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Hierarchical porous media are multiscale systems, where different characteristic pore sizes and structures
are encountered at each scale. Focusing the analysis to three pore scales, an upscaling procedure based on
the volume-averaging method is applied twice, in order to obtain a macroscopic model for momentum and
diffusion-dispersion. The effective transport properties at the macroscopic scale (permeability and dispersion
tensors) are found to be explicitly dependent on the mesoscopic ones. Closure problems associated to these
averaged properties are numerically solved at the different scales for two types of bidisperse porous media.
Results show a strong influence of the lower-scale porous structures and flow intensity on the macroscopic
effective transport properties.
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I. INTRODUCTION

Porous systems often exhibit hierarchical configurations,
where for instance the solid matrix at the mesoscopic scale is
itself microporous. Another example concerns porous media
where the impermeable solid mesostructure is embedded in a
finer saturated porous medium, itself eventually embedded in
another finer porous structure, and so on (see Fig. 1). In other
words, the pores at a given scale are filled with a finer porous
medium with a structure that is not necessarily the same as the
structure at the upper scale.

This type of hierarchical porous media has been character-
ized using several terminologies depending on the number of
scales and the associated porous morphologies. For example,
two-scale porous structures composed of spherical solid
particles are described as “binary mixture” [1], “multisized”
porous media [2–4], “bimodal” distribution of particles [5,6],
or “bidisperse” [7,8]. This latter terminology has been widely
used to describe transfer phenomena in catalyst pellets where
the porous architecture is represented by micro- and macropore
network, the terminology “bidisperse” being in that case the
dispersion of the pore size instead of the grain size [9–11].

Although these multiscale porous structures are present in
a large variety of applications (packed-bed reactors, sandy
soils,...), few attempts have been performed in order to
propose averaged models taking into account the hierarchical
dependence on the geometry and the physics at the different
scales of the system. Part of the studies have been devoted to the
determination of the permeability. Modified expression of the
Kozeny-Carman relationship have been obtained for porous
structures composed of multisized spherical particles [1–3,8]
or for bimodal fibrous porous media [6,12]. Moutsopoulos and
Koch [7] considered a bidiperse porous medium composed of
spheres of two different characteristic length scales. Using
ensemble averaging they showed that the smaller grains have
higher influence on the permeability, while large grains have a
stronger effect on dispersive phenomena. The contribution of
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the mass transfer boundary layer on the effective dispersion at
the larger scale was emphasized. Yet, one limitation of their
work is that the theory for moderate and highly permeable
media were developed separately.

The objective of the present study is to derive a general
macroscopic model for momentum and solute dispersion in
a hierarchical porous structure featuring several intermediate
scales. For the sake of conciseness, the analysis is here per-
formed on a three-scale hierarchical porous configuration such
as the one represented in Fig. 1. Two upscalings are carried
out using the volume-averaging method [13]. The effective
transport properties (permeability, diffusion-dispersion coeffi-
cient) at the largest scale are found to be explicitly dependent
on the intermediate and smaller geometrical characteristics
and physical phenomena. Note that similar analyses have
been performed in the context of large-scale averaging of
heterogeneous porous media for momentum [14–17] and
solute transport [18–21]. However, the present work differs
from the above-cited references in two main points. First,
as previously mentioned, the hierarchical porous structures
considered here are characterized by impermeable solid matrix
embedded in finer porous region. Second, momentum transport
is governed by the Darcy-Brinkman equation, allowing to
represent high mesoscale permeability values. This leads to
nonuniform velocity fields at the intermediate scale, giving
rise to nonlinear closure problems for the determination of
the macroscopic transport properties. Nevertheless, although
different, the analysis for solute dispersion is based on a similar
spatial decomposition of the effective diffusion-dispersion
coefficient at the mesoscopic scale [18,19]. Numerical results
illustrate the dependence of the macroscopic effective proper-
ties on the micro- and mesoscale phenomena.

II. DERIVATION OF THE MESOSCALE MODEL

The hierarchical multiscale porous structure under con-
sideration is represented in Fig. 1. At the microscopic scale
(scale III) the porous structure is composed of a rigid and
inert solid matrix (κ-phase) saturated by a newtonian fluid
(α-phase). The porous medium is assumed to be homogeneous,
and the physical properties of both the fluid and solid phases
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FIG. 1. Representation of the hierarchical porous medium and
definition of the different regions.

are constant. In addition, the flow is supposed to be laminar
and incompressible. Therefore, at scale III, the conservation
equations for momentum and mass of a species A take the
classical form

∇ · vα = 0, (1)

ρα

∂vα

∂t
= −∇pα + ραg + μα∇2vα, (2)

vα = 0 at Aακ, (3)

∂cAα

∂t
+ vα · ∇cAα = ∇ · (DAα∇cAα), (4)

−nακ · (DAα∇cAα) = 0 at Aακ, (5)

where vα , pα , and cAα are, respectively, the velocity, pressure,
and concentration in the α-phase. ρα , μα , and DAα are the
density, the dynamic viscosity, and the molecular diffusivity
coefficient of the α-phase, while g is the gravity. Equations (3)
and (5) are boundary conditions representing, respectively,
no-slip and no-species flux at the fluid-solid interface Aακ ,
and nακ is the unit normal vector oriented from the α-phase
toward the κ-phase.

Averaging the above problem using the volume-averaging
method [13] has been largely detailed in the literature [13,22–
25], and for conciseness only the resulting mesoscopic model
at scale II is provided here,

∇ · 〈vα〉β = 0, (6)

ραε−1
α

∂〈vα〉β
∂t

= −∇〈pα〉αβ − μα

K∗
α

〈vα〉β

+μαε−1
α ∇2〈vα〉β + ραg, (7)

∂
(
εα〈cAα〉αβ

)
∂t

+ 〈vα〉β · ∇〈cAα〉αβ = ∇ · (
D∗

Aα · ∇〈cAα〉αβ
)
,

(8)

in which 〈vα〉β is the superficial averaged velocity defined by

〈vα〉β = 1

VIII

∫
Vα

vα dV, (9)

where VIII is the volume of the averaging volume at scale III,
and Vα is the volume of the α-phase within VIII. Moreover,
〈pα〉αβ and 〈cAα〉αβ are the intrinsic averaged pressure and
concentration (see Appendix A for the definitions related to the
volume averaging method). Note that the subscript β is used to
remind that the different averages are defined in the β-region
at scale II. The mesoscopic transport equations [Eqs. (7) and
(8)] include two effective parameters of the region β: the
permeability tensor K∗

α and the diffusion-dispersion tensor
D∗

Aα , defined as

εαK∗−1
α = − 1

Vα

∫
Aακ

nακ · (−bα + ∇Bα)dA, (10)

D∗
Aα = DAα

(
εαI + 1

VIII

∫
Aακ

nακdαdA

)
− 〈ṽαdα〉. (11)

Here Bα , bα , and dα are closure variables, which are solutions
of the two following closure problems

0 = −∇bα + ∇2Bα + εαK∗−1
α , (12)

∇ · Bα = 0, (13)

Bα = −I at Aακ, (14)

Bα(x) = Bα(x + li) i = 1,2,3, (15)

bα(x) = bα(x + li) i = 1,2,3, (16)

〈bα〉α = 0, and (17)

ṽα + vα · ∇dα = DAα∇2dα, (18)

−nακ · ∇dα = nακ at Aακ, (19)

dα(x) = dα(x + li) i = 1,2,3, (20)

〈dα〉α = 0. (21)

It is worth recalling that these problems have been derived
under the constraints of spatial and time-scale separations [26].
Equations (15), (16), and (20) are periodic conditions, while
Eqs. (17) and (21) provide the uniqueness of the solutions.
In order to determine the effective transport properties at
scale II, these closure problems are solved numerically using
Comsol Multiphysics Software. The numerical validation of
the determination of the permeability, not reported here, has
been performed by comparing the numerical results with the
analytic solution provided by Zick and Homsy [27] for cubic
periodic arrays of spheres.

In the following, the analysis is performed on two types of
bidimensional periodic unit cells, composed of either inline
or staggered arrays of cylinders (Fig. 2). First, the mesoscopic
permeability given by Eq. (10) is computed for different values
of the porosity εα . Since the unit cells considered here are
symmetric, the permeability tensor can be reduced to a scalar
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FIG. 2. Inline and staggered periodic unit cells used to solve
the closure problems at scale III [Eqs. (12)–(21)] and compute the
effective properties in the β-region.

such as K∗
αI. The dimensionless mescoscopic permeabilities

are depicted in Fig. 3 for the two unit cells. As expected,
the values of the permeability increase with the porosity, and
a factor two is observed between the inline and staggered
configurations. Then, the diffusion-dispersion tensor, defined
by Eq. (11), is computed as a function of the solutal Péclet
number, and for three values of the porosity. The longitudi-
nal diffusion-dispersion coefficients for inline and staggered
configuration are plotted in Fig. 4. Two classical regions
are observed: at small Péclet numbers, species transport is
mainly driven by diffusion, while dispersion process strongly
dominates at large Péclet. Note that the shift between the two
regimes depends on the arrangement of the microstructure.
Indeed, this transition takes place at a larger range of Péclet for
the staggered configuration, and the longitudinal coefficient is
found to be one order of magnitude smaller than for the inline
structure. This is mainly due to the fact that, in this latter
case, dispersion occurs primarily in the direction of the flow,
while transverse dispersion is found to be important for more
tortuous staggered structures [25].

III. DERIVATION OF THE MACROSCALE MODEL

Although standard, the above preliminary upscaling is
primordial since it establishes the local physics in the β-region
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FIG. 3. Computed dimensionless permeability for inline and
staggered cylinders, as a function of the microscale permeability.

at scale II. Before performing the second upscaling, in order to
simplify the notations, the following nomenclature is adopted

vβ = 〈vα〉β, (22)

pβ = 〈pα〉αβ, (23)

cAβ = 〈cAα〉β. (24)

Note that vβ and cAβ are superficial averages, while pβ is an
intrinsic average. The above notations allow us to rewrite the
transport equations in the β-region [Eqs. (6)–(8)] as

∇ · vβ = 0 in the β-region, (25)

ραε−1
α

∂vβ

∂t
= −∇pβ − μα

K∗
α

vβ + μαε−1
α ∇2vβ

+ ραg in the β-region, (26)

εα

∂cAβ

∂t
+ vβ · ∇cAβ = ∇ · (D∗

Aα · ∇cAβ) in the β-region.

(27)

It is important to keep in mind that the effective dispersion
tensor D∗

Aα depends nonlinearly on the value of the cell Péclet
number defined as

Peα = ‖vα‖lα
DAα

, (28)

where

‖vα‖ = (〈vα〉αβ · 〈vα〉αβ
)1/2 = ε−1

α (vβ · vβ)1/2, (29)

and therefore on the mesoscopic velocity field. Consequences
on the derivation of the macroscopic solute transport are
detailed in Sec. III B.

Before proceeding to the upscaling from scale II to I,
let us define the boundary conditions at the porous-solid
interface Aβσ . Strictly speaking, boundary conditions at the
interface between a porous layer and an homogeneous plain
phase (fluid or solid) should result from upscaling the local
transport phenomena in this interfacial region. This has been
the object of intense research activity for transport modeling
at a fluid-porous interface through the so-called Beavers and
Joseph’s problem [28–31], but the equivalent for transport
phenomena between a fluid and a solid is still missing. In the
present analysis, since momentum transport is governed by the
Darcy-Brinkman equation, and due to the fact that the larger
solid matrix is impermeable, a no-slip condition and a null
diffusive flux are considered at Aβσ :

vβ = 0 at Aβσ , (30)

nβσ · (D∗
Aα · ∇cAβ) = 0 at Aβσ . (31)

Equations (25)–(27), with the boundary condition Eqs. (30)
and (31), represent the local system at the mesoscopic scale
(scale II). In order to derive macroscopic transport equations
(scale I), the volume averaging method is applied once more.
Note that the form of the system at scale II is similar to the
one described at scale III. The main differences are due to the
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FIG. 4. Dimensionless longitudinal diffusion-dispersion for inline (a) and staggered (b) cylinders, as a function of the mesoscopic Péclet
number Peα , and for different porosities εα .

presence of the Darcy term in Eq. (26) and to the nonconstant
diffusion-dispersion tensor in Eq. (27).

A. Momentum transport

Applying the averaging procedure to Eq. (26) leads to the
following nonclosed macroscopic equation,

ραε−1
α

∂(εβ〈vβ〉β)

∂t

= −εβ∇〈pβ〉β − μα

K∗
α

εβ〈vβ〉β + μαε−1
α εβ∇2〈vβ〉β

+ εβραg + 1

VII

∫
Aβσ

nβσ · (−Ip̃β + μαε−1
α ∇ṽβ

)
dA,

(32)

where ṽβ and p̃β are the spatial deviations of the mesoscopic
velocity and the pressure [32], respectively. It is worth men-
tioning that Eq. (32) is valid under the following length-scale
constraints [13]:

lβ � r0, (33)

r2
0 � LεLp1, (34)

r2
0 � LεLv1, (35)

r2
0 � LεLv2, (36)

where lβ is the mesoscopic pore length scale, and r0 is
the size of the averaging volume VII. Lp1, Lv1, and Lv2

represent the characteristic length scales for the macroscopic
pressure gradient, velocity gradient, and velocity laplacian,
respectively. In order to close Eq. (32), a problem for the
deviations ṽβ and p̃β must be built. This is done by introducing
the spatial deviations into the local problem, and subtracting
to it the nonclosed macroscopic equations. This leads to the
following deviation problem:

∇ · ṽβ = 0 in the β-region, (37)

0 = −∇p̃β − μα

K∗
α

ṽβ + μαε−1
α ∇2ṽβ − 1

Vβ

∫
Aβσ

nβσ

·(−Ip̃β + μαε−1
α ∇ṽβ

)
dA in the β-region, (38)

ṽβ = −〈vβ〉β at Aβσ . (39)

The only source term in this system is given by the boundary
condition Eq. (39). In order to link the deviation problem to
the nonclosed averaged problem, the form of the source term
suggests expressing the deviations as

ṽβ = Bβ · 〈vβ〉β, (40)

p̃β = μαε−1
α bβ · 〈vβ〉β, (41)

where bβ and Bβ represent the closure variables. Note the
presence of the microscopic porosity in Eq. (41). Substituting
the above expressions in the nonclosed averaged momentum
Eq. (32) gives

ραε−1
α ε−1

β

∂(εβ〈vβ〉β)

∂t

= −∇〈pβ〉β + μαε−1
α ∇2〈vβ〉β + ραg − μαε−1

α

×
[

εα

K∗
α

− 1

Vβ

∫
Aβσ

nβσ · (−Ibβ + ∇Bβ)dA

]
〈vβ〉β.

(42)

One can identify a classical form of the permeability tensor
depending on the closure variables in the β-region. Thus, if
we define

εβK∗−1
β = − 1

Vβ

∫
Aβσ

nβσ · (−Ibβ + ∇Bβ)dA, (43)

the term in braces in Eq. (42) can be written such as

εαεβK−1
eff = εαK∗−1

α + εβK∗−1
β , (44)

where Keff represents the effective permeability tensor at
the macroscopic scale (scale I). It explicitly involves two
contributions: the permeability arising from the microscale
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FIG. 5. Nondimensional values of the effective macroscale permeability Keff (black) and mesoscale drag K∗
β (gray), for arbitrarily set

mesoscopic permeabilities K∗
α (εα = 0.6).

(K∗
α) and the drag at the mesoscale (K∗

β). Using Eq. (44) into
Eq. (42) allows us to express the closed averaged momentum
equation in a “Darcy-Brinkman form”:

ραε−1
α ε−1

β

∂(εβ〈vβ〉β)

∂t
= −∇〈pβ〉β − μα

Keff
εβ〈vβ〉β

+μαε−1
α ∇2〈vβ〉β + ραg. (45)

If one seeks to take into account a specific structure at the
microscale, the determination of the macroscopic permeability
must be performed in two steps: first K∗

α should be obtained
by solving the microscopic closure problem [Eqs. (12)–
(17)] on a representative periodic unit cell of porosity εα .
Then, K∗

β should be determined through the resolution of a
mesoscopic closure problem, which is obtained by introducing
the deviations Eqs. (40) and (41) in the associated deviation
problem Eqs. (37)–(39)

0 = −∇bβ − εαK∗−1
α Bβ + ∇2Bβ + εβK∗−1

β , (46)

∇ · Bβ = 0, (47)

Bβ = −I at Aβσ , (48)

Bβ(x) = Bβ(x + li) i = 1,2,3, (49)

bβ(x) = bβ (x + li) i = 1,2,3, (50)

〈bβ〉β = 0. (51)

Note that this mesoscopic closure problem explicitly involves
the microscopic drag contribution through K∗

α . Therefore,
under its present form, this problem is similar to a Darcy-
Brinkman flow instead of the classical Stokes flow.

In this document, the length scale associated with the
microscale (scale III) is taken as the length of reference to ex-
press the dimensionless values of the different permeabilities.
Therefore, the ratio between scale II and scale III lβ/ lα is an
important parameter to take into account in order to illustrate

the influence of the hierarchical structure on the effective
transport properties. While a large length-scale separation
guaranties the fulfillment of the constraints necessitated by
the up-scaling procedure, a smaller length-scale ratio allows
us to observe more clearly the hierarchical effects on the
transport phenomena. Therefore, all the results below are
reported for two length-scale ratios of 10 and 100. Note that
a separation of one order of magnitude has been shown to be
enough for the up-scaling of momentum transport in porous
structures [33].

Numerical results illustrating the hierarchical contribution
to the macroscale permeability are presented in Fig. 5. Here, in
order to have access to a larger range of parameter values, the
couple (εα , K∗

α) is arbitrarily set, allowing us to observe more
easily the interscale dependency. The effective permeability at
scale I, Keff (solid lines) and the permeability K∗

β associated
to the drag at the mesoscopic scale (dashed lines) are plotted
for different values of the permeability in the β-region, and
for two ratios of the characteristic cell sizes. Note that the
microscopic porosity εα is kept equal to 0.6. First, it can be
seen that K∗

α strongly influences the macroscopic permeability
coefficient, especially for large values of εβ where Keff tends
to K∗

α . On the other hand, we verify that Keff logically tends
toward K∗

β for small εβ values and obviously for large K∗
α (fluid

behavior). Note that these observations are verified whatever
the length-scale ratio lβ/ lα .

B. Species transport

Let us now turn our attention on the derivation of the
macroscopic species transport model and the determination
of the associated effective multiscale dispersion coefficient.

The local mass transport at scale II is governed by
Eqs. (27) and (31). At first sight, Eq. (27) looks similar to
a classical diffusion convection equation, and the derivation
of its macroscopic form at scale I using the volume-averaging
method seems straight forward. However, the difficulty here
lies in the diffusive term, whose effective diffusion-dispersion
coefficient D∗

Aα depends on the local mesoscopic velocity field
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vβ [Eq. (29)]. Such a problem has been treated in the context
of heterogeneous porous media by Quintard and Whitaker
[15] considering the spatial decomposition of the diffusion-
dispersion effective coefficient (see also Refs. [19,21]). In
consistence with this idea, the following spatial decomposition
is proposed:

D∗
Aα = 〈D∗

Aα〉β + D̃∗
Aα, (52)

where D̃∗
Aα represents the spatial deviation around the average

quantity 〈D∗
Aα〉β . For conciseness, only the main steps of the

derivation are reported in this section, with all the details being
provided in Appendix B. In addition to Eq. (52), the spatial
decompositions of the concentration and velocity fields are
introduced, and the nonclosed macroscopic mass transport
equation can be written

εα

∂(εβ〈cAβ〉β)

∂t
+ εβ〈vβ〉β · ∇〈cAβ〉β

= ∇ ·
[
〈D∗

Aα〉β ·
(

εβ∇〈cAβ〉β + 1

VII

∫
Aβσ

nβσ c̃AβdA

)

−〈ṽβ c̃Aβ〉
]

+ ∇ · 〈D̃∗
Aα · ∇c̃Aβ〉, (53)

where the right-hand side corresponds to the hierarchical
contributions to diffusion-dispersion phenomena. The first
term, involving the tensor 〈D∗

Aα〉β , represents the averaged
diffusion-dispersion at scale II, while the last term is an
additional contribution of the dispersion due to the dependence
of D∗

Aα on the velocity field. Once again, the problem for the
deviations is derived by subtracting Eq. (53) from Eq. (27),
after having introduced the spatial decompositions. It follows
that, providing scale separation and quasistationarity are
satisfied, the deviation problem for mass transport takes the

form

ṽβ · ∇〈cAβ〉β + vβ · ∇c̃Aβ

= ∇ · (D∗
Aα · ∇c̃Aβ) + ∇ · (D̃∗

Aα · ∇〈cAβ〉β) (54)
−nβσ · (D∗

Aα · ∇c̃Aβ) = nβσ · (D∗
Aα · ∇〈cAβ〉β) at Aβσ .

(55)

From the boundary condition Eq. (55), it clearly appears that
the two diffusive terms in Eq. (54) are of the same order
of magnitude (see Appendix C). Therefore, we are left with
second- and third-order source terms. This suggests that the
deviation concentration c̃Aβ might be related to the averaged
values as

c̃Aβ = dβ · ∇〈cAβ〉β + φβ∇2〈cAβ〉β, (56)

where the scalar φβ and vector dβ are closure variables. The
introduction of Eq. (56) in Eqs. (54) and (55) would lead
to two closure problems, one corresponding to the first-order
derivative of 〈cAβ〉β (for dβ), the other for the second-order
derivative. However, in practice, the expansion at the first order
is sufficient to obtain an accurate determination of the effective
transport properties [19–21]. Under these considerations,
Eq. (56) reduces to

c̃Aβ = dβ · ∇〈cAβ〉β, (57)

giving rise to the closure problem

ṽβ + vβ · ∇dβ = ∇ · (D∗
Aα · ∇dβ) + ∇ · D̃∗

Aα (58)

−nβσ · (D∗
Aα · ∇dβ) = nβσ · D∗

Aα at Aβσ (59)

dβ(x) = dβ(x + li) li = 1,2,3 (60)

〈dβ〉β = 0. (61)

Note that a similar form including the additional dispersion
term has been obtained for solute transport in heterogeneous
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FIG. 6. Nondimensional values of the longitudinal diffusion-dispersion coefficient for a bidisperse structure composed at both scales of
inline cylinders (εβ = 0.6).
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FIG. 7. Nondimensional values of the longitudinal diffusion-dispersion coefficient for a bidisperse structure composed at both scales of
staggered cylinders (εβ = 0.6).

porous media [18,19]. However, in these previews stud-
ies, because the velocity field was obtained from Darcy’s
law, the source term involving D̃∗

Aα was neglected. In the
present analysis, momentum transport is governed by the
Darcy-Brinkman equation [Eq. (26)], resulting in a noncon-
stant diffusion-dispersion coefficient, which deviations can be
significant. Finally, substituting Eq. (57) into Eq. (53) yields
to the closed form of the macroscopic conservation equation
for mass transport

εα

∂

∂t
(εβ〈cAβ〉β) + εβ〈vβ〉β · ∇〈cAβ〉β

= ∇ · (Deff · ∇〈cAβ〉β), (62)

where the macroscopic diffusion-dispersion tensor is given by

Deff = 〈D∗
Aα〉β ·

(
εβI + 1

VII

∫
Aβσ

nβσ dβdA

)

−〈ṽβdβ〉 + 〈D̃∗
Aα · ∇dβ〉. (63)

Let us recall that the D∗
Aα is an effective tensor resulting from

the upscaling from the micro- to the mesoscopic scale. In
Eq. (63), the first and second terms are relatively classic,
they represent the mesoscopic contribution to the macroscopic
effective diffusion-dispersion coefficient, and the effect of
convective transport on dispersion, respectively. The third
term, however, is more unusual and is a macroscopic diffusive
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FIG. 8. Contributions of the individual dispersive terms in Eq. (63) as a function of the Péclet, for a bidisperse structure composed at both
scales of inline cylinders (scale separation, lβ/ lα = 10; mesoscopic volume fraction, εβ = 0.6). Dimensionless values of (a) the additional
dispersive term arising from the mesocsopic deviation of the diffusion-dispersion tensor, (b) the classical dispersive term, and (c) the ratio
between the two dispersive terms.
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contribution coming from the deviation of the mesoscopic
diffusion-dispersion tensor.

Numerical solutions of the closure problem given by
Eqs. (58)–(61) are obtained for hierarchical bidisperse porous
structures. First, the longitudinal component of the effective
diffusion-dispersion coefficient for an inline bidisperse struc-
ture is represented in Fig. 6. It is observed that whatever the
ratio lβ/ lα , the decrease of the mesoscopic average properties
(εα and K∗

α) increases the tortuous effect in the diffusive regime
(small Péclet numbers), but also gives rise to a more intense
dispersion at larger Péclet. In the case of staggered bidisperse
structures (Fig. 7), the transition between the diffusive and
the dispersive regimes takes place at larger Péclet numbers
(transition Peβ ∼ 10) than for inline structures (transition
Peβ ∼ 1). Finally, it can be verified that in the limit where
the mesoscopic permeability is high, the macroscopic effective
properties tends to the case where the β-region is fluid. Note
that at scale I, the relevant nondimensional parameter related
to mass transport is the macroscopic Péclet number defined as

Peβ = ‖vβ‖lβ
DAα

. (64)

In order to evaluate the relative contribution of the addi-
tional dispersion present in Eq. (63), the different terms of the
effective diffusion-dispersion coefficient are plotted in Fig. 8
for a bidisperse inline structure of scale ratio lβ/ lα = 10. As
expected, it is shown that both the convective contribution
〈ṽβdβ〉 and the extra macroscopic diffusion term 〈D̃∗

Aα · ∇dβ〉,
strongly depend on the Péclet number. However, because the
physical origin of the two terms is different, their dependence
on the Péclet and on the microstructure is not the same. This
can be clearly observed in Fig. 8(c), where the ratio between
the two terms reaches a local minimum at Peβ ∼ 102 for
small K∗

α . For higher values of the mesoscopic permeability,
the additional dispersive term gains in importance, before
decreasing as the β-region tends to a fluid behavior.

Note that the above observations are in agreement with
Moutsopoulos and Koch [7]; however, the present analysis
provides a more general and explicit formulation, able to
quantify the influence of the finest porous structure in such
a bidisperse configuration.

IV. CONCLUSION

In the present work, momentum transport and species
dispersion have been studied in a hierarchical bidisperse
porous structure. A general macroscopic model has been
developed based on the volume-averaging method, and the
closure problems associated with the macroscopic effective
transport properties have been derived and solved. The results
clearly illustrate the micro and mesoscale influence of the
geometry and intensity of the local flow on the effective
properties at the macroscopic scale. In particular, it has
been shown that: (i) The homogenization of Darcy-Brinkman
equation results in a transport equation of the same type,
where the effective permeability is an explicit function of the
permeabilities arising from the micro- and the mesoscopic
structure [Eq. (44)]. (ii) Dispersive phenomena at the meso-
scopic scale can be dealt with the introduction of a spatial

deviation of the diffusion-dispersion tensor, leading to the
presence of an additional term in the macroscopic effective
tensor [Eq. (63)]. (iii) The mesoscopic dispersion plays a
nonnegligible role for moderate scale separations and for
low mesoscopic permeability. Moreover, the evaluation of the
corresponding additional term tends to diminish the effective
macroscopic dispersion.

Although here, for feasibility purpose, the numerical efforts
have been focused on simple two-dimensional geometries,
the model can be easily applied to more complicated three-
dimensional structures. The influence of the mesoscopic
dispersion are expected to be important for structures at the
mesoscale where large velocity gradients are encountered (for
instance concave geometries).

This analysis could be easily extended to more complex
hierarchical porous media such as bioreactors for tissue
engineering [34].

APPENDIX A: VOLUME-AVERAGING DEFINITIONS

Let us consider a physical quantity 
α associated to the
α-phase in the averaging volume VIII (Fig. 1), the superficial
volume average of 
α is defined by

〈
α〉 = 1

VIII

∫
Vα


α(x + y) dV. (A1)

Sometimes, the intrinsic phase average of 
α is more repre-
sentative and is defined by

〈
α〉α = 1

Vα

∫
Vα


α(x + y) dV. (A2)

The two above-averaged values are related by

〈
α〉 = εα〈
α〉α, (A3)

where εα is the α-phase volume fraction (porosity).
Finally, averaged conservation equations can be obtained by

using spatial and temporal partial derivative theorems given by
[13]

〈∇
α〉 = ∇〈
α〉 + 1

VIII

∫
Aακ

nακ
αdA, (A4)〈
∂
α

∂t

〉
= ∂〈
α〉

∂t
− 1

VIII

∫
Aακ

nακ · wακ
αdA, (A5)

where wακ is the interface velocity and nακ is the unit normal
vector at the interface.

APPENDIX B: DERIVATION OF THE MACROSCOPIC
SOLUTE TRANSPORT EQUATION

The macroscopic solute transport equation is derived
by averaging the mesoscopic equation [Eq. (27)] with the
associated boundary condition [Eq. (31)]. The difficulty here
lies in the fact that the diffusion-dispersion tensor D∗

Aα depends
on the velocity field. Let us focus our attention on averaging the
right-hand side of Eq. (27). Applying the averaging theorems
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gives

〈∇ · (
D∗

Aα · ∇cAβ

)〉
= ∇ · 〈D∗

Aα · ∇cAβ〉 + 1

VII

∫
Aβσ

nβσ · (D∗
Aα · ∇cAβ)dA,

(B1)

where the area integral is discarded due to the boundary
condition [Eq. (31)]. Following Quintard and Whitaker [18],
the tensor D∗

Aα can be decomposed under the form

D∗
Aα = 〈D∗

Aα〉β + D̃∗
Aα, (B2)

and also using the spatial decomposition for the concentration
cAβ gives

〈D∗
Aα · ∇cAβ〉 = 〈〈D∗

Aα〉β · ∇〈cAβ〉β + 〈D∗
Aα〉β · ∇c̃Aβ

+ D̃∗
Aα · ∇〈cAβ〉β + D̃∗

Aα · ∇c̃Aβ〉. (B3)

Here, due to scale separation, it can be shown that averaged
quantities used in the spatial decomposition are close to
averaged quantities defined at the centroid of the averaging
volume. Under these circumstances, variation of the averaged
quantities can be neglected and the above expression takes the
form

〈D∗
Aα · ∇cAβ〉 = 〈D∗

Aα〉β · 〈∇〈cAβ〉β〉 + 〈D∗
Aα〉β · 〈∇c̃Aβ〉

+ 〈D̃∗
Aα · ∇〈cAβ〉β〉 + 〈D̃∗

Aα · ∇c̃Aβ〉. (B4)

Let us first consider the third term of Eq. (B4). Using the spatial
averaging theorem in the form

∇〈cAβ〉β = 〈∇cAβ〉β − 1

Vβ

∫
βσ

nβσ cAβdA, (B5)

allows us to write

〈D̃∗
Aα · ∇〈cAβ〉β〉

=
〈
D̃∗

Aα · 〈∇cAβ〉β − D̃∗
Aα · 1

Vβ

∫
Aβσ

nβσ cAβdA

〉
, (B6)

which can also be written under the form

〈D̃∗
Aα · ∇〈cAβ〉β〉

= 〈D̃∗
Aα〉 · 〈∇cAβ〉β − 〈D̃∗

Aα〉 · 1

Vβ

∫
Aβσ

nβσ cAβdA. (B7)

However, since

〈D̃∗
Aα〉 = 0, (B8)

Eq. (B4) simplifies under the form

〈D∗
Aα · ∇cAβ〉 = 〈D∗

Aα〉β · 〈∇〈cAβ〉β〉 + 〈D∗
Aα〉β · 〈∇c̃Aβ〉

+ 〈D̃∗
Aα · ∇c̃Aβ〉. (B9)

Let us consider now the first term of the right-hand side of
Eq. (B9). Using the spatial averaging theorem gives

〈D∗
Aα〉β · 〈∇〈cAβ〉β〉

= 〈D∗
Aα〉β ·

[
∇(

εβ〈cAβ〉β) + 1

VII

∫
Aβσ

nβσ 〈cAβ〉βdA

]
.

(B10)

Again, due to scale separation, the above expression
becomes

〈D∗
Aα〉β · 〈∇〈cAβ〉β〉 = εβ〈D∗

Aα〉β · ∇〈cAβ〉β. (B11)

The second term of Eq. (B9),

〈D∗
Aα〉β · 〈∇c̃Aβ〉

= 〈D∗
Aα〉β ·

[
∇〈c̃Aβ〉 + 1

VII

∫
Aβσ

nβσ c̃AβdA

]
, (B12)

and discarding the average of the deviation, Eq. (B9) finally
reduces to

〈D∗
Aα · ∇cAβ〉=〈D∗

Aα〉β ·
(
εβ∇〈cAβ〉β + 1

VII

∫
Aβσ

nβσ c̃AβdA

)

+〈D̃∗
Aα · ∇c̃Aβ〉. (B13)

Finally, the nonclosed averaged equation for solute transport
takes the form

εα

∂(εβ〈cAβ〉β)

∂t
+ εβ〈vβ〉β · ∇〈cAβ〉β

= ∇ ·
[
〈D∗

Aα〉β ·
(

εβ∇〈cAβ〉β + 1

VII

∫
Aβσ

nβσ c̃AβdA

)]

+∇ · 〈D̃∗
Aα · ∇c̃Aβ〉 − ∇ · 〈ṽβ c̃Aβ〉. (B14)

APPENDIX C: DEVIATION PROBLEM

The deviation equation is obtained by subtracting the
nonclosed Eq. (B14) from the local one [Eq. (4)], where the
spatial decompositions have been previously introduced. After
a few simplifications, the concentration deviation equation
takes the form

ṽβ · ∇〈cAβ〉β + vβ · ∇c̃Aβ

= ∇ · (D∗
Aα · ∇c̃Aβ) + ∇ · (D̃∗

Aα · ∇〈cAβ〉β)

−∇ ·
(

〈D∗
Aα〉β · 1

Vβ

∫
Aβσ

nβσ c̃AβdA

)

− ε−1
β ∇ · 〈D̃∗

Aα · ∇c̃Aβ〉. (C1)

An estimate of the order of magnitude of the different
terms of the above deviation equation is preformed in order to
simplify the problem. Using the boundary condition Eq. (31)
gives

−nβσ · (〈D∗
Aα〉β · ∇cAβ) = nβσ · (D̃∗

Aα · ∇cAβ) at Aβσ ,

(C2)

where we can deduce that 〈D∗
Aα〉β and D̃∗

Aα are of the same
order of magnitude. Moreover, on the basis of these estimates,

∇ · (D∗
Aα · ∇c̃Aβ) = O

(
〈D∗

Aα〉β c̃Aβ

l2
β

)
, (C3)

∇ ·
(

〈D∗
Aα〉β · 1

Vβ

∫
Aβσ

nβσ c̃AβdA

)
= O

(
ε−1
β 〈D∗

Aα〉β c̃Aβ

lβLII

)
,

(C4)

ε−1
β ∇ · 〈D̃∗

Aα · ∇c̃Aβ〉 = O
( 〈D∗

Aα〉β c̃Aβ

lβLII

)
, (C5)
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the two last terms of Eq. (C1) can be discarded and therefore the deviation problem for mass transport takes the form
ṽβ · ∇〈cAβ〉β + vβ · ∇c̃Aβ = ∇ · (D∗

Aα · ∇c̃Aβ) + ∇ · (D̃∗
Aα · ∇〈cAβ〉β) (C6)

−nβσ · (D∗
Aα · ∇c̃Aβ) = nβσ · (D∗

Aα · ∇〈cAβ〉β) at Aβσ . (C7)
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