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Reconstructing heterogeneous materials from limited structural information has been a topic that attracts
extensive research efforts and still poses many challenges. The Yeong-Torquato procedure is one of the
most popular reconstruction techniques, in which the material reconstruction problem based on a set of
spatial correlation functions is formulated as a constrained energy minimization (optimization) problem and
solved using simulated annealing [Yeong and Torquato, Phys. Rev. E 57, 495 (1998)]. The standard two-point
correlation function S2 has been widely used in reconstructions, but can also lead to large structural degeneracy
for certain nearly percolating systems. To improve reconstruction accuracy and reduce structural degeneracy,
one can successively incorporate additional morphological information (e.g., nonconventional or higher-order
correlation functions), which amounts to reshaping the energy landscape to create a deep (local) energy minimum.
In this paper, we present a dynamic reconstruction procedure that allows one to use a series of auxiliary S2 to
achieve the same level of accuracy as those incorporating additional nonconventional correlation functions. In
particular, instead of randomly sampling the microstructure space as in the simulated annealing scheme, our
procedure utilizes a series of auxiliary microstructures that mimic a physical structural evolution process (e.g.,
grain growth). This amounts to constructing a series auxiliary energy landscapes that bias the convergence of the
reconstruction to a favored (local) energy minimum. Moreover, our dynamic procedure can be naturally applied
to reconstruct an actual microstructure evolution process. In contrast to commonly used evolution reconstruction
approaches that separately generate individual static configurations, our procedure continuously evolves a single
microstructure according to a time-dependent correlation function. The utility of our procedure is illustrated by
successfully reconstructing nearly percolating hard-sphere packings and particle-reinforced composites as well
as the coarsening process in a binary metallic alloy.
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I. INTRODUCTION

Heterogeneous materials such as composites, alloys, granu-
lar materials, and porous media abound in nature and synthetic
situations. Successful applications of such materials require
accurate assessments and predictions of the effective material
properties and their performance under extreme conditions,
which in turn rely on the accurate knowledge of the complex
material microstructure and quantitative structure-property
relations [1–3]. Generating virtual three-dimensional (3D)
microstructure is a key step in establishing rigorous structure-
property relations. Although certain advanced imaging tech-
niques, such as x-ray tomographic microscopy [4–7], allow
one to directly obtain sufficient structural information in a
nondestructive manner for 3D material rendition, there are
still material systems for which only limited morphological
information are available, such as those in x-ray scattering
experiments [8,9].

Recently, a variety of material reconstruction methods
using limited structural information contained in different
statistical morphological descriptors have been developed.
Examples of such reconstruction techniques include the
Gaussian random field method [10], stochastic reconstruction
procedure [11,12], gradient-based method [13], phase recov-
ery method [14], multipoint reconstruction method [15], and
raster-path method [16], to name but a few. The structural
descriptors utilized in the reconstructions usually arise in rig-
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orous structure-property analysis [17–27] and statistically cap-
ture different geometrical and topological features of the ma-
terial system. Examples include the standard two-point corre-
lation function S2 [1,2], which gives the probability of finding
two specific points in the material phase of interest. The general
n-point correlation function Sn provides the probability of
finding a specific n-point configuration in the phase of interest.
The integrals of Sn are involved in various rigorous bounds [17]
and contrast expansions [18,19] of effective material proper-
ties. Interested readers are referred to Ref. [2] for a detailed
discussion of correlation functions and their properties.

The stochastic reconstruction procedure [11,12], also re-
ferred to as the Yeong-Torquato (YT) procedure in liter-
ature, is one of the most popular material reconstruction
techniques. In principle, the YT procedure allows one to
incorporate an arbitrary number of correlation functions of
any types into the reconstructions (with increasing com-
putational cost when more correlation functions are used).
Specifically, the reconstruction problem is formulated as an
energy minimization problem, with the energy E defined
for a trial microstructure as the difference between the
target and simulated correlation functions. The space of trial
microstructure (i.e., microstructure space) is then randomly
searched to find one that minimizes E (with an ideal minimum
of zero). This is done by evolving an initial random trial
microstructure using the simulated annealing procedure such
that in the end the trial microstructure possesses an energy
value smaller than a prescribed tolerance (see Sec. III for
algorithmic details). The YT procedure is very flexible and
versatile in dealing with different material systems. However,
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due to its stochastic nature, a large number of intermediate
trial microstructures need to be generated and analyzed,
which makes it computationally intensive. Several improved
implementations of the YT procedure have been devised to
improve efficiency [28–32], preserve isotropy [33–35], and
handle anisotropic materials [36–38].

Although the two-point correlation function S2 is widely
used for reconstructing a wide class of material systems, it gen-
erally does not contain sufficient morphological information to
uniquely determine a microstructure [39,40]. Thus, reconstruc-
tions using S2 alone can lead to large structural degeneracy
(i.e., a large number of distinct microstructures compatible
with the specified correlation function) [40], especially for
nearly percolating systems in which the volume fraction φ of
one of the phases is close to the critical value φc beyond which a
system-spanning cluster of that phase emerges [2,3]. To reduce
structural degeneracy and increase reconstruction accuracy, a
variety of nonstandard correlation functions, such as the two-
point cluster function C2 providing topological connectedness
information [21,22] and surface-surface correlation function
Fss providing interface information [23], have also been incor-
porated into the YT procedure [30] (see definitions in Sec. II).
It has been shown that these nonstandard correlation functions
contain higher-order structural information encoded in Sn and
thus, incorporating them in the reconstruction can significantly
reduce the number of compatible microstructures [30]. This
amounts to reshaping the energy landscape (defined over
all possible microstructures) to create a deep (local) energy
minimum with a wide and smooth basin, which has a very high
probability of being identified by the random microstructure
search (see Fig. 1).

In this paper, we present a dynamic reconstruction proce-
dure within the Yeong-Torquato framework that allows one to
use a series of auxiliary S2 to achieve the same level of accuracy
as those incorporating additional nonconventional correlation

FIG. 1. (Color online) Schematic illustration of different modi-
fications of energy landscape to improve convergence for different
reconstruction methods within the Yeong-Torquato framework. The
original funnel energy landscape associated with S2 is illustrated by
the black curve in both panels. (a) Incorporating additional correlation
functions amounts to reshaping the energy landscape to create a deep
(local) energy minimum with a wide and smooth basin (red curves
or dark gray curves in print version). (b) The dynamic reconstruction
utilizes a series of auxiliary energy landscapes (dashed red curves
or dark gray curves in print version) to bias the convergence of
reconstruction to the favor microstructure (illustrated by the dashed
blue arrow or light gray arrow in print version).

functions. In particular, instead of randomly sampling the
microstructure space as in the standard YT simulated annealing
scheme, our procedure utilizes a series of auxiliary microstruc-
tures that mimic a physical structural evolution process (e.g.,
grain growth). Such auxiliary microstructures are obtained,
e.g., by successive isotropic erosion of the original target
microstructure [41,42]. For each auxiliary microstructure, the
associated S2 is computed and the reconstruction process
proceeds by growing as well as successively evolving the
morphology of the target phase according the series of target
S2s. This also amounts to constructing a series auxiliary energy
landscapes, one associated with each S2 in the series, that
bias the convergence of the reconstruction to a favored (local)
energy minimum (see Fig. 1). We note that our procedure
is different from a recently developed dilation and erosion
method [41,42], which transforms topologically complex
structures to simpler ones and utilizes appropriate topological
descriptors such as C2 for accurate reconstructions of the
original system.

Moreover, the dynamic reconstruction procedure can be
naturally applied to reconstruct a microstructure evolution
process. In this case, the series of S2 characterize snapshots
of the material microstructure at successive time points
during the evolution and, thus, can be considered as a single
time-dependent correlation function evaluated at different
time points. In contrast to commonly used evolution re-
construction approaches that separately generate individual
static configurations, our procedure continuously evolves a
single microstructure according to a time-dependent corre-
lation function. The utility of our procedure is illustrated
by successfully reconstructing nearly percolating hard-sphere
packings and particle-reinforced composites as well as the
coarsening process of a binary metallic alloy.

The rest of the paper is organized as follows: In Sec. II, we
provide definitions of various correlation functions employed
in this paper. In Sec. III, we present the dynamic reconstruction
procedure in detail. In Secs. IV and V, we respectively apply
our procedure to successively reconstruct nearly percolating
systems and microstructure evolution based on two-point
correlation functions alone. In Sec. VI, we make concluding
remarks.

II. STATISTICAL MORPHOLOGICAL DESCRIPTORS

A. n-point correlation function

In general, the microstructure of a heterogeneous material
can be uniquely determined by specifying the indicator
functions associated with all of the individual phases of
the material [1,2]. Without loss of generality, we focus on
two-phase materials (binary medium) in this work. We note
that the generalization of the subsequent discussion to a
multiple-phase system is straightforward.

Consider a statistically homogeneous material M occupy-
ing the region V in the d-dimensional Euclidean space Rd

(d = 1,2,3), which is partitioned into two disjoint phases:
phase 1, regions V1 of volume fraction φ1 and phase 2, regions
V2 of volume fraction φ2. It is obvious that V1 ∪ V2 = V and
V1 ∩ V2 = 0. The indicator function I (i)(x) of phase i is given
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by

I (i)(x) =
{

1 x ∈ Vi ,

0 x ∈ V̄i ,
(1)

for i = 1,2 with Vi ∪ V̄i = V and

I (1)(x) + I (2)(x) = 1. (2)

The n-point correlation function S(i)
n for phase i is defined as

follows:

S(i)
n (x1,x2, . . . ,xn,) = 〈I (i)(x1)I (i)(x2) . . . I (i)(xn)〉, (3)

where the angular brackets 〈. . .〉 denote ensemble averaging
over independent realizations of the medium. The two-point
correlation function S

(i)
2 for phase i is defined by

S
(i)
2 (x1,x2) = 〈I (i)(x1)I (i)(x2)〉. (4)

For a statistically homogeneous medium, S
(i)
2 is a function of

the relative displacements of point pairs, i.e.,

S
(i)
2 (x1,x2) = S

(i)
2 (x2 − x1) = S

(i)
2 (r), (5)

where r = x2 − x1. If the medium is also statistically isotropic,
S

(i)
2 is a radial function, depending on the separation distances

of point pairs only, i.e.,

S
(i)
2 (x1,x2) = S

(i)
2 (|r|) = S

(i)
2 (r). (6)

Interested readers are referred to Ref. [2] for a detailed
discussion of S

(i)
2 and other higher-order S(i)

n . Henceforth, we
will drop the superscript i in S

(i)
2 for simplicity. Without further

elaboration, S2 is always the two-point correlation function of
the phase of interest.

B. Surface correlation functions

The surface correlation functions contain information about
the random interface in a heterogeneous system [23]. Since
such statistics arise in and are of basic importance in the
trapping and flow problems, it is conventional in that context to
let phase 1 denote the fluid or void phase, and phase 2 denote
the solid phase. The simplest surface correlation function is
the specific surface s(x) at point x, which gives the interface
per unit volume, i.e.,

s(x) = 〈M(x)〉, (7)

where M(x) is the interface indicator function defined as the
absolute gradient of the phase indicator function, i.e.,

M(x) = |� L(x)|. (8)

We note that for statistically homogeneous material, the
specific surface is a constant everywhere and thus, is simply
denoted by s.

The two-point surface correlation functions for a general
heterogeneous material are defined by

Fss(x1,x2) = 〈M(x1)M(x2)〉, (9)

and

Fsv(x1,x2) = 〈M(x1)L(x2)〉, (10)

FIG. 2. (Color online) Schematic illustration of the probability
interpretation of the correlation functions employed in this work.
The line segments (two-point configurations) and triangles (three-
point configurations) illustrate the events that contribute to the
corresponding correlation functions.

which are respectively called the surface-surface and surface-
void correlation functions [2,23]. For statistically homoge-
neous and isotropic materials, the functions Fss and Fsv only
depend on the scalar distance r = |x1 − x2|. We note that
unlike Sn, the surface correlation functions do not have a direct
probability interpretation, since the probability of finding a
point exactly falling on the the interface is always zero. Instead,
they can be associated with the probability of finding points
in the dilated interface region with thickness δ in the limit
δ → 0 [30] (see Fig. 2).

C. Two-point cluster function

The two-point cluster correlation function C2(x1,x2) gives
the probability that two randomly selected points x1 and x2

fall into the same cluster of the phase of interest [21,22] (see
Fig. 2). For statistically homogeneous and isotropic materials,
C2 depends only on the relative distance r between the
two points. It contains complete clustering information of
the phases, which has been shown to have dramatic effects
on the material’s physical properties [2,3]. However, unlike
S2 and the surface correlation functions, the cluster function
generally cannot be obtained from lower-dimensional cuts
(e.g., 2D slices) of a 3D microstructure, which may not contain
correct connectedness information of the actual 3D system.

It has been shown that C2 is related to S2 via the following
equation [22]

S2(r) = C2(r) + D2(r), (11)

where D2(r) measures the probability that two points separated
by r fall into different clusters of the phase of interest. In other
words, C2 is the connectedness contribution to the standard
two-point correlation function S2. For microstructures with
well-defined inclusion, C2(r) of the inclusions is a short-
ranged function that rapidly decays to zero as r approaches
the largest linear size of the inclusions. We note that although
C2 is a two-point quantity, it has been shown to encode
higher-order structural information, which makes it a highly
sensitive statistical descriptor over and above S2 [30].
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D. Computing correlation functions from images

The aforementioned correlation functions can be effectively
computed from given digital images of a material, in which the
microstructure is represented as a 2D (or 3D) array of pixels
(or voxels). In such arrays, each entry indicates the local state
(e.g., phase) of that pixel. For a binary system, the array is
simply a collection of black and white pixels on a regular
lattice. The probabilistic interpretation of the correlation
functions enable us here to develop a general sampling method
for reconstruction of statistically homogeneous and isotropic
digitized textures based on the lattice-gas formalism, which
is introduced in Ref. [34] and generalized in Ref. [30]. In the
generalized formalism, pixels with different values (occupying
the lattice sites) correspond to distinct local states and pixels
with the same value are considered to be molecules of the
same gas species [34]. The correlation functions of interest
can be obtained by binning the separation distances between
the selected pairs of molecules from particular species.

For example, the standard two-point correlation function S2

can be computed as follows:

S2(r) = NP (r)/NS(r), (12)

where NS(r) is the number of lattice-site separation distances
of length r and NP (r) gives he number of molecule-pair
separation distances of length r . The two-point cluster function
C2 is given by

C2(r) =
∑

i

Ni
P (r)/NS(r), (13)

where Ni
P (r) denotes the pair distances of length r between

the molecules within the same cluster i. The surface-surface
correlation function Fss can be obtained by

Fss(r) = Nss(r)/NS(r), (14)

where Nss(r) gives the number of distances between two
surface molecules with length r . Additional details about this
method are provided in Ref. [30].

III. DYNAMIC RECONSTRUCTION METHOD

A. Yeong-Torquato procedure

Our dynamic reconstruction procedure is developed within
the Yeong-Torquato (YT) stochastic reconstruction frame-
work [11,12], in which an initial random microstructure is
evolved to minimize an energy function that measures the
difference between target correlation functions and those of
the simulated microstructure. As discussed in Sec. I, there
are many other different microstructure reconstruction pro-
cedures [10,14–16]. However, the YT procedure incorporates
energy-driven microstructure evolution, which can be naturally
generalized to derive the dynamic reconstruction procedure.

In the YT procedure, the reconstruction problem is for-
mulated as an energy minimization problem, with the energy
functional E defined as follows

E =
∑

r

∑
α

[
f α

n (r) − f̂ α
n (r)

]2
, (15)

where f̂ α
n (r) is a target correlation function of type α and

f α
n (r) is the corresponding function associated with a trial mi-

crostructure. The simulated annealing method [43] is usually
employed to solve the aforementioned minimization problem.
Specifically, starting from an initial trial microstructure (i.e.,
old microstructure), which contains a fixed number of voxels
for each phase consistent with the volume fraction of that
phase, two randomly selected voxels associated with different
phases are exchanged to generate a new trial microstructure.
Relevant correlation functions are sampled from the new trial
microstructure and the associated energy is evaluated, which
determines whether the new trial microstructure should be
accepted or not via the probability:

pacc = min{exp(−�E/T ),1}, (16)

where �E is the energy difference between the new and
old trial microstructure and T is a virtual temperature T

that is chosen to be initially high and slowly decreases
according to a cooling schedule [11,12]. An appropriate
cooling schedule reduces the chances that the system gets
stuck in a shallow local energy minimum. In practice, a
power-law schedule T (n) = γ nT0 is usually employed, where
T0 is the initial temperature, n is the cooling stage and
γ ∈ (0,1) is the cooling factor (γ = 0.98 is used here). The
simulation is terminated when E is smaller than a prescribed
tolerance (e.g., 10−6 in this case). Generally, a large number
of trial microstructures need to be searched to generate a
successful reconstruction. Therefore, highly efficient sampling
methods [30,33,34] are used that enable one to rapidly obtain
the prescribed correlation functions of a new microstructure
by updating the corresponding functions associated with the
old microstructure, instead of completely recomputing the
functions. The readers are referred to Ref. [30] for details
of the efficient correlation function update schemes.

B. Dynamic reconstruction

In the original YT scheme, the microstructure space
is randomly sampled and thus, the evolution of the trial
microstructure during the reconstruction is not associated
with a physical process. In addition, the convergence of
the reconstruction strongly depends on the energy landscape
defined over the microstructure space [cf. Eq. (15)]. As
discussed in Sec. I, for certain nearly percolating systems (e.g.,
dense particle packings), the energy landscape associated with
the reconstruction using S2(r) alone is very rough and contains
many local minima, which usually lead to large structural
degeneracy and inaccurate reconstructions. For example, in
a typical reconstructed structure, the degree of clustering is
significantly overestimated and the particle phase, which is
supposed to be disconnected, usually percolates and forms
a system spanning cluster [39,40]. One approach to reduce
structural degeneracy is to incorporate additional correlation
functions such as C2 and Fss , which reshape the energy
landscape to create a deep (local) energy minimum with a wide
and smooth basin of attraction. Such a minimum is usually
associated with a high probability being visited and selected
by the random microstructure research.

The dynamic reconstruction procedure we devise here
uses auxiliary energy landscapes to bias the microstructure
evolution towards a favored reconstruction. This allows one
to use a series of auxiliary S2 to achieve the same level
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of reconstruction accuracy as those incorporating additional
nonconventional correlation functions. It works as follows:
Given a target digitized two-phase microstructure (2D or 3D)
possessing a volume fraction φ(n) for the phase of interest,
say phase 1, the associated two-point correlation function
S

(n)
2 (r) is computed. Then an erosion operation is applied to the

microstructure, which is described in detail in the subsequent
section. The erosion operation results in a reduced volume
fraction of phase 1, i.e., φ(n−1) and the associated two-point
correlation function S

(n−1)
2 (r) is computed. This process is

repeated n times until the morphology of phase 1 consists
of well-separated compact particles with a very low volume
fraction φ(0), which results in a series of correlation functions
{S(0)

2 (r),S(1)
2 (r), . . . ,S(n)

2 (r)}.
To reconstruct the original system, instead of directly using

Ŝ2 of the target microstructure, we start from S
(0)
2 associated

with the eroded system possessing the lowest volume fraction
φ(0). A corresponding microstructure is then reconstructed
using the YT procedure, which has been shown to be highly
efficient in generating accurate reconstruction at such low φ.
The reconstructed microstructure is then used as the initial
configuration for reconstructing the structure with φ(1) from
S

(1)
2 . Specifically, a new trial microstructure is generated

from the current configuration by adding pixels of phase
1 to randomly selected locations at the two-phase interface
to increase the volume fraction from φ(0) to φ(1). Then YT
procedure is applied in which only surface pixels are randomly
selected and displaced on the surface. The resulting new trial
microstructure is accepted with a probability specified by
Eq. (16) and simulated annealing is used to evolve the system.

We note that this approach is distinct from a conventional
YT procedure in two aspects: (i) a favored initial configuration
instead of a random one is used, which is already in the
basin associated with an energy minimum; (ii) more effi-
cient evolution kinetics that only involves displacing surface
pixels is employed. This corresponds to evolve the energy-
minimal configuration M(k) associated with S

(k)
2 to the nearest

energy-minimal configuration M(k+1) in the energy landscape
associated with S

(k+1)
2 via surface optimization. This process

is repeated to successively generate a series of auxiliary
microstructures M(k), M(k+1), . . ., M(n) in order to finally
accurately reconstruct the original microstructure M̂. It can
be seen that during the entire reconstruction process, a series of
auxiliary energy landscapes are constructed, each associated
with a S

(k)
2 (k = 0,1, . . . ,n). These auxiliary landscapes suc-

cessively bias the evolution path of the trial microstructure to
improve the convergence of the reconstruction (see Fig. 1). Our
procedure is also different from a recently developed dilation
and erosion method [41,42], which transforms a topologically
complex structure to simpler one, and utilizes appropriate
topological descriptors such as C2 for accurate reconstructions
of the original system. No auxiliary landscapes are used in the
dilation and erosion approach.

Moreover, the dynamic reconstruction procedure is readily
applicable to reconstruction of a microstructure evolution
process. In this case, the series {S(0)

2 (r),S(1)
2 (r), . . . ,S(n)

2 (r)}
characterizes snapshots of the materials at successive time
points during the evolution and thus, can be considered as
a single time-dependent correlation function evaluated at

different time points. This is to be distinguished from the series
of auxiliary S2 obtained from the erosion process, for which the
inverse reconstruction from a low-density initial configuration
only mimics a physical evolution process. In contrast to
commonly used evolution reconstruction approaches that sepa-
rately generate individual static configurations, our procedure
continuously evolves a single microstructure according to a
time-dependent correlation function.

C. Generating serial S2 using erosion operation

As discussed in the previous section, an erosion operation
is employed to generate auxiliary microstructures, from which
the auxiliary correlation functions {S(0)

2 (r),S(1)
2 (r), . . . ,S(n)

2 (r)}
are computed. Specifically, the operation successively removes
surface layers of the phase 1 and convert the associated pixels
into phase 2. (The surface layer of phase 1 is defined as a
layer of pixel that has at least one neighbor pixel of phase 2).
We now describe the erosion procedure devised for particulate
microstructure in detail.

Our erosion operation mimics a physical erosion process,
see Fig. 3. For example, for material in a erosive environment,
the erosion rates at different locations are different and depend
on the local morphology as well as the environment. Generally
speaking, geometrical singular regions with more exposure
to the environment such as corners and protrusion are more
easily eroded out. To achieve this in our simulated erosion
process, we first examine the target microstructure and obtain
the centers of mass (COM) of each individual grains. Then
we place equal-sized circles (or spheres in 3D) centered at
COMs to enclose the grains in the system. The radius of
circles is initially large and successively decreased until the
circles intersect with the grains. The regions of grains that
are not enclosed by the circles are removed, and the reduced
density φ(k) as well as the associated correlation function
S

(k)
2 is computed, where k corresponds to this erosion stage.

This process is repeated until the morphology of the phase
of interest consists of well-separated compact particles with
a very low volume fraction φ(0). Generally, our erosion op-
eration reduces geometrical singularities (e.g., sharp corners,
elongated protrusions, etc.) as well as size dispersity in the
microstructure, leading to an easy-to-reconstruct configuration

(a) before erosion (b) after erosion

FIG. 3. (Color online) A schematic illustration of erosion oper-
ation. (a) shows the target grain, whose center of mass is denoted
by “c”. (b) shows the grain morphology after an erosion operation,
where d is the change of the radius of the circle enclosing the grain.
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via the YT procedure. For example, at a certain stage, all the
grains could become equal-sized circles (or spheres in 3D) with
a very low volume fraction, which are easily reconstructed via
the YT procedure. This is to be distinguished from the erosion
method used in Refs. [41,42], in which erosion occurs along
the direction normal to the surface and thus, preserves the
geometrical singularities and particle size distribution in the
eroded microstructures.

IV. RECONSTRUCTING NEARLY
PERCOLATING MICROSTRUCTURE

In this section, we apply the dynamic reconstruction
procedure to generate virtual microstructures of 3D binary
heterogeneous materials in which one of the phases is nearly
percolating. Specifically, two systems are considered here:
a packing of equal-sized hard spheres [44] and a SiC-
particle reinforced Al-matrix composite [45] with a particle-
phase volume fraction close to the corresponding percolation
thresholds. Previous studies have shown that the standard YT
reconstruction using S2 alone significantly overestimates the
degree of clustering of the particle phase in such systems.
In the following, we will show that our procedure not only
correctly reproduces the connectedness of the particle phase
but also reasonably resolve the shape and size distribution for
the SiC particles.

A. Packing of equal-sized hard spheres

We first consider a packing of equal-sized hard spheres
with packing fraction (i.e., volume fraction of the particle
phase) φ = 0.283 (see Fig. 4). The packing is generated
by compressing a low-density initial configuration of N =
199 spheres via the adaptive-shrinking-cell method [46].

The erosion operation described in Sec. III C is employed
to generate a series of auxiliary structures. Specifically, the
spheres are successively shrunk until each sphere is repre-
sented by a single voxel. The resulting series of correlation
functions S

(j )
2 are computed and employed to successively

FIG. 4. (Color online) A packing of N = 199 equal-sized hard
spheres with packing fraction φ = 0.283.

FIG. 5. (Color online) Dynamic reconstruction of a dense hard-
sphere packing system. Auxiliary structures (d)–(f) are succes-
sively reconstructed from the associated correlation functions
(a)–(c) based on previously reconstructed structures as favored initial
configurations.

reconstruct the auxiliary structures, see Fig. 5. The final
reconstruction is shown in Fig. 6(a). It can be clearly seen that
well-separated equal-sized spherical particles are produced.
This is to be contrasted with the S2-alone reconstruction
using the standard YT procedure, in which the particle
phase is connected as shown in Fig. 6(b). To quantitatively
ascertain the accuracy of the dynamic reconstruction, the
two-point cluster function C2 and surface-surface correlation
function Fss computed from both the target and reconstructed
structures are compared in Fig. 6(c). In the case of dynamic

FIG. 6. (Color online) Reconstructed systems based on S2 alone.
(a) Dynamics reconstruction. (b) Standard YT reconstruction. Com-
parison of (c) C2 and (d) Fss computed from the target and
reconstructed microstructures.
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FIG. 7. (Color online) A SiC-particle reinforced Al-matrix com-
posite material with particle volume fraction φ = 0.31. Only the
particle is shown and the matrix is transparent. The linear size
of the system is 200 μm. The whole system is digitized into
100 × 100 × 100 voxels.

reconstruction, the corresponding functions match very well
with one another, indicating the high accuracy of the dynamic
reconstruction. It can be clearly seen that the YT procedure
significantly overestimates the clustering in the reconstruction,
as shown by the long-range C2 in Fig. 6(c). In addition, the
YT reconstruction also overestimates the number of surface
voxels, as indicated by the larger values of Fss , compared to
the target function as shown in Fig. 6(d).

B. SiC/Al composite

Figure 7 shows a model microstructure of SiC-particle
reinforced Al-matrix composite [45] with particle volume
fraction φ = 0.31. It can be seen that the isotropic SiC particles
possess a wide size distribution. Although the particle volume
fraction is close to the percolation threshold, the particle phase
is still disconnected, which makes the system very difficult
to reconstruct using the standard YT procedure based on
S2 alone.

The erosion operation described in Sec. III C is employed to
generate a series of auxiliary structures. Specifically, the SiC
particles are successively shrunk until the smallest particle
is represented by a few voxels. The resulting correlation
functions S

(j )
2 are computed and employed to successively

reconstruct the auxiliary structures, see Fig. 8. The final
reconstruction is shown in Fig. 9(a). It can be clearly seen that
the size distribution of SiC particles are very well resolved
in the reconstruction. This is also quantitatively indicated
from the comparison of the two-point cluster function C2 and
surface-surface correlation function Fss computed from the
target and the reconstruction, as shown in Fig. 9(c). Also shown
is the reconstructed system using the standard YT procedure
from S2 alone [Fig. 9(b)], in which the clustering of the particle
phase is again significantly overestimated.

FIG. 8. (Color online) Dynamic reconstruction of the SiC/Al
composite system. (d)–(f) Auxiliary structures are successively
reconstructed from the (a)–(c) associated correlation functions
based on previously reconstructed structures as favored initial
configurations.

V. RECONSTRUCTING MICROSTRUCTURE EVOLUTION

In this section, we apply the dynamic reconstruction
procedure to reproduce the microstructure coarsening process
in a binary lead/tin alloy aged at 448 K up to 216 hours [35].
It has been shown that the scaled autocorrelation function of
this system, i.e.,

f (r) = S2(r) − φ2

φ(1 − φ)
, (17)

FIG. 9. (Color online) Reconstructed systems based on S2 alone.
(a) Dynamics reconstruction. (b) Standard YT reconstruction. Com-
parison of (c) C2 and (d) Fss computed from the target and
reconstructed microstructures.
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which is same for both the Pb-rich and Sn-rich phases, can be
approximated via the following expression [35]

f (r; t) = exp[−ar/λ(t)] cos[πr/λ(t) + b]/ cos(b), (18)

where a = 3.5 and b = 0.60 are dimensionless fitting param-
eters depending on the aging temperature and Pb composition
and

λ(t) =
[
λ3

0 + (
λ3

f − λ3
0

) t

tf

]1/3

, (19)

where λ0 and λf are respectively the length scale in the
as-processed and final aged microstructures, and tf is the
associated time of aging.

To reconstruct the coarsening process, the two-point cor-
relation function S2 of the Pb-rich phase is computed at
different time points during the evolution, see Fig. 10(a). The
dynamic reconstruction is employed to successively evolve the
microstructure according to the series of S2, see Fig. 10(b). We
note that the coarsening process is diffusion controlled, thus,
the phase morphological changes occur through the two-phase
interface. This makes the surface-evolution kinetics utilized
in our reconstruction procedure naturally mimics the actual
physical evolution process, and therefore highly efficient in
reconstructing the structural evolution.

To quantitatively ascertain the quality of the reconstruction,
the reconstructed system at selected time points are compared
both visually and qualitatively to the 2D optical micrographs
of the alloy at the corresponding time points during the aging
experiment, see the upper panels of Fig. 11. Figures 11(b)
and 11(c) respectively show the two-point cluster function C2

and surface-surface correlation function Fss computed from
the 2D micrographs and 2D slices of the reconstructed alloy
structures. The excellent agreement between the reconstructed
and experimental correlation functions clearly indicates the

FIG. 10. (Color online) Reconstruction of the coarsening process
in a lead/tin alloy from a time-dependent correlation function. (a)–(c)
S2 at different time points during the evolution (i.e., respectively
12, 24, and 48 hours after annealing starts). (d)–(f) The associated
microstructures generated using the dynamic reconstruction in which
only the Pb-rich phase is shown. The coarsening of the phase is
apparent. The linear size of the system is 250 μm. The total annealing
time for the alloy is 216 hours.

FIG. 11. (Color online) Top: Comparison of (a) a 2D optical
micrograph of the alloy at 36 hours after annealing starts and
(b) a corresponding 2D slice of the reconstructed structure at the same
time point. Bottom: Comparison of the two-point cluster functions
(c) C2 and the surface-surface correlation function (d) Fss for the
experimental and reconstructed systems.

accuracy of the dynamic reconstruction in reproducing the
entire microstructure evolution process.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, we have presented a dynamic reconstruction
procedure that allows one to use a series of auxiliary S2 to
accurately reconstruct heterogeneous materials in which one
of the phases is nearly percolating. Such systems are extremely
difficult to reconstruct using the standard YT procedure, which
usually significantly overestimates the degree of clustering
unless additional nonconventional correlation functions con-
taining appropriate topological information are incorporated.
Different from the YT scheme in which the microstructure
space is randomly sampled, our procedure utilizes a series
of auxiliary energy landscapes and surface-evolution kinetics
to bias the microstructure evolution path and improve the
convergence of the reconstruction. This dynamic procedure
can be naturally applied to reconstruct a microstructure evolu-
tion process by continuously evolving a single microstructure
according to a time-dependent correlation function. However,
it is important to note that our dynamic reconstruction
procedure can only be applied in the cases where a target
microstructure or a series of auxiliary S2 is given. If the only
available structural information is a single S2, our procedure
cannot be applied and the standard YT method should be used
instead.

The utility of our procedure is illustrated by success-
fully reconstructing systems containing well-separated particle
phases near percolation such as the hard-sphere packing and
SiC/Al composite, as well as a system containing bicontinuous
interpenetrating phases such as the binary lead/tin alloy. These
examples clearly indicate the validity and efficiency of the
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dynamic reconstruction procedure in generating a wide class
of complex microstructures and structural evolution.

Although the two-point correlation function S2 is em-
ployed as the input structural information for dynamic
reconstruction, this procedure can be easily generalized
to utilize other limited morphological information. For
example, limited-angle projections obtained via in situ
x-ray tomography can be used to reconstruct the continuous
evolution of a single material due to external stimuli [47].
This will significantly reduce the cost to separately recon-

struct individual material microstructures at discrete time
points.
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Jérôme, A. Debuigne, and C. J. Gommes, J. Phys. Chem. B
119, 1706 (2015).

[10] A. P. Roberts, Phys. Rev. E 56, 3203 (1997).
[11] C. L. Y. Yeong and S. Torquato, Phys. Rev. E 57, 495 (1998).
[12] C. L. Y. Yeong and S. Torquato, Phys. Rev. E 58, 224 (1998).
[13] D. Fullwood, S. Kalidindi, S. Niezgoda, A. Fast, and

N. Hampson, Mater. Sci. Eng. A 494, 68 (2008).
[14] D. T. Fullwood, S. R. Niezgoda, and S. R. Kalidindi, Acta Mater.

56, 942 (2008).
[15] A. Hajizadeh, A. Safekordi, and F. A. Farhadpour, Adv. Water

Res. 34, 1256 (2011).
[16] P. Tahmasebi and M. Sahimi, Phys. Rev. Lett. 110, 078002

(2013).
[17] S. Torquato, Appl. Mech. Rev. 44, 37 (1991).
[18] S. Torquato, Phys. Rev. Lett. 79, 681 (1997).
[19] D. Pham and S. Torquato, J. Appl. Phys. 94, 6591 (2003).
[20] B. Lu and S. Torquato, Phys. Rev. A 45, 922 (1992).
[21] S. Torquato and M. Avellaneda, J. Chem. Phys. 95, 6477 (1991).
[22] S. Torquato, J. Beasley, and Y. Chiew, J. Chem. Phys. 88, 6540

(1988).
[23] S. Torquato, J. Chem. Phys. 85, 4622 (1986).

[24] M. E. Frary and C. A. Schuh, Phys. Rev. E 76, 041108 (2007).
[25] S. E. Wilding and D. T. Fullwood, Comput. Mater. Sci. 50, 2262

(2011).
[26] J. Basinger, E. Homer, D. Fullwood, and B. Adams, Scripta

Mater. 53, 959 (2005).
[27] Y. Gueguen and J. Dienes, Math. Geology 21, 1 (1989).
[28] N. Sheehan and S. Torquato, J. Appl. Phys. 89, 53 (2001).
[29] M. G. Rozman and M. Utz, Phys. Rev. Lett. 89, 135501 (2002).
[30] Y. Jiao, F. H. Stillinger, and S. Torquato, Proc. Natl. Acad. Sci.

USA 106, 17634 (2009).
[31] T. Tang, Q. Teng, X. He, and D. Luo, J. Microscopy 234, 262

(2009).
[32] L. M. Pant, S. K. Mitra, and M. Secanell, Phys. Rev. E 90,

023306 (2014).
[33] Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 76, 031110

(2007).
[34] Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 77, 031135

(2008).
[35] Y. Jiao, E. Padilla, and N. Chawla, Acta Mater. 61, 3370 (2013).
[36] S. S. Singh, J. J. Williams, Y. Jiao, and N. Chawla, Metal. Mater.

Trans. A 43, 4470 (2012).
[37] K. M. Gerke, M. V. Karsanina, R. V. Vasilyev, and D. Mallants,

Europhys. Lett. 106, 66002 (2014).
[38] Y. Jiao and N. Chawla, J. Appl. Phys. 115, 093511 (2014).
[39] Y. Jiao, F. H. Stillinger, and S. Torquato, Phys. Rev. E 82, 011106

(2010).
[40] C. J. Gommes, Y. Jiao, and S. Torquato, Phys. Rev. Lett. 108,

080601 (2012).
[41] C. E. Zachary and S. Torquato, Phys. Rev. E 84, 056102

(2011).
[42] E.-Y. Guo, N. Chawla, T. Jing, S. Torquato, and Y. Jiao, Mater.

Character. 89, 33 (2014).
[43] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Science 220, 671

(1983).
[44] Y. Jiao, F. H. Stillinger, and S. Torquato, J. Appl. Phys. 109,

013508 (2011).
[45] N. Chawla, V. Ganesh, and B. Wunsch, Scripta Mater. 51, 161

(2004).
[46] S. Torquato and Y. Jiao, Nature 460, 876 (2009).
[47] H. Li, N. Chawla, and Y. Jiao, Scripta Mater. 86, 48 (2014).

023301-9

http://dx.doi.org/10.1007/BF01020577
http://dx.doi.org/10.1007/BF01020577
http://dx.doi.org/10.1007/BF01020577
http://dx.doi.org/10.1007/BF01020577
http://dx.doi.org/10.1016/j.crhy.2007.08.003
http://dx.doi.org/10.1016/j.crhy.2007.08.003
http://dx.doi.org/10.1016/j.crhy.2007.08.003
http://dx.doi.org/10.1016/j.crhy.2007.08.003
http://dx.doi.org/10.1107/S0021889813003816
http://dx.doi.org/10.1107/S0021889813003816
http://dx.doi.org/10.1107/S0021889813003816
http://dx.doi.org/10.1107/S0021889813003816
http://dx.doi.org/10.1021/jp5086558
http://dx.doi.org/10.1021/jp5086558
http://dx.doi.org/10.1021/jp5086558
http://dx.doi.org/10.1021/jp5086558
http://dx.doi.org/10.1103/PhysRevE.56.3203
http://dx.doi.org/10.1103/PhysRevE.56.3203
http://dx.doi.org/10.1103/PhysRevE.56.3203
http://dx.doi.org/10.1103/PhysRevE.56.3203
http://dx.doi.org/10.1103/PhysRevE.57.495
http://dx.doi.org/10.1103/PhysRevE.57.495
http://dx.doi.org/10.1103/PhysRevE.57.495
http://dx.doi.org/10.1103/PhysRevE.57.495
http://dx.doi.org/10.1103/PhysRevE.58.224
http://dx.doi.org/10.1103/PhysRevE.58.224
http://dx.doi.org/10.1103/PhysRevE.58.224
http://dx.doi.org/10.1103/PhysRevE.58.224
http://dx.doi.org/10.1016/j.msea.2007.10.087
http://dx.doi.org/10.1016/j.msea.2007.10.087
http://dx.doi.org/10.1016/j.msea.2007.10.087
http://dx.doi.org/10.1016/j.msea.2007.10.087
http://dx.doi.org/10.1016/j.actamat.2007.10.044
http://dx.doi.org/10.1016/j.actamat.2007.10.044
http://dx.doi.org/10.1016/j.actamat.2007.10.044
http://dx.doi.org/10.1016/j.actamat.2007.10.044
http://dx.doi.org/10.1016/j.advwatres.2011.06.003
http://dx.doi.org/10.1016/j.advwatres.2011.06.003
http://dx.doi.org/10.1016/j.advwatres.2011.06.003
http://dx.doi.org/10.1016/j.advwatres.2011.06.003
http://dx.doi.org/10.1103/PhysRevLett.110.078002
http://dx.doi.org/10.1103/PhysRevLett.110.078002
http://dx.doi.org/10.1103/PhysRevLett.110.078002
http://dx.doi.org/10.1103/PhysRevLett.110.078002
http://dx.doi.org/10.1115/1.3119494
http://dx.doi.org/10.1115/1.3119494
http://dx.doi.org/10.1115/1.3119494
http://dx.doi.org/10.1115/1.3119494
http://dx.doi.org/10.1103/PhysRevLett.79.681
http://dx.doi.org/10.1103/PhysRevLett.79.681
http://dx.doi.org/10.1103/PhysRevLett.79.681
http://dx.doi.org/10.1103/PhysRevLett.79.681
http://dx.doi.org/10.1063/1.1619573
http://dx.doi.org/10.1063/1.1619573
http://dx.doi.org/10.1063/1.1619573
http://dx.doi.org/10.1063/1.1619573
http://dx.doi.org/10.1103/PhysRevA.45.922
http://dx.doi.org/10.1103/PhysRevA.45.922
http://dx.doi.org/10.1103/PhysRevA.45.922
http://dx.doi.org/10.1103/PhysRevA.45.922
http://dx.doi.org/10.1063/1.461519
http://dx.doi.org/10.1063/1.461519
http://dx.doi.org/10.1063/1.461519
http://dx.doi.org/10.1063/1.461519
http://dx.doi.org/10.1063/1.454440
http://dx.doi.org/10.1063/1.454440
http://dx.doi.org/10.1063/1.454440
http://dx.doi.org/10.1063/1.454440
http://dx.doi.org/10.1063/1.451783
http://dx.doi.org/10.1063/1.451783
http://dx.doi.org/10.1063/1.451783
http://dx.doi.org/10.1063/1.451783
http://dx.doi.org/10.1103/PhysRevE.76.041108
http://dx.doi.org/10.1103/PhysRevE.76.041108
http://dx.doi.org/10.1103/PhysRevE.76.041108
http://dx.doi.org/10.1103/PhysRevE.76.041108
http://dx.doi.org/10.1016/j.commatsci.2011.03.003
http://dx.doi.org/10.1016/j.commatsci.2011.03.003
http://dx.doi.org/10.1016/j.commatsci.2011.03.003
http://dx.doi.org/10.1016/j.commatsci.2011.03.003
http://dx.doi.org/10.1016/j.scriptamat.2005.06.026
http://dx.doi.org/10.1016/j.scriptamat.2005.06.026
http://dx.doi.org/10.1016/j.scriptamat.2005.06.026
http://dx.doi.org/10.1016/j.scriptamat.2005.06.026
http://dx.doi.org/10.1007/BF00897237
http://dx.doi.org/10.1007/BF00897237
http://dx.doi.org/10.1007/BF00897237
http://dx.doi.org/10.1007/BF00897237
http://dx.doi.org/10.1063/1.1327609
http://dx.doi.org/10.1063/1.1327609
http://dx.doi.org/10.1063/1.1327609
http://dx.doi.org/10.1063/1.1327609
http://dx.doi.org/10.1103/PhysRevLett.89.135501
http://dx.doi.org/10.1103/PhysRevLett.89.135501
http://dx.doi.org/10.1103/PhysRevLett.89.135501
http://dx.doi.org/10.1103/PhysRevLett.89.135501
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1073/pnas.0905919106
http://dx.doi.org/10.1111/j.1365-2818.2009.03173.x
http://dx.doi.org/10.1111/j.1365-2818.2009.03173.x
http://dx.doi.org/10.1111/j.1365-2818.2009.03173.x
http://dx.doi.org/10.1111/j.1365-2818.2009.03173.x
http://dx.doi.org/10.1103/PhysRevE.90.023306
http://dx.doi.org/10.1103/PhysRevE.90.023306
http://dx.doi.org/10.1103/PhysRevE.90.023306
http://dx.doi.org/10.1103/PhysRevE.90.023306
http://dx.doi.org/10.1103/PhysRevE.76.031110
http://dx.doi.org/10.1103/PhysRevE.76.031110
http://dx.doi.org/10.1103/PhysRevE.76.031110
http://dx.doi.org/10.1103/PhysRevE.76.031110
http://dx.doi.org/10.1103/PhysRevE.77.031135
http://dx.doi.org/10.1103/PhysRevE.77.031135
http://dx.doi.org/10.1103/PhysRevE.77.031135
http://dx.doi.org/10.1103/PhysRevE.77.031135
http://dx.doi.org/10.1016/j.actamat.2013.02.026
http://dx.doi.org/10.1016/j.actamat.2013.02.026
http://dx.doi.org/10.1016/j.actamat.2013.02.026
http://dx.doi.org/10.1016/j.actamat.2013.02.026
http://dx.doi.org/10.1007/s11661-012-1451-7
http://dx.doi.org/10.1007/s11661-012-1451-7
http://dx.doi.org/10.1007/s11661-012-1451-7
http://dx.doi.org/10.1007/s11661-012-1451-7
http://dx.doi.org/10.1209/0295-5075/106/66002
http://dx.doi.org/10.1209/0295-5075/106/66002
http://dx.doi.org/10.1209/0295-5075/106/66002
http://dx.doi.org/10.1209/0295-5075/106/66002
http://dx.doi.org/10.1063/1.4867611
http://dx.doi.org/10.1063/1.4867611
http://dx.doi.org/10.1063/1.4867611
http://dx.doi.org/10.1063/1.4867611
http://dx.doi.org/10.1103/PhysRevE.82.011106
http://dx.doi.org/10.1103/PhysRevE.82.011106
http://dx.doi.org/10.1103/PhysRevE.82.011106
http://dx.doi.org/10.1103/PhysRevE.82.011106
http://dx.doi.org/10.1103/PhysRevLett.108.080601
http://dx.doi.org/10.1103/PhysRevLett.108.080601
http://dx.doi.org/10.1103/PhysRevLett.108.080601
http://dx.doi.org/10.1103/PhysRevLett.108.080601
http://dx.doi.org/10.1103/PhysRevE.84.056102
http://dx.doi.org/10.1103/PhysRevE.84.056102
http://dx.doi.org/10.1103/PhysRevE.84.056102
http://dx.doi.org/10.1103/PhysRevE.84.056102
http://dx.doi.org/10.1016/j.matchar.2013.12.011
http://dx.doi.org/10.1016/j.matchar.2013.12.011
http://dx.doi.org/10.1016/j.matchar.2013.12.011
http://dx.doi.org/10.1016/j.matchar.2013.12.011
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1063/1.3524489
http://dx.doi.org/10.1063/1.3524489
http://dx.doi.org/10.1063/1.3524489
http://dx.doi.org/10.1063/1.3524489
http://dx.doi.org/10.1016/j.scriptamat.2004.03.043
http://dx.doi.org/10.1016/j.scriptamat.2004.03.043
http://dx.doi.org/10.1016/j.scriptamat.2004.03.043
http://dx.doi.org/10.1016/j.scriptamat.2004.03.043
http://dx.doi.org/10.1038/nature08239
http://dx.doi.org/10.1038/nature08239
http://dx.doi.org/10.1038/nature08239
http://dx.doi.org/10.1038/nature08239
http://dx.doi.org/10.1016/j.scriptamat.2014.05.002
http://dx.doi.org/10.1016/j.scriptamat.2014.05.002
http://dx.doi.org/10.1016/j.scriptamat.2014.05.002
http://dx.doi.org/10.1016/j.scriptamat.2014.05.002



