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Mesoscopic magnetomechanical hysteresis in a magnetorheological elastomer
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Field-induced magnetostatic interaction in a pair of identical particles made of a magnetically soft ferromagnet
is studied. It is shown that due to saturation of the ferromagnet magnetization, this case differs significantly from
the (super)paramagnetic one. A numerical solution is given, discussed, and compared with that provided by a
simpler model (nonlinear mutual dipoles). We show that for multidomain ferromagnetic particles embedded in
an elastomer matrix, as for paramagnetic ones in the same environment, pair clusters may form or break by a
hysteresis scenario. However, the magnetization saturation brings in important features to this effect. First, the
bistability state and the hysteresis take place only in a limited region of the material parameters of the system.
Second, along with the hysteresis jumps occurring under the sole influence of the field, the “latent” hysteresis is
possible which realizes only if the action of the field is combined with some additional (nonmagnetic) external
factor. The obtained conditions, when used to assess the possibility of clustering in real magnetorheological
polymers, infer an important role of mesoscopic magnetomechanical hysteresis for the macroscopic properties
of these composites.
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I. INTRODUCTION

Magnetorheological (MR) polymers, magnetoactive elas-
tomers, ferrogels, etc., all these terms designate polymer
composites filled with ferromagnetic microparticles. If the
initial (zero-strain) elastic modulus of such a material is
sufficiently low (100 kPa range), the composite displays strong
magnetomechanical effect under moderate (∼1 kOe) fields.
The phenomenon is yet more pronounced in case of a ferrogel
where the matrix is made of a polymer gel or hydrogel, so that
the effective modulus is just few tens of kPa.

In general, MR polymers and ferrogels altogether could be
termed as materials with magnetic field-tuned rheology, which
originates from intrinsic coupling between the components.
This coupling is rather complicated since it emerges as a
result of a number of interactions. First, under the influence
of external field the particles, initially multidomain and
thus demagnetized, acquire magnetic moments and via them
enter in the long-range magnetostatic interaction with each
other. The occurring distribution of anisotropic magnetic
forces strives to organize the particles, e.g., in chains or
strands. As the particles are sitting in a polymer matrix, their
tendency to move in response to the field is opposed by the
elastic (restoring) forces. Being induced by the particles, the
elastic forces, which are also long range and anisotropic,
are nonuniformly distributed over the sample. Therefore, the
observed macroscopic behavior of a MR polymer reflects the
net action of multiple processes establishing magnetoelastic
balance at the mesoscopic (interparticle distance) scale. In
technologically interesting MR systems, where the volume
fraction of particles ranges in tens of percent, the particle
size and the interparticle distances are of the same order
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of magnitude that sets the mesoscopic scale to units of
microns.

The theory of MR composites in question is closely related
to that of electrorheological (ER) and magnetorheological
suspensions, and to a good extent borrows from the latter [1–3].
Certain essential differences should be remarked, however.
First, in MR polymers the particles are not free to move in the
matrix. Because of that, the aggregation processes governed
in ER and MR suspensions solely by minimization of the
electrostatic (magnetostatic) energy, in MR polymers never
come “to the end” for they are counteracted by the matrix
elasticity. Second is the difference between MR composites
(either polymeric or fluid) and their ER analogs. Note that
under any conceivable conditions the relation between the
electric polarization and field may be taken as linear: P =
(εp − ε)E/4π . This means that both dielectric permeabilities:
εp, that of the particle substance (e.g., silica gel), and ε, that
of the dispersing medium (matrix), do not depend on the field
strength. Due to this constancy, the distribution of electric
potential ψ in an ER system is determined by a Laplace
equation (�ψ = 0) with linear boundary conditions, so that
the equation admits an exact solution whatever the number of
the particles [4].

MR systems are different. As their microparticles are made
of a ferromagnet, most typically of iron, in the absence of
magnetic field, such particles are in the multidomain state,
and their net magnetic moments are nearly zero. At relatively
weak fields, the magnetization occurs mostly due to the growth
of “favorable” domains, and in this regime it, albeit roughly,
might be approximated by a linear law M = χ

(0)
f H , where the

initial internal susceptibility of a ferromagnet is rather high:
χ

(0)
f ∼ 103–105 emu. With the increase of the field strength,

the increase of M with H gradually slows down and finally
attains saturation: M → Ms = const(H ). One of the often
used empirical relations accounting for nonlinear magneti-
zation of multidomain iron samples is the Frölich-Kennelly
formula [5–7], that incorporates both above-introduced
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material parameters:

M(H ) = χ
(0)
f MsH

Ms + χ
(0)
f H

=
{

χ
(0)
f H for χ

(0)
f H � Ms,

Ms

(
1 − Ms/χ

(0)
f H

)
for χ

(0)
f H � Ms ;

(1)

we note that hereafter the magnetization is assumed to be
isotropic.

Apparently, the magnetization law (1) is equivalent to
introducing the nonlinear susceptibility and permeability as

χf (H ) = χ
(0)
f Ms

Ms + χ
(0)
f H

, μp(H ) = 1 + 4πχf (H ). (2)

In a nonconducting medium curl H = 0, and this enables one
to define the magnetostatic potential by the relation H =
−∇ψ in full analogy with the electric case. However, under
a nonlinear magnetization law, substitution of this equation in
the solenoidal condition div(H + 4π M) = 0 for the magnetic
induction, instead of Laplace equation yields a nonlinear one

�ψ = −∇ψ · ∇ ln μp(−∇ψ), (3)

the particular form of which is determined by the particular
dependence of μp on the applied field. As well, nonlinear are
the conditions imposed on the magnetostatic potential inside
(i) and outside (e) of the physical boundary � of each particle:

ψ (i)|� = ψ (e)|�, μp(−∇ψ (i))
∂ψ (i)

∂n

∣∣∣∣
�

= μ
∂ψ (e)

∂n

∣∣∣∣
�

, (4)

where μ is the magnetic permeability of the polymeric matrix
and n the outer normal to the surface. The nonlinearities
imposed by Eqs. (3) and (4) are the essential feature of MR
polymers. Due to that, the exact (linear) solutions of the
Laplace equation, which suffice to deal with ER composites,
are applicable to MR only when considering the range of initial
magnetization (χ (0)

f H � Ms) where a ferromagnet responds
in a quasiparamagnetic way.

In this paper, we consider and discuss the two-particle
interaction problem with magnetic nonlinearities in the MR
polymer context. For the systems in question, especially for
those cured under zero field, it is a fundamental mesoscopic
issue. Indeed, in such composites under zero field, the majority
of the particles dwell as separated entities. The particle
aggregation under the field is mechanically impeded by the
polymer matrix, so that the number of emerging multiparticle
chains is extremely low if any. On the other hand, taking into
account the wide spread of interparticle distances in the ground
state, it is natural to assume that the most probable field-
induced structure patterns would be “dimer” aggregates. Given
that, in the following we consider the field-induced behavior
of a pair of particles positioned inside an elastic matrix
at some distance from one another. Note that this problem
statement differs essentially from that inherent to ER and
MR suspensions. In the latter, the elastic resistance is absent,
and the particles chain up without hindrance. Due to that, the
fundamental mesoscopic issue for ER (MR) suspensions is the
electrostatic (magnetostatic) force on a particle that sits tightly

between others in a long one-dimensional aggregate (chain)
and experiences the influence of a great many of neighbors
from both sides. By now, this problem is studied to a detail
analytically [8] as well as numerically [4,9–14].

II. MAGNETIC FIELD IN A SET OF TWO PARTICLES

Let two identical spherical particles of radius a be em-
bedded in a nonmagnetic (μ = 1) matrix with their centers
positioned at a distance l. Vector l connects the particles 1
and 2 and makes the angle γ with the direction of the uniform
external field H0. The coordinate framework for the problem
is shown in Fig. 1, its center coincides with the center mass of
the pair; axis Oz is directed along H0, while the plane yOz

passes through vector l . Taking a as a unit of length, we denote
the intercenter distance as q = l/a, so that q = 2 corresponds
to the close contact of the particles.

We assume that the particles are made of isotropic magnet-
ically soft ferromagnet. The nonlinearity of the ferromagnet
magnetization is described by the Frölich-Kennelly relation
(1), the nondimensional strengths of the internal H and
external H0 fields are introduced as

h = H/Ms, h0 = H0/Ms. (5)

In this representation, Eq. (1) takes the form

m = χf h, χf = χ
(0)
f

1 + χ
(0)
f h

, (6)

with m = M(H)/Ms .
For the numerical solution of Eqs. (3) and (4), an iteration

algorithm is used, which presents a nonlinear problem as
a sequence of linear ones. The magnetostatic potential is
evaluated inside a cube of finite size d = κ(l + 2a), where
κ � 1 is a numerical coefficient. Outside of the calculational
region, ψ is defined as a sum of potentials of point dipoles,
whose magnetic moments are equal to those of the considered
particles evaluated at the preceding iteration step.

When the calculation begins, the susceptibility χf (r),
which is nonzero only inside of the particles, is taken
to be constant and equal χ

(0)
f . Under this condition, the

magnetostatic potential ψ(r) is evaluated. By differentiating

FIG. 1. (Color online) Coordinate frame for two-particle system.
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it, one obtains the field h(r) in the entire space. From the
spatial distribution of h inside the particles, a new set of values
representing function χf (r) is constructed and used for the
next step of the calculation. Therefore, at each iteration, a
linear magnetostatic problem for a system with a spatially
nonuniform susceptibility is solved, and this procedure is
carried out until the magnetic moments of the particles stop to
change.

The computer code implementing the above-mentioned al-
gorithm is written in PYTHON language. It uses a finite-element
method based at ESYS.ESCRIPT library. The calculational mesh
is thickened in the regions where the largest gradients of
the potential are expected. For that, the size λ1 of the mesh
elements residing on the particle surfaces, which face each
other, is considerably diminished in comparison with λ2,
the size of an element on the “remote” parts of the particle
surfaces. This is done under condition λ2 � λ3, where λ3 is the
mesh size near the outer boundary of calculational region. By
varying the values of λ1−3 and κ , optimal balance between the
accuracy of calculation and the amount of available computer
resources is adjusted.

III. MAGNETIC INTERACTION FORCES

The magnetostatic problem (3) and (4) was solved for
χ

(0)
f = 103 in a wide range of the geometry parameters l and γ

and the nondimensional field strength h0. From this solution,
the interaction energy of the pair is evaluated with the aid of
formula

Umag

M2
s

=
∫ [

1

2
m·(h − h0) −

∫ h

0
m·dh

]
dV

=
∫ [

1

2
m · (h−h0) − χ

(0)
f |h|−ln

(
χ

(0)
f |h|+1

)
χ

(0)
f

]
dV,

(7)

obtained from the corresponding general relation [15]; inte-
gration in Eq. (7) is performed over the particle volumes. In
result, a data array Umag(h0,l,γ ) is obtained.

The magnetic interaction (ponderomotive) forces are ren-
dered by the derivatives of the energy as

f = f n + f τ ,

f n = − l
l2

(
l · ∂Umag

∂ l

)
, f τ = 1

l2

[
l ×

(
l × ∂Umag

∂ l

)]
.

(8)

As seen, vector f n is directed along the center-to-center line
l and determines the attraction (repulsion) force. Another
component of the force f τ is perpendicular to l and lies in
the plane made by vectors h0 and l . The force couple f τ

exerted on particles 1 and 2 induces the torque

M = l × f τ = −l × ∂Umag/∂ l, M = −∂Umag∂γ

that strives to align the center-to-center line of the pair with
the applied field.

The most simple and often used model of the particle mag-
netic interaction is the point dipole approximation. It is valid
at q = l/a � 1 and certainly applies to the MR assemblies

with homogeneous distribution and low concentration of the
particles. In dense MR systems, the particles in majority are
so close to one another that their intercenter distances are of
the order of their own size: q � 2. In this situation, the
point dipole model fails since a substantial contribution to the
interparticle forces comes from the nonuniform magnetization
which the particles induce in one another. For the case of
linear polarization (χf = const), the problem could be solved
rigorously for any q in terms of multipole expansion [4].
Quite expectedly, the differences between the predictions of
linear models (the dipole and the multipole) increase when
the interparticle distance is reduced (q → 2); for the particles
in contact this discrepancy ranges to orders of magnitude
[11,16,17]. However, the common property of these solutions
is the quadratic growth of the force: fn, fτ ∝ h2

0 independently
of the order of the multipole expansion. As remarked in
the above, for real MR polymers the assumption of linear
magnetization may be relied on only in weak field, and it
necessarily breaks down at h0 � 1 where nonlinearity of the
magnetization becomes relevant.

Saturation of magnetization entails saturation of the inter-
particle forces: they no longer depend on the applied field
strength. This behavior is illustrated by Figs. 2 and 3 where
those forces are plotted as functions of the field strength for
several values of the interparticle distance l. In these graphs,
solid lines show the results of our numerical calculation with
allowance for the saturation effect while the parabolic curves
correspond to the solutions based on the linear magnetization
law with the number of multipoles about 100. The dashed
lines are obtained with the aid of a simplified saturation

FIG. 2. (Color online) Attraction force for the head-to-tail con-
figuration as a function of applied field for intercenter distances
q = 2.05 (a), 2.5 (b), 3 (c), 4 (d); numerical solutions (solid
lines), multipole expansion with linear magnetization (dots), NMD
model (dashes). As the magnetic force rapidly falls down with the
interparticle distance, vertical scales of the plots are different.
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FIG. 3. (Color online) Repulsion force for the side-by-side con-
figuration as a function of applied field for intercenter distances
q = 2.05 (a), 2.5 (b), 3 (c), 4 (d); numerical solutions (solid lines),
multipole expansion with linear magnetization (dots), NMD model
(dashes).

model, where the particles are considered as point dipoles.
The latter approximation, which we term nonlinear mutual
dipoles (NMD), extends the linear dipole models introduced
in [18,19]. A brief account of the NMD model is given in the
Appendix.

As seen from Fig. 2, for the head-to-tail (γ = 0◦) con-
figuration, the field of the neighbor contributes substantially
to the particle saturation. For example, for q = 2.05 the linear
multipole expansion [Fig. 2(a)] breaks down already at h0 � 1.
The same figure evidences that at small interparticle distances
the NMD model, which accounts for nonlinearity but assumes
uniformity of the particle magnetization, fails as well.

When the particles are not too close (q � 3), all the
solutions resemble one another up to the crossover region,
where the magnetization passes from increase to saturation.
Under further growth of the field, the NMD model fairly
well reproduces the numerical solution while the linear
magnetization approximation hopelessly overestimates the
interparticle force. For the repulsion forces (γ = 90◦), as Fig. 3
shows, the NMD model becomes reasonably valid already at
q � 2.5.

Comparing Figs. 2 and 3, one finds that the interaction
forces in the head-to-tail and side-by-side particle configura-
tions saturate at different values of the magnetic field. For
example, at q = 2.5 the attraction force attains maximum
at h0 ∼ 3.5, although at the same value of q the repulsion
force is yet about half-maximum. This difference has a simple
explanation. In the head-to-tail configuration, the particle
magnetization is enhanced due to the presence of its neighbor
and by that brought closer to saturation. In the side-by-side
pattern the presence of a neighbor reduces the field inside a
given particle and, thus, diminishes its magnetization.

In Fig. 4, the dependence of the attraction and repulsion
forces on the interparticle distance for the head-to-tail pattern
is presented. As seen, with allowance for saturation, the
applicability of a model depends on the field strength. If
the field h0 is far from the saturation range, the particle
mutual approach augments the local field h and, thus, induces
a considerable increase of magnetization. Due to that, in

FIG. 4. (Color online) Attraction force for the head-to-tail con-
figuration as a function of intercenter distance for the field strength
h0 = 1 (a), 2 (b), 3 (c), 4 (d); numerical solutions (solid lines),
multipole expansion with linear magnetization (dots), NMD model
(dashes).

Fig. 4(a) the exact solution looks very much like that for
linearly polarizable particles (points). In a strong external field,
which is capable by itself to bring the particles to saturation
[the situation shown in Figs. 4(c) and 4(d)], the NMD model
(dashes) fairly well reproduces the exact solution.

For the side-by-side pattern (see Fig. 5), the local field
results in mutual demagnetization of the particles. Because of
that, inside the particles even a seemingly strong external field
is reduced to such extent that the transition to saturation is
substantially “postponed.” As a result, the model that assumes
linear magnetization of the particles (points) is reasonably

FIG. 5. (Color online) Repulsion force for the side-by-side con-
figuration as a function of intercenter distance for the field strength
h0 = 1 (a), 2 (b), 3 (c), 4 (d); numerical solutions (solid lines),
multipole expansion with linear magnetization (dots), NMD model
(dashes).
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close to the exact solution for any field within the studied
interval.

IV. MAGNETOMECHANICAL HYSTERESIS
OF THE PARTICLE PAIR

For a pair of magnetizable particles embedded in a polymer,
the forces of their magnetic and elastic interaction are mutually
dependent. The situation is as follows. The external field
magnetizes each of the particles making them the sources of
nonuniform (local) fields. Therefore, the equilibrium distri-
bution of magnetization inside a given particle is established
under joint influence of the external field H0 and the local
field H l(q) of the neighbor. Let at zero field the particles be
positioned at a distance q0 = l/a. Switching on of H0 induces
the magnetostatic force f (q0) on each particle, and due to that
the interparticle displacement �q occurs. Upon that, the local
field is changed to H l(q0 − �q), which, in turn, affects the
magnetization distribution inside each particle and, finally, the
interparticle force. As the above-presented solutions show, a
full account for the forces between magnetically soft particles
is especially important when the particles are close, i.e., the
MR system is dense (2 < q0 < 4).

At each stage of the field-induced displacement, the
magnetic forces are counteracted by the resistance of the
matrix. The elastic forces are the greater the larger �q. Note
that at short interparticle distances (2 < q0 < 4), even small
absolute shifts of the matrix produce large strains. This means
that, when describing the elastomer, one has to take into
account the nonlinearity of its elastic properties. We do that
with the aid of the Mooney-Rivlin model which is known [20]
to fairly well render the deformational behavior of hyperelastic
polymers (elastomers).

To deal with the mechanical behavior of the pair, in
Ref. [17], having first numerically solved a reference problem,
we proposed an approximation for function Uel(q,q0) that
yields the elastic energy increment of the particles which
have been moved along their intercenter line from the initial
separation q0 to q. Our formula uses an auxiliary scheme
comprising three nonlinearly elastic cylindrical rods, whose
material is described by the Mooney-Rivlin potential

W̃k = Wk/c1 = [I1(Ck) − 3] + c̃2[I2(Ck) − 3], (9)

with k = 1, 2, 3. Here, c1 and c̃2 = c1/c2 are the parameters
characterizing elastomer, and the invariants of the Cauchy-
Green tensors Ck are expressed through the strains λk of the
rods as

I1(Ck) = 2/λk + λ2
k, I2(Ck) = 1/λ2

k + 2λk.

In these notations, the approximate formula for the elastic
energy takes the form

Uel/c1 = π

3∑
k=1

(2 − δk1)W̃k r2
k lk,0, (10)

where the radii rk and lengths lk,0 of the rods are adjustable
parameters. The table of them evaluated under assumption
c̃2 = 0.1 is given in Ref. [17]. There, it is shown that function
(10) with good accuracy reproduces the numerical solution for
intercenter distances q0 � 2.5 and renders fairly reasonable

results for smaller q0, where the numerical calculation is
unstable.

Evidently, our consideration treats the particles in a discrete
(mesoscopic) way: as magnetic entities of finite size, while the
matrix is described with the model taken from macroscopic
rheology. There is no inconsistency, however. The reference
scale we deal with is defined by the particle size, i.e., microns.
In a soft elastomer, the size of structure elements (segments or
blobs) ranges from units to tens of nanometers, i.e., is orders
of magnitude lower. This means that at the micron scale the
rheology of the matrix does not differ substantially from that
displayed by it at the macroscopic (centimeter) scale, for which
the here adopted model was originally proposed and is well
justified [20].

Summing up the magnetic and elastic terms, i.e., Eqs. (7)
and (10), one gets the energy of a pair of ferromagnet
microparticles embedded in elastomer in the head-to-tail
(with respect to the external field) configuration. This func-
tion is

U = Umag (h0,q)|γ=0 + Uel(q,q0), (11)

where Umag depends parametrically on χ
(0)
f and Ms [see

formula (1)], and Uel on the Mooney-Rivlin constants c1 and c2.
Minimization of energy U with respect to q under given

values of the external field h0 and initial intercenter distance
q0 determines the equilibrium size of the pair. Analysis of
function U (h0,q,q0) reveals that in a certain applied field
range, it has two coexisting minima. This means that the
system displays magnetomechanical bistability. Namely, the
enhancement of field up to certain value h

(1)
0 might induce a

collapse of a pair in a tight cluster: q � 2. This effect occurs in a
hysteretic manner (the first-order transition): under diminution
of the field the cluster breaks apart at the field h

(2)
0 < h

(1)
0 . We

note that the considered particles are of micron size and, thus,
are massive enough to entirely neglect the effect of Brownian
motion on the transition thresholds.

To characterize the ability of the system for transitions, we
rewrite Eq. (11) as

Ũ (h0,q,q0) = U/(c1a
3) = βŨmag(h0,q) + Ũel(q,q0), (12)

thus introducing nondimensional energies Ũmag =
Umag/(Msa

3) and Ũel = Uel/(c1a
3) convenient for

calculations, and parameter

β = M2
s /c1 , (13)

which defines the ratio of the energy of two magnetically
saturated particles to their elastic energy in the matrix. In
Fig. 6, the profiles of function Ũ under varying field are shown.
Depending on the value of β, two qualitatively different cases
of bistability are encountered. The left panel shows the energy
profile of the head-to-tail pair in a “soft” material (β = 47).
As seen, in a weak field there exists only one energy minimum
corresponding to an insignificant change of the initial size
(curve 1). With the increase of the field, the second minimum
emerges (curves 2 and 3): the system enters the bistability
regime. Further on, the “far” minimum disappears (curve 4),
and the only remaining stable state is the cluster one. Moreover,
the position and depth of this only minimum cease to change
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FIG. 6. (Color online) Interaction energy profiles at q0 = 4 for
“soft” (β = 47, left panel) and “rigid” (β = 27, right panel) systems
under applied field h0 = 1 (1), 2 (2), 3 (3), 4 (4), 5 (5).

as soon as the particles become magnetically saturated (cf.
curves 4 and 5).

In a more rigid system (β = 27) (see the right panel of
Fig. 6), the bistability, having once occurred (curve 3), persists
up to the values of the field strength which saturate the particle
magnetization. As a result, the potential Ũ retains its two-well
profile however high h0. In this case, the magnetomechanical
hysteresis is “latent”: the cluster state, although being possible,
is never occupied since the “far” minimum never disappears.
However, as seen from the right panel of Fig. 6, had a cluster
formed somehow (in a strong field), then under the field
diminution it would necessarily break up, and the particles
would move apart to their initial intercenter distance q0.

This bistability region is restricted with respect to the pair
size. The upper bound q

(up)
0 is due to the nonlinearity of particle

magnetization. Consider a perfect cluster whose intercenter
distance is q∗ = 2; under saturation, its magnetic energy attains
absolute minimum Ũ∗ = Ũmag(q∗), which value is finite and
independent of h0. Apparently, −Ũ∗ yields the maximum for
magnetic energy decrement �Ũmag under arbitrary change of
interparticle distance. On the other hand, the increment of
elastic energy equals �Ũel(q∗,q0), does not depend on the
field, and grows unboundedly with q0. This means that at q0’s
large enough (e.g., in a dilute system) the elastic forces prevent
clustering.

The lower bound q
(dn)
0 of the bistability region is imposed

by the nonlinearity of the elastic force. Note that the Mooney-
Rivlin model, like many others, reflects a fundamental fact that
an elastomer becomes the stiffer the larger the strain. When
the particles are very close (q0 � 2), then a small displacement
entails large strain and, thus, high increment of the elastic
energy. Thus, even upon driving closely positioned particles
up to magnetic saturation, one is unable to notably change the
interparticle distance: the medium in the gap becomes too stiff
to be compressed by the magnetic forces available.

Therefore, one concludes that for the considered system, the
bistability region is restricted to the range (q(dn)

0 ,q
(up)
0 ). With

the growth of saturation magnetization Ms of the ferromagnet
and the softness of the matrix, this interval widens: the lower
bound q

(dn)
0 decreases, while the upper bound q

(up)
0 grows.

Comparing the bistability properties of magnetically sat-
urable (ferromagnetic) particles with those of linearly magne-
tizable (paramagnetic) ones studied in Ref. [17], we remark
two essential differences. First, for paramagnetic particles the

FIG. 7. (Color online) Interparticle distance as a function of the
applied field strength for the pairs of different initial sizes: q0 = 2.1
(1), 2.5 (2), 3 (3), 3.5 (4), 4 (5); parameter β = 18.

magnetic hysteresis could be induced at any pair size q0 pro-
vided the field is strong enough. Second, an exclusive property
of the saturating system is the lack of magnetomechanical
hysteresis albeit the bistability is present.

Consider the state where under a certain value of h0

the energy profile Ũ (q) (due to the change of Ũmag) has
transformed from a single-well to a double-well one. If this
occurs at h0 that is close to the saturation level, then any
further increase of the field does not affect Ũmag, so that the
energy function Ũ becomes independent of h0. In this case,
the situation is bistable but the hysteresis remains “latent”: the
cluster state (the energy minimum at q � 2) does exist but the
system would not attain it whatever the field.

The afore given qualitative analysis makes it easy to under-
stand the plots of Fig. 7 obtained with numeric calculations
via Eq. (12), which present the field-induced deformations
of the ferromagnet particle pairs of different initial size. As
mentioned, for very close particles the alternative energy
minima virtually coincide, and the cluster formation undergoes
gradually (curve 1). The magnetomechanical hysteresis really
emerges at larger initial sizes; for the assumed value β = 18
this interval is located at 2.5 < q0 < 3.5 (curves 2 and 3).
There, the jumps of the intercenter distance are significant. At
greater q0, the hysteresis becomes “latent” (curve 4): under
the increase or decrease of the field the actual deformation
of the pair q(h0) remains single valued since only the upper
branch of curve 4 works. Meanwhile, the bistability interval
(the region where curve 4 is double valued) spans to infinity
with respect to h0. This implies that if a cluster is formed
(due to some nonmagnetic intervention), the system would
balance its intrinsic magnetic and elastic forces in such a way
that this cluster would be stable under any field exceeding the
threshold (curve 4, lower branch). For the pairs of yet larger
size, the hysteresis is impossible (curve 5) because even under
saturation the magnetic forces are too weak to match the elastic
ones.

V. DISCUSSION AND CONCLUSIONS

Our results feature the field-induced mechanical response
of ferromagnet particles embedded in an elastomer. Those
particles have nonlinear (field-dependent) susceptibility, and
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FIG. 8. (Color online) Diagram of states for magnetomechanical
hysteresis in a pair of ferromagnet particles embedded in an elastic
matrix and magnetized in head-to-tail configuration; the shaded
region corresponds to realizable hysteresis, the hatched region to
the “latent” one.

their magnetization cannot exceed the saturation level. Due to
that, the interparticle forces depend on the field strength only
within a certain range. By that, the ferromagnet case differs
qualitatively from the paramagnet one, where the magnetic
forces obey universal scaling ∝H 2

0 , i.e., grow unboundedly.
For a saturating ferromagnet, the forces do not scale as any
fixed power of the field strength, that excludes construct-
ing of handy approximations similar to those proposed for
paramagnets in Refs. [17,19]. Quantitative difference with
paramagnets is due to the fact that a ferromagnet (e.g., iron)
has initial susceptibility χ

(0)
f that ranges 103–105 emu (see

[5], for example), while for (super)paramagnets χ is orders of
magnitude lower. For instance, according to Ref. [19], the sus-
ceptibility of the magnetic filling of Dynabead microspheres
is ∼0.96/4π � 0.08 emu.

The magnetoelastic energy of a pair of magnetic particles
embedded in an polymer is a combination of mutual attraction
due to ponderomotive force and effective mutual repulsion
caused by the elastic resistance of the matrix. As shown
in Ref. [17], if the particles are paramagnetic, application
of a field modifies this energy in such a way that the pair
becomes bistable. In other words, there simultaneously exist
two minima, one of which corresponds to an “expanded”
pair (whose interparticle distance is close to the initial one),
while another minimum favors a pair-cluster state. On the field
growth beyond the bistability region, the first energy minimum
disappears, and the cluster state remains the only one possible.
Therefore, cluster formation in a paramagnetic pair evolves
along the hysteresis scenario. Moreover, this effect occurs at
any initial interparticle distance provided the field is strong
enough.

The above-presented results predict that for ferromagnetic,
i.e., magnetically saturating, particles the same scenario is
possible as well. However, the saturation effect restricts
occurrence of the magnetomechanical hysteresis to a limited
parameter domain however strong is the field. Figure 8 presents
the diagram of states for the considered “two-particle” MR
polymer in the (q0,β) plane. The solid line marks the border
above which (shaded area) an abrupt transition to the cluster

state could be induced solely by application of external field.
The part in-between the solid and dashed lines (hatched
area) corresponds to the bistability region, where hysteresis
is “latent.” By that we imply that the transition to cluster state
might be provoked only by a combined action of the field and
some other factor: mechanical stress, for example. We remark
that the finite thickness of both lines in Fig. 8 reflects the
accuracy of our calculations but, as seen, in the scale of the
plot this uncertainty is not very significant.

The lowest point of the boundary in Fig. 8 has coordinates
q0 � 2.7 and β � 11. To the right of this point, the solid and
dashed curves ascend, evidencing that the higher the saturation
magnetization (at given elasticity of the matrix), the more
remote particles are able to clusterize. In this connection we
remark that for linearly magnetizable particles (no saturation)
considered in Ref. [17], the value of Ms is formally infinity,
so that β = ∞ as well. Because of that, in Fig. 8 the
paramagnetic region is located infinitely upward, meaning that
for paramagnetic particles the magnetomechanical hysteresis
is possible for any initial intercenter size of the pair. The ascend
of the boundary line β(q0) in Fig. 8 to the left of the minimum
point is caused by the fact that the Mooney-Rivlin (as well as
any other) elastomer stiffens under enhanced strain. In other
words, to build up a cluster of the particles, which initially are
positioned close to one another, requires enhanced magnetic
force.

Evidently, the considered “two-particle” MR composite is
far too simple a model to be justifiably applied to real materials.
However, let us try it for estimating the parameters of an MR
elastomer liable to mesoscopic hysteretic processes. The latter
are believed to entail important macroscopic consequences,
viz., drastic growth of the elastic modulus and the field-induced
plasticity effect. To get to numerical values, we note that
coefficients c1,2 which define the magnitude of the Mooney-
Rivlin potential (9) are related to the Young modulus E of
the matrix as E = 6c1(1 + c̃2) [20]. At the minimum point
of the diagram of Fig. 8, one has β ∼ M2

s /c1 ∼ 10 that upon
substitution of M2

s ∼ 3 × 106 emu2 (iron) sets the reference
value to E∗ ∼ 2 × 106 dyn/cm2 = 200 kPa.

The obtained estimate E∗, being derived from the position
of the lowest point of the border in Fig. 8, yields the
maximal value of the modulus of a system allowing for
magnetomechanical hysteresis. In typical soft MR elastomers,
the Young modulus Ec obtained in macroscopic experiments
ranges 20–100 kPa [21,22], i.e., is lower than E∗. Moreover,
one should recall that the considered magnetomechanical
hysteresis is a mesoscopic effect. Therefore, the value of E

entering the estimates is the modulus of the polymer matrix
itself and not the Young modulus of composite as a whole.
To relate E and Ec, we assume a rubberlike elastomer filled
with chemically inert solid spherical microparticles. At the
particle volume fraction of about 25%–30%, the modulus Ec

of such a system exceeds that of its matrix three to four times
(see [23], for example). Setting Ec = 3E, from the reference
range of Ec, one finds E ∼ 10–30 kPa, that fairly well ensures
condition E < E∗ ∼ 200 kPa.

An external field, when applied to such an MR elastomer,
should induce there abundant formation of clusters, twosome
or multiparticle. Those aggregates fit very well the role of
“magnetic staples” [24,25], which make and maintain the
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intrinsic stress in the structure and live as long as the field
is on. These entities are believed to cause the observed growth
of elastic modulus and the transition of an MR material to
plasticity state [21,26,27]. Another mechanism that contributes
to the same is the “latent” hysteresis. As shown, this mode of
clustering cannot develop in a sample that is entirely free from
external stress. However, any mechanical test means imposing
some deformations and, thus, stresses. These stresses may
well transform a possible hysteresis to a real one, thus forming
additional clusters, which, once having emerged, would exist
until the field would turn too low. According to Fig. 8, with
allowance for the latent hysteresis, the material parameter
range within which clusters emerge widens considerably.

In conclusion, the two-particle model, notwithstanding
obvious shortcomings of the latter, yields the estimates which
are completely reasonable, at least by an order of magnitude.
On this basis, we infer that mesoscopic magnetomechanical
hysteresis, the origin of which is clarified here, is an important
mechanism of structure rearrangement in MR elastomers. Ev-
idently, in order to correctly account for it on the macroscopic
level, the mesoscopic model should be “processed” with the
aid of homogenization schemes developed, for example, in
Refs. [28,29]. By that, the continuum equations of MR polymer
magnetomechanics could be extended for the case of materials
subjected to intense particle clusterization.
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APPENDIX: NONLINEAR MUTUAL DIPOLES MODEL

Nonlinear mutual dipoles (NMD) approximation assumes
that the particles are so (i) small and (ii) so remote from one
another (a � l), that the intrinsic magnetic field H always may
be treated as uniform, and the same applies to the induced
magnetization M. The particle substance (a multidomain
ferromagnet) magnetizes according to a certain nonlinear law
and saturates in a strong field.

Consider a spherical particle of such a kind, whose magnetic
susceptibility χf is isotropic. For this particle, the relation
between the external field Hext and the internal one is given
by the relation

H = Hext − 1

3
χf H = Hext − μ

3V
, (A1)

where V is the particle volume. Possessing magnetic moment
μ, the particle creates in the outer space the dipolar field

Hd = − μ

|r|3 + 3
(μ·r)r

|r|5 . (A2)

Let there be a pair of such particles with the centers
positioned at distance l from one another. Then, the field acting
on the magnetic moment of particle 2 is a sum of the externally
applied field H0 and the dipolar field of particle 1 that is given
by formula (A2). Due to permutation symmetry 1 ↔ 2, the
magnetic moments of the particles as well as the respective
dipolar fields are equal. Substituting the sum H0 + Hd in
Eq. (13) and setting r = l , one gets the equation for evaluation
of the magnetic moment of either particle:

μ = χ

[
H0 − μ

3V
− μ

l3
+ 3

(μl)l
l5

]
. (A3)

Consider for a pair of such particles the same situation as
in Sec. IV, i.e., the head-to-tail configuration. In that case, all
the fields are directed along H0, and in Eq. (A3) only one
component is relevant. It yields

H = H0 − χf H

(
1

3
− 2V

l3

)
. (A4)

We introduce nonlinear magnetization by substituting in
Eq. (A4) the Frölich-Kennelly relation (6), and get as a result
a quadratic equation for the nondimensional field h = H/Ms :

h2 +
(

1

χ
(0)
f

− h0 + ρ

)
h − h0

χ
(0)
f

= 0, ρ = 1

3
− 2V

l3
.

(A5)
Upon substituting its solution in Eq. (6), we find the nondi-
mensional magnetization m as a function of h0, χ

(0)
f , and ρ,

that is in fact of l. Then, the particle magnetic moment is

μ = mMsV = χ
(0)
f hMsV

1 + χ
(0)
f h

, (A6)

and from it the pair interaction energy U
(dp)
mag is obtained.

Differentiation of the latter renders the interparticle forces in
the NMD approximation. Those results are shown in Figs. 2–5
by dashed lines.
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