 0.4 (phase transition temperature).
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Hence, one might impose a low-energy threshold to prevent
the random walker from visiting low-energy states if one is
only interested in obtaining the transition temperature.

In our algorithm, swapping between trajectories occurs at
probability 1. As mentioned, this violates detailed balance.
One way to rectify this is to treat the swapping as an MC step
by itself. The acceptance probability for the swap has been
proposed by Vogel et al. [13],

Paccept = min

[
1,

gi(E[X])

gi(E[Y ])

gj (E[Y ])

gj (E[X])

]
, (5)

where X and Y are the configurations of trajectories i and
j before the swap, and E[X] and E[Y ] are their energies,
respectively. gi(E[X]) is the DOS of trajectory i at energy
E[X]. Hence, every few steps, a swap can be attempted and
accepted according to Eq. (5). This way, detailed balance is
obeyed and the swapping interval T can be made quite small.

If the system under study is small enough for many multiple
trajectories to be simulated on a single processor, one should
indeed adopt Eq. (5). However, for large systems where one
assigns different trajectories to different processors, one needs
to take into account the computational overhead coming from
the communication among the processors during swapping.
It may then be too expensive to use Eq. (5) to swap since
frequent swapping will slow the computation down. On the
rare occasion when a swap is attempted, it is best to let the swap
succeed as we have done in this paper. Although theoretically

less rigorous, our method is faster. Bouzida et al. have also
shown within the context of the acceptance ratio method that
occasional and infrequent violation of detailed balanced does
not incur serious error [38]. Our calculation of the specific heat
capacity also shows that there is no discernible error incurred
from this violation of detailed balance during swapping.

Finally, we discuss the case of a piecewise constant DOS
alluded to earlier. The original WLS algorithm takes the value
of ln g(E) as constant within each energy bin. This will not
give rise to any spiking, as without linear interpolation the
mechanism in Fig. 2 no longer holds. However, for piecewise
constant DOS the energy bins at the very edge of the DOS
will usually only be visited after the first few ln f stages have
been completed. By the time the random walker drops into
these bins, the difference in ln g(E) between these bins and
the neighboring, higher energy ones is already so large that
exp[� ln g(E)] is effectively 0, and the random walker stays a
long time in these bins to let the DOS “catch up” before it can
escape. This leads to another form of trapping. The swapping
algorithm presented here is also applicable to this problem
encountered by a piecewise constant DOS.
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