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Distribution functions for systems in nonequilibrium steady states are usually determined through detailed
experiments, both in numerical and real-life settings in the laboratory. However, for a protocol-driven distribution
function, it is usually prohibitive to perform such detailed experiments for the entire range of the protocol.
In this article we show that distribution functions of nonequilibrium steady states (NESS) evolving under a
slowly varying protocol can be accurately obtained from limited data and the closest known detailed state of
the system. In this manner, one needs to perform only a few detailed experiments to obtain the nonequilibrium
distribution function for the entire gamut of nonlinearity. We achieve this by maximizing the relative entropy
functional (MaxRent) subject to constraints supplied by the problem definition and new measurements. MaxRent
is found to be superior to the principle of maximum entropy (MaxEnt), which maximizes Shannon’s informational
entropy for estimating distributions but lacks the ability to incorporate additional prior information. The MaxRent
principle is illustrated using a toy model of ¢* thermal conduction consisting of a single lattice point. An external
protocol controlled position-dependent temperature field drives the system out of equilibrium. Two different
thermostatting schemes are employed: the Hoover-Holian deterministic thermostat (which produces multifractal
dynamics under strong nonlinearity) and the Langevin stochastic thermostat (which produces phase-space-filling
dynamics). Out of the 80 possible states produced by the protocol, we assume that four states are known to us in
detail, one of which is used as input into MaxRent at a time. We find that MaxRent approximates the phase-space
density functions for every value of the protocol, even when they are far from the known distribution. MaxEnt,
however, is unable to capture the fine details of the phase-space distribution functions. We expect this method
to be useful in other external protocol-driven nonequilibrium cases as well, making it unnecessary to perform

detailed experiments for all values of the protocol when one wishes to obtain approximate distributions.
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I. INTRODUCTION

One of the challenges of nonequilibrium thermodynamics
lies in the unified statistical description of nonequilibrium
systems [1]. These systems are usually characterized by
the presence of nonvanishing currents (like heat, mass, etc.)
due to the imposed thermodynamic forces (like temperature
gradient, concentration gradient, etc.). A sound theoretical
understanding of these nonequilibrium processes is vital for
gaining insights into several important physical and biological
processes. The nonequilibrium systems may be classified into
systems near the equilibrium regime (local thermodynamic
equilibrium) and systems far-from-equilibrium. Unlike in the
equilibrium and near-equilibrium scenario [2,3], no unified
theoretical framework exists for the far-from-equilibrium
steady-state (NESS) cases [4]. The problem becomes all the
more difficult since there is no consensus on the variables
necessary to describe the nonequilibrium states [5,6]. As a
result, limited statistical descriptions of NESS are usually ob-
tained through either numerical simulations [7-10] or experi-
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ments [11-13]. Experimental techniques have matured enough
to perform nanoscale experiments under externally controlled
protocols, like the diffusion of a few particles in response to
a variation in the concentration gradient, and single-particle
reaction dynamics by varying the energy barrier between two
successive equilibrium positions controlled by laser traps.

Usually, the limited information from such experiments is
used to construct the probability distribution of the relevant
variable through the Jaynes principle of maximum entropy
(MaxEnt) [14-22]. Let a set of macroscopic observables
(F1),{F>),...,(Fy) and its corresponding phase functions
Fi('), F>(T),...,Fy(I") be given to us. The phase-space I' =
(X1,X2,...,.%u, P1, P2,---, Pn) TEPrEsents a point in phase space,
comprising the position x; and momentum p; of every particle.
MaxEnt finds the least biased probability distribution, p(I"), by
maximizing the Shannon entropy functional (H) subjected to
the constraints imposed by the set of macroscopic observables,
which for continuous states can be written as:

H=—kp / p(I) loglp(T)]dT
T

N
- ZM [/F F;(D)pT)dl" — <Fj>] (1)

Jj=1
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The integration is carried out over the entire accessible
phase-space I', kg is the Boltzmann constant, and A ; represents
the Lagrange multiplier corresponding to the observable (F).
The approximated probability distribution p(I") is obtained by
setting the first variation of H, Eq. (1), equal to zero,

1
pI) = — exp —Zx,-Fj(r) . )
J

In Eq. (2), Z is the generalized partition function which arises
from the normalization of the probability density function and
is given by

Z:/exp - E AjF;(I) |dT. 3)
r .
J

The macroscopic observables, (F;), are related to the parti-
tion function through (F;) = dlog Z/dX;. To complete the
approximated distribution, one needs to find the unknown La-
grange multipliers. This procedure is similar to the well-known
problem of moments [23,24]. For the equilibrium scenario,
the Lagrange multipliers can be interpreted in physical terms
without any numerical computation. For example, when the
external constraint is chosen as the average internal energy
(U) of the system, the corresponding Lagrange multiplier can
be identified as Ayy = 1/kpT, where T is the temperature,
and one obtains a canonical distribution. Similarly other equi-
librium distribution functions can be obtained by judiciously
choosing the constraints. MaxEnt has been successfully
employed toward constructing NESS distribution functions for
steady-state thermal conduction [7-10]. The flexibility offered
by the MaxEnt formalism has rendered it useful in situations
beyond statistical physics [25-27].

However, the MaxEnt formalism suffers from the inability
of incorporating any information other than that of constraints
of the type (F;) [28]. Let us say that we have the complete
distribution function of the system at some value of the external
protocol for the experiments discussed before, and suppose that
the protocol is altered resulting in a new steady state for which
very limited information is obtained by performing a not-so-
detailed experiment. If we now wish to use MaxEnt to estimate
the current NESS distribution function, we will not be able to
utilize the detailed information of the previous steady state
mentioned above. Rather, we will have to confine ourselves
to using only the limited experimental results obtained in
the current state and all previous knowledge on the system
(obtained possibly at a significant cost) will go unutilized.

In this work, we show that by maximizing the relative
entropy functional (MaxRent) one eliminates the problem
described in the previous paragraph. One need not perform
detailed experiments for all the values of the protocol. With
limited data on the system at all states, and a detailed
probability description of one or a few of these states, it is
possible to construct the nonequilibrium distribution functions
for the entire range of nonlinearity. We demonstrate the
efficacy of MaxRent using a toy model of thermal conduction:
a ¢* thermal conducting model consisting of a single lattice
point brought out of equilibrium by a position-dependent
temperature field, whose strength evolves slowly through
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external control. We use two different schemes to impose the
temperature field: the Hoover-Holian thermostat [29] and the
Langevin thermostat [30]. Using the statistics at an earlier
steady state and a few simple constraints at the current state
that have direct physical meaning out of equilibrium, we
demonstrate that, as the protocol evolves, MaxRent is able to
approximate the true distribution function, po;(I"), much more
accurately than MaxEnt. The approach proposed in this study
simplifies the life of the experimentalists who would no longer
need to perform time-consuming detailed experiments for all
values of the protocol.

II. THE THERMAL CONDUCTION MODEL

The toy model employed in this study is a ¢* model [31,32]
comprising a single lattice point and governed by the potential

Ux) = %x‘t. @

Here, x denotes the displacement from the equilibrium position
(the origin). The mass of this single quartic oscillator is taken
to be one. This model is chosen because it shows all the
qualitative features of a system with many degrees of freedom
and yet is simple to analyze. The system is brought out of
equilibrium by imposing a position-dependent temperature
field [33-36]:

T(x) = 1 + € tanh(x). 5)

The parameter € acts as the external protocol and defines the
strength of nonlinearity. A value of zero indicates equilibrium
(canonical) while a positive value indicates a nonequilibrium
state. A far-from-equilibrium scenario occurs when € is large
(but less than 1). For simplicity we have taken Boltzmann
constant to be unity. The imposed temperature field would
cause the heat flow to occur in a direction opposite to the
temperature gradient. In this work, € is varied from O to 0.80
in steps of 0.01. The temperature is imposed on the system
through the Langevin stochastic thermostat [30] (LT) and the
Hoover-Holian deterministic thermostat [29] (HH). The LT
equations of motion for this case are

p=—x"—¢p+, (6)

where the damping constant ¢ and the stochastic force i are
related through

(W) =0, FOYE) =20Tx)s¢ —1). (1)

In the present study ¢ = 0.5. The equations of motion for the
HH thermostat are

X =p,

x=p, p=-x—np—£&p’, n=p —T(),

£ =p'—3Tx)p"

The variables n and & represent reservoir variables that control
the first and the second moments of kinetic energy, respec-
tively. The equations of motion, Egs. (6) and (8), are integrated
using the classical fourth-order Runge-Kutta method for 1
billion time steps with incremental time step At = 0.001 for
every realization of €, except for four realizations where we
solve 10 billion time steps (detailed later). The two thermostats
result in different dynamics: LT produces a phase-space-filling
dynamics even under large values of € [37] as shown in Fig. 1,

®)

023304-2



APPROXIMATING THE ENTIRE SPECTRUM OF ...

(a) (b)

PHYSICAL REVIEW E 92, 023304 (2015)

(d)

3 3 3 3
2 2 2 2
1 1 1 1
z z z z
20 20 20 20
() () D D
2 2 2 2
A 1 1 1
2 2 2 2
A S 2 A 0 2 A 0 2 S5 0 2

Position Position

Position Position

FIG. 1. Phase-space trajectory for Langevin dynamics. (a) Corresponds to € = 0.25; (b) corresponds to € = 0.50; (c) corresponds to
€ = 0.74; and (d) corresponds to € = 0.98. The phase-space-filling nature of the dynamics does not change with increasing the value of €.

while HH results in a dynamics that show a gradual shift from
being phase-space-filling to a limit cycle through intermediate
multifractal dynamics [36] as shown in Fig. 2. We would
like to stress that LT equations of motion cannot correctly
simulate the nonequilibrium process [38], but nevertheless we
use LT to show that MaxRent can approximate p,(I") both for
phase-space-filling as well as multifractal dynamics.

It is interesting to see that in both the thermostats consid-
ered, the energy current (E) is independent of the configura-
tional variables (x), as shown in Eq. (9). Consequently, there
is no contribution of potential energy transport toward heat
current:

: dll 4 1, 3. :
E_dt|:4x +2p}—x X+ pp

=¢p’+yp for LT )
=np? +&p® for HH.

Since we limit the focus of this study to NESS and we
make use of the ergodic hypothesis later on to estimate the
density function from a single time trajectory, it is necessary to
ascertain if these thermostatted dynamics can produce steady-
state conditions under the imposed temperature gradient.
Figure 3 plots the absolute value of heat flux for both the HH as
well as LT dynamics for four different values of the protocol.
It can be clearly seen that the system reaches steady state

(a) (b)

very soon after the nonequilibrium conditions are imposed.
Throughout the rest of the paper, we assume that the steady
state has set in so that dp/dt = 0.

Previous attempts to theoretically understand the distri-
bution functions corresponding to the nonequilibrium states
have invariably involved stochastic dynamics [39,40]. For
such cases, it is possible to use the large deviation func-
tional together with the fluctuation theorem to develop a
functional form of the cumulants of heat current. One
can then obtain the different moments from the theoretical
cumulants and use them as constraints to construct the
entire distribution function. As an outcome, the approxi-
mated distribution function is usually smooth. However, the
nonequilibrium steady states (for deterministic dynamics)
under strong nonlinearity are usually characterized by mul-
tifractral dynamics with information dimension smaller than
the phase-space dimension [41]. As a result, the support
of the distribution function and the underlying structure of
the phase-space dynamics cannot be predicted beforehand.
Because of this lack of knowledge, developing cumulant-
based constraints is challenging. Thus, for the problem in
hand, we reconstruct the nonequilibrium distribution functions
through numerical techniques rather than the theoretical. The
reconstructed distributions can be shown numerically to satisfy
the fluctuation theorem but we do not explicitly explore this
connection.

(c) (d)
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FIG. 2. Phase-space trajectory for Hoover-Holian dynamics. (a) Corresponds to € = 0.25; (b) corresponds to € = 0.50; (c) corresponds
to € = 0.74; and (d) corresponds to € = 0.98. Both position and velocity are initialized at 1. The nature of dynamics changes from being
phase-space-filling to a limit cycle through multifractals as € increases.
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FIG. 3. (Color online) Check for steady-state condition using four different values of the protocol €: (a) for HH dynamics and (b) for LT
dynamics. In steady state, there is no appreciable change in the value of heat flux with time. The figures indicate that the system reaches a

steady state under the imposed condition fairly early in the simulation.

III. PRINCIPLE OF MAXIMUM RELATIVE ENTROPY

Given a set of constraints (F;) = F; o for the present state
of a system and a previously known state of the same system
p'(I), the principle of maximum relative entropy (MaxRent)
states that the probability density p(I") that best approximates
the true distribution can be obtained by maximizing the
relative entropy subject to the constraints on the average
value. The mathematical foundations of MaxRent can be
found in Refs. [16,42-45]. It has been argued that MaxRent
is the only general tool for updating probabilities [46,47].
MaxRent has seen varied uses like tweaking a model system
to reproduce target properties [48], ecological applications
like predicting equilibrium distribution of species [49], re-
construction of genetic networks [50], inferring fatigue crack
damage [51], etc. In conjunction with the constraints, their
corresponding Lagrange multipliers and the known state of the
system, the entropy functional to be maximized for MaxRent

becomes
—kB/ (,o(F)log|: ])dr‘
r

N
- ZM[/F Fi(D)p(T)dl" — (F,-)}. (10)
j=1

pI)
p'(T)

The first term (without —kp) is the Kullback-Leibler diver-
gence [47,52] that measures the discrepancy between the
distributions p and p’, and is always > 0, with the equality
holding only if p = p’ everywhere except, perhaps, at points
that form a zero measure set. The MaxRent-approximated
distribution function, p(I"), can be obtained by setting the first

variation of Eq. (10) to zero:

1 /
p(IT) = —p'(Dexp —;A_,»Ff(r> : (11)

One needs to find the unknown Lagrange multipliers, as in
the MaxEnt method, to completely identify the approximated
distribution function. In general, p’(I") represents a known
distribution, which in this case pertains to a known detailed
state of the system. The approximated distribution function
p(I") represents the best “guess” at the true distribution func-
tion, p,(I"), while simultaneously satisfying the constraints
(F;) and differing as little as possible from the known state
of the system. When there is no prior information available, it
makes sense to preassign equal probability to each state (i.e.,
a uniform density function) and the formulation boils down to
MaxEnt Eq. (2).

A. Selection of prior

The difference between MaxRent and MaxEnt comes from
the additional ability of the former to handle prior information
of any type. The success of MaxRent lies in careful selection
of the prior distribution and identification of constraints not
captured in the reference distribution [25]. In fact, it has
recently been argued that equilibrium statistics can be inferred
much more easily by using MaxRent than MaxEnt [52]. The
utility of MaxRent is not just limited to equilibrium scenario.
MaxRent, with an innovative prior distribution scheme, has
recently been used to estimate the steady-state probability of a
given gene to regulate other genes, thereby reconstructing the
gene regulatory network at a coarse level [50].
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However, for the problem in hand, the multifractal nature
of the dynamics renders it very difficult to have any correct
estimate on the prior distribution function. The nonequilibrium
distribution is never known beforehand. Therefore, we resort to
utilizing the experimental data to construct a prior distribution
function. Instead of choosing an equilibrium prior distribution
function, we select a nonequilibrium prior distribution function
from among the states whose information is known to us
in detail. We assume that the detailed information for four
steady states (out of the 80 possible) corresponding to € =
0.20,0.40,0.60, and 0.80 is given to us in the form of the
first 20 moments of positions and velocities. The numerical
values of these moments are obtained by solving the equations
of motion for 10 billion time steps. These 40 moments are
then utilized in the MaxEnt framework to construct the prior
distribution of position and velocity. Each of the four states
represents a valid choice of prior. In the following we describe
in detail the constraints on the system that have been used for
the remaining 76 cases.

B. Identifying constraints for NESS thermal conduction

The performance of MaxRent depends on the choice of
constraints that are usually problem dependent. For example,
in Eq. (9) the functional form of energy current is different
for the LT and HH thermostats. Theoretically, it is possible
to recover the exact distribution if all joint moments of x and
p, i.e., (x"p") for m,n > 0, are known. However, it is not
possible to obtain such information from either simulations or
experiments and only a few moments are generally available.
Additionally, higher-order moments are usually associated
with large errors and take a substantial time to converge.
Therefore, in this study we have used only those constraints
that are intuitive and have an order less than six. Such
constraints bear a direct physical relevance and can be
measured in laboratory settings easily.

The simplest constraint obviously is the normalization
property for density functions, i.e., [ p(I)dT" = 1. The other
constraints are listed below.

No net mass current: Absence of net mass current in this
system, i.e., average velocity of the system is zero:

(p) = /r polx. p)dxdp = 0. (12)

Fixed averaged position: An implication of Eq. (12) is that
the averaged position of the system must be time invariant
and must equal some constant. Depending on the steady-state
position of the system, this constraint can be written as

(x) = /r xp(r. pdxdp = xo. (13)

Heat flux and flow of potential energy: A set of constraints
can be obtained from the definition of steady-state systems:
macroscopic properties of the system relax to fixed average
values [53]. In the present context, the relevant macroscopic
property is the heat current, which can be decomposed into two
parts [54,55]: (i) transport of kinetic energy, and (ii) transport
of potential energy. As has been shown before, the energy
current is not dependent on configurational variables in this
problem [see Eq. (9)], and consequently, the rate at which
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kinetic energy is transferred is a proxy for average heat flux
(Jp) and is a valid choice of constraint:

P
/ TP(X,P)dXdP = Jo. (14)
r

In fact, in conventional molecular dynamics, Eq. (14) repre-
sents the “heat flux.” Since the contribution of configurational
variables toward energy current is absent, the averaged rate at
which potential energy is transported from left to right (or vice
versa) must be zero, and therefore,

4
/ %mx,p)dxdp =0. (15)
r

Higher-order derivatives of steady-state quantities: One
can once again invoke the definition of steady-state systems
to argue that if Eq. (14) is time invariant, then its subsequent
time derivatives must be zero; i.e.,

HH : f (=p*x® —np* —&p)p(x,p)dxdp = 0,
' (16)

LT / (=P — 6p* + v pD)p(x.p)dxdp = O.
I

One can simplify Eq. (16) by recognizing that ¢ is a constant
(=0.5) and v is independent of p, with its average being equal
to zero. Many subsequent time derivatives can also be equated
to be zero. However, we do not consider these constraints
because they are usually associated with substantial errors and
are slow to converge.

Flux fluctuations: The average fluctuations of heat flux from
its mean value, once the steady state is reached, is constant. In
our particular problem, the flux fluctuations assume a simple
form and can be implemented easily. Let the instantaneous
flux be denoted by J(=p?/2), then these fluctuations may be
represented as

/ [J — Jol?p(x,p)dx dp = Ji,
I
= / Jp(x,p)dx dp — J¢ = Ji, (17)
I

= / p®p(x,p)dx dp = J,.
r

The J;s are obtained from the numerical experiments. Simi-
larly, the skewness and kurtosis of flux may also be evaluated.
But due to the poor convergence of these higher-order
constraints, we keep ourselves limited to Eq. (17).

Averaged work done by the system: Another constraint can
be obtained by recognizing that in the steady state averaged
work done (wg) by the external tethering potential must be
time invariant; i.e.,

(xt = /x4p(x,p)dxdp = wp. (18)
r
Energy constraint: So far we have only chosen those

constraints that can be measured easily in laboratory settings.
We now place a constraint on the spatial variation of energy:

U(X)=/FH(q,p)B(q—X)p(q,p)dde- (19)
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Equation (19) is the limiting case for U(a < x < b)asa — b.
In the next subsection, we show that this constraint is associ-
ated with a Lagrange multiplier, 8(x), whose functional form
is given by 1/T(x). This constraint is essential for MaxEnt
to give sensible results even though local thermodynamic
equilibrium (LTE) may not be valid. For MaxRent, this
constraint is not suitable for LT dynamics since it does not
constrain the temperature accurately. Imposing this constraint
results in poor performance.

C. Solving for the Lagrange multipliers

In this section we obtain the functional form of the Lagrange
multiplier B(x) for both the MaxEnt and MaxRent methods.
We assume that the thermodynamic temperature is applicable
locally:

1 88
— =1 (20)
T(x) sU |,
where S is the Gibbs entropy. The Gibbs entropy correspond-
ing to the MaxEnt-approximated distribution Eq. (2) becomes

S[p] = —/ﬁ(x,P) In (p(x, p))dxdp

[ pep| s + oot |axap

J

= f pte,p)| Y2 F; |dxdp

J

+ //Fﬁ(q,p)[ﬂ(q)H(q,p)]S(q—X)dqdpdx

= /ﬁ(x,p) D AiF; dxdp—l—/ﬁ(x)U(x)dx. 1)
J

In Eq. (21), we have omitted the integration constant. Taking
variation of Eq. (21) with respect to U (x) we get

1
Bx) = Q) (22)

Now, let us consider the case where p’ is not uniform.
We assume that o’ has the functional form of p' =

exp[Y_; Api Yi(x,p) — By (x)H(x,p)]l, where Y;(x,p) is a
polynomial function of (x,p). Using the approximated dis-
tribution Eq. (11), the Gibbs entropy becomes

S(p) = — / pCx.p)In 5(x. p)
= _/p(xvp) Z)‘-p’,iYi + Z()\/ +)\-p’,/)F1
i J

+[B(x) + By (X)1H (x,p) pdxdp. (23)

The Lagrangian multipliers A,/ ; and B,/ (x) correspond to the
prior distribution. Proceeding like before, we can see that the
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relationship between B(x) and 7' (x) becomes
1

Bx) = ™

B (x). (24)

The remaining unknown Lagrange multipliers A; are
solved using the Newton-Raphson technique. All necessary
integrals are performed numerically using the trapezoidal rule.
Sampling was confined to the [—3,3] interval for both the
position and velocity.

IV. APPROXIMATING THE NESS DISTRIBUTIONS
UNDER AN EVOLVING PROTOCOL

We now show that MaxRent can be used to approximate the
entire spectrum of the nonequilibrium distribution functions
for the quartic oscillator under the position-dependent tem-
perature field. We proceed with maximizing Eq. (10) subject
to the constraints highlighted before. Out of the four detailed
states, whichever lies closest to the present state is taken as the
prior distribution function. In simple terms it means that if we
want to approximate the distribution function for €y = 0.49,
then we choose the state that is closest to ¢, i.e., € = 0.40 as
the prior distribution function. The distributions at each value
of the protocol € are compared to the one obtained through the
MaxEnt framework. The spatial resolution is taken to be 0.01,
and the true distributions (wherever computed) are calculated
using 100,000 position-velocity data points.

For simplicity, in the case of HH thermostat we have
assumed that the variables 5, &, and p are independent of
each other (just like in equilibrium). Consequently, we replace
(np?) with (n)(p?) and (&p°) with (£)(p°), respectively, for
the constraint Eq. (16). Since in this work we are not interested
in the distribution of the thermostat variables, we replace
their averages with numeric constants. This replacement does
not alter the nature of position and velocity distributions
drastically. The approximated distributions obtained by re-
placing (n) = (£) = 1.0 and (n) = (§) = 2.0 overlap each
other, suggesting that the distributions are independent of
the constant value chosen. The reason may be attributed
to the negligible contribution of the terms (np?) and (£p°).
For the rest of the analysis, we proceed with (n) = (§) = 1.5.

A. Marginal position and velocity distributions

We begin by studying the ability of MaxRent to correctly
describe the probability distributions of position and velocity
(see Figs. 4 and 5) in three different regimes for both the
thermostats: (i) near equilibrium (small temperature gradient
with € = 0.10), (ii) moderately away from equilibrium
(moderately large temperature gradient with ¢ = 0.30), and
(iii) far-from-equilibrium (large temperature gradient with €
=0.70).

The black lines in Figs. 4 and 5 indicate the true distri-
butions, p;(x) and p,(p) [henceforth, referred to as p,(.)],
obtained directly from the simulation. The true position
distribution function, p;(x), in Fig. 4 loses its symmetric nature
even under a small temperature gradient. As € increases, the
asymmetry in p,(x) also increases. It occurs because of the
higher velocity of the oscillator when x > 0, due to higher
temperature associated with this region. Consequently, the
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FIG. 4. (Color online) True (black thin line), MaxRent (red thick line), and MaxEnt (blue dashed line) distribution functions of position
(top row) and velocity (bottom row) for HH dynamics. Figures (a) and (d) correspond to € = 0.10. Figures (b) and (e) correspond to € = 0.30,
and figures (c) and (f) correspond to € = 0.70. MaxRent accurately approximates and preserves the important features of the true distribution
function. MaxEnt always returns a smooth distribution.
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FIG. 5. (Color online) True (black thin line), MaxRent (red thick line), and MaxEnt (blue dashed line) distribution functions of position
(top row) and velocity (bottom row) for LT dynamics. Figures (a) and (d) correspond to € = 0.10. Figures (b) and (e) correspond to € = 0.30,

and figures (c) and (f) correspond to € = (0.70. MaxRent accurately approximates and preserves the important features of the true distribution
function.
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oscillator spends significantly less time in this region and
hence, the asymmetry.

At larger values of €, several kinks in p,(x) can be observed.
These kinks are a characteristic of multifractal dynamics where
some of the regions of phase space are not visited as frequently
as others [see Fig. 2(c)]. On the other hand, p,(p) in Fig. 4 are
associated with negligible asymmetry until moderately large
values of €. At larger €, however, p;(p) shows the presence
of kinks along with asymmetry. A faithful approximation
to the true distribution functions must be able to capture
these essential features. In Fig. 4, we can clearly observe
that MaxRent is able to approximate the true distribution
functions faithfully for all strengths of nonlinearity. Under
large temperature gradient [see Figs. 4(b) and 4(c)], MaxRent
accurately captures the peaks and the dips of the distribution
as well as the asymmetry. On the other hand, MaxEnt washes
out all the important features of p,(x) and p,(p), including
the kinks. Its performance is rather poor when dealing with
multifractal dynamics.

For LT dynamics (see Fig. 5), there are no kinks owing
to the phase-space-filling dynamics. At larger values of €, we
again observe asymmetry in the position-distribution function.
In this case as well, MaxRent performs better than MaxEnt
in approximating p,(.). For HH dynamics (Fig. 4), all three
distribution functions overlap at large absolute value of the
independent variable. Interestingly, the same does not occur
for LT dynamics. In Fig. 5(c), there is a significant deviation
between the distribution functions at large values of position.
This is because the LT thermostat does not sample the imposed
temperature accurately, and consequently, the use of energy
constraint in MaxEnt leads to inconsistent distributions. At
this stage we would like to point out that the performance of

PHYSICAL REVIEW E 92, 023304 (2015)

MaxEnt (as well as MaxRent) will improve if more constraints
were chosen.

B. Quantifying the difference from the true
distribution function

The superiority of MaxRent becomes clear when we calcu-
late the difference between the approximated distributions and
0:(I"). We use two functions for this purpose: (i) modified form
of the Kullback-Leibler divergence, with p,(i) being the true
marginal distribution corresponding to the variable i and p;
being the approximated marginal distribution corresponding
to the variable i,

Dxio(pllp:) = Z,o(x)log[p( )} Z 5(p)lo [5((17))}

(25)

and (ii) the absolute difference defined through

Dass(pllp) = \/Z [A(x) = PO + D 1(p) — (P
X p

(26)

The comparison is shown in Fig. 6. The deviation of MaxRent-
approximated distributions from the true distributions is quite
consistent for the better part of the spectrum. At larger
gradients, though the difference increases, the results are still
better than the MaxEnt-distribution functions. The results
suggest that if slight errors are permissible, MaxRent can
be used to approximate the unknown true distributions with
limited data with better accuracy than MaxEnt. We would

6 \
—HH DKLD MaxRent

s ---HHD ABS MaxRent K3
o HHD, MaxEnt R
. HHD ABS MaxEnt .

4= |....LT DKLD MaxRent .

é LTD \BS MaxEnt .
SR LT D, , MaxEnt ¢ ]
Qi LT D, MaxEnt "‘ X

X2 xxxx
2- .o' x —
X XA x *x o°*
* on’o"” exx X r-ee
L ‘000"”““”’ . X, x X Seeeeset __’,' B
\ \ \ \ \ \ \

FIG. 6. (Color online) Comparison of Kullback-Leibler divergence Eq. (25) and absolute error Eq. (26) for the MaxRent- and MaxEnt-
approximated distribution functions. Lines indicate the value of the metrics for MaxRent, while dots indicate the values for MaxEnt. Apart
from cases very close to equilibrium cases (¢ < 0.04), the deviation from true distribution is greater for MaxEnt than MaxRent. The deviation
increases with increasing value of € for MaxEnt, while it remains fairly constant over a large range of ¢ for MaxRent.
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FIG. 7. (Color online) Distribution functions for HH dynamics with external protocol € = 0.70 using different prior distributions:
(a) marginal distribution of position and (b) marginal distribution of velocity. MaxRent results in a better approximation than MaxEnt
for all the cases considered. But, the performance of MaxRent decreases as the prior distribution moves further away from the unknown true
distribution.
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for all the cases considered. MaxEnt approximation is substantially further away from the true distributions at larger values of x.
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FIG. 9. (Color online) Comparison of (left) Dx;p and (right) Daps for different prior distributions due to (top row) HH dynamics and
(bottom row) LT dynamics with € = 0.70. The closer the bars are to zero, the better the approximation to the true distribution function. MaxEnt

results in the worst approximation.

again like to stress that the performance will improve upon
inclusion of more constraints for both MaxRent and MaxEnt.

C. Effect of changing the prior distribution

So far we have used the closest among the four known
states for calculating the approximated distribution function.
It could be argued that the efficacy of MaxRent is due
to selecting a prior distribution close to the unknown true
distribution. Selection of a good prior distribution is crucial
for the performance of MaxRent. In this section, we study how
the approximated distributions change by changing the prior
distribution. The effect is illustrated at e = 0.70. The resulting
approximated distributions for the HH and LT thermostatted
dynamics are shown in Figs. 7 and 8, respectively.

As expected, for HH dynamics, the closer the prior distribu-
tion is to p,(I"), the better the approximation due to MaxRent.
However, even with prior distributions as far away as e = 0.20,
MaxRent results in a better approximation than MaxEnt and is
able to capture the features of the true distribution. A similar
behavior was observed for LT dynamics as well, although the
difference among the different approximated distributions was
not too large to begin with. The approximated distributions
due to the different prior distributions (for both HH and LT)
are compared in Fig. 9 using the two functions, Egs. (25)
and (26). The error due to MaxRent decreases monotonically
as the protocol comes closer to the current state.

V. CONCLUSIONS

In this work, we show through numerical examples that in
a protocol controlled NESS it is not mandatory to perform

detailed experiments for every value of the protocol to obtain
statistics for the entire range of nonlinearity. We demonstrate
this procedure for the toy model of a ¢* chain comprising a
single lattice point. The system is brought out of equilibrium
through a protocol-driven and position-dependent temperature
field. This temperature field is imposed using two different
thermostats. Using limited data in the form of simple con-
straints and detailed description (obtained from simulations) of
a few of the states is sufficient to approximate the distribution
functions for the entire range of nonlinearity. To do so, we
maximize the relative entropy functional, Eq. (10), with the
method of Lagrange multipliers using the Newton-Raphson
technique. The detailed description is assumed to be given in
the form of the distribution function for 4 of the 80 states that
the protocol explores.

The MaxRent-approximated distribution functions are
compared with those of the true and MaxEnt-approximated
distribution functions. We observe that MaxRent represents
a marked improvement over the MaxEnt framework. For
smaller values of €, both the MaxRent and MaxEnt perform
comparably. However, at larger €, MaxRent approximates the
true distributions in a much better way. In the absence of
any prior information available, MaxRent defaults to MaxEnt.
For the problem in hand, we observe that if MaxEnt were
to perform comparably with MaxRent, then many more
constraints would be needed, implying that one must perform
detailed experiments for every value of the protocol.

MaxRent has the ability to reproduce the true distribution
in an accurate way because of the additional information
that gets incorporated through the prior distribution function.
However, its choice is subjective. The MaxRent-approximated
distribution functions have a remarkable dependence on the
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choice of the prior distribution. Likewise, the choice of
constraints also impacts the performance of MaxRent. One
must be careful to use appropriate constraints and prior
distributions with MaxRent. Lastly, we would like to stress
that although the method highlighted in this paper is for
the simple case of a quartic oscillator, we believe that the
method is useful in other nonequilibrium cases and would ease
the life of the experimentalists, who now need not perform

PHYSICAL REVIEW E 92, 023304 (2015)

costly experiments for marginal changes in the external
agent.
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