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Pulse evolution and plasma-wave phase velocity in channel-guided laser-plasma accelerators
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The self-consistent laser evolution of an intense, short-pulse laser exciting a plasma wave and propagating
in a preformed plasma channel is investigated, including the effects of pulse steepening and energy depletion.
In the weakly relativistic laser intensity regime, analytical expressions for the laser energy depletion, pulse
self-steepening rate, laser intensity centroid velocity, and phase velocity of the plasma wave are derived and
validated numerically.
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I. INTRODUCTION

Understanding the propagation of short and intense laser
pulses in a plasma is a topic of fundamental importance in the
field of laser-plasma interactions. For example, in laser-plasma
accelerators (LPAs) [1], which have demonstrated the produc-
tion of multi-GeV electron bunches in cm-scale plasmas [2–4],
the dynamics of electron bunch production and acceleration
is strongly affected by the properties of the laser-generated
plasma wave. More specifically, the plasma-wave velocity
determines the dephasing length (distance for a relativistic
particle to move out of an accelerating phase of the plasma
wave) and, hence, the maximum energy gain for the electrons
[1], as well as the threshold for self-injection of background
plasma electrons [5]. The plasma-wave velocity driven by
a short and intense laser pulse is related to the laser driver
and background plasma density properties. Unfortunately, a
general analytical theory describing, in three dimensions (3D),
the phase velocity and its dependence on the laser-plasma
parameters is lacking. However, a calculation of this and other
quantities (such as laser energy depletion rate, self-steepening
rate, and laser centroid velocity) characterizing the laser
evolution in an underdense plasma is essential for the design
and optimization of present and future LPA experiments.

In an LPA, the plasma wave (or wakefield) generated by
the laser driver is the result of the gradient in laser field
energy density providing a force (i.e., the ponderomotive force)
that creates a space charge separation between the plasma
electrons and the neutralizing ions. Efficient plasma-wave
excitation requires a laser driver with a pulse length L ∼ k−1

p ,
where kp = ωp/c, c being the speed of light in vacuum,
and ωp = (4πn0e

2/m)1/2 the electron plasma frequency for a
plasma with density n0 (m and e are, respectively, the electron
mass and charge). For a fixed pulse length, the wakefield
amplitude depends on the amplitude of the peak normalized
laser vector potential defined as a0 = eA0/mc2, where A0 is
the peak amplitude of the laser vector potential. For a linearly
polarized pulse a2

0 � 7.32 × 10−19(λ0[μm])2I0[W/cm2] with
λ0 = 2π/k0 the laser wavelength and I0 the peak inten-
sity. In the limit a0 � 1 the phase velocity of the plasma
wave, vp = cβp, is equal to the group velocity of the laser,
vg = cβg , namely βp � βg � 1 − k2

p/2k2
0 (or, introducing
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the Lorentz factor for the velocities, γp � γg � k0/kp) [1].
Current LPA experiments operate at relativistic intensities I0 �
1018 W/cm2, corresponding to a0 � 1 with λ0 � 1 μm. As
shown in Refs. [5–8], in this nonlinear regime, the assumption
that the wake phase velocity equals the group velocity of the
laser (βp � βg) is a poor approximation.

In Ref. [8], Schroeder et al. analyzed, for the one-
dimensional (1D) case, the propagation in underdense plasmas
of high intensity (a0 ∼ 1) laser pulses. Calculations for the
nonlinear intensity transport and group velocities of the
laser pulse, and for the nonlinear phase velocity of the ex-
cited plasma wave are presented. It was shown that, in the
weakly relativistic regime, a0 < 1, the wake phase velocity
is approximately the intensity transport velocity, namely
γp � (k0/kp)[1 + 0.1 a2

0] (assuming a resonant Gaussian laser
pulse). In the nonlinear regime, a0 > 1, the phase velocity
depends on the details of laser evolution (laser self-steepening,
redshifting, and depletion). More specifically, the phase
velocity is initially (i.e., in the early stages of the laser-plasma
interaction, before significant depletion takes place) dominated
by the nonlinear increase in the plasma wavelength owing to
the laser steepening. For instance, if a0 � 1, and for a resonant
Gaussian pulse, the phase velocity of the peak accelerating
field in the mp-th plasma period behind the driver is [8]
γp � 0.45(k0/kp)m−1/2

p .
In 3D, approximate expressions for the wake phase velocity

valid in limited regions of the parameter space have been
proposed. For instance, in Ref. [7], Lu et al. used particle-
in-cell (PIC) simulations to estimate a constant phase velocity
γp � k0/

√
3kp in the bubble regime [9]. In Ref. [5], Benedetti

et al. showed, also by means of PIC simulations, that for an
intense laser (a0 � 3) impinging on a (transversally) uniform
plasma the corresponding bubble wake phase velocity is not
constant during laser propagation in the plasma. However, the
minimum phase velocity measured at the center of the bubble
wake, γ (min)

p , is independent of the laser intensity and follows
the (empirical) scaling law γ (min)

p � 2.4(k0/kp)1/2.
In this paper, we investigate, in 3D, the propagation of

an intense, short-pulse laser in a preformed parabolic plasma
channel. We analytically derive in the weakly relativistic
regime, a0 < 1, expressions for the laser energy depletion
rate, the laser self-steepening rate, the intensity centroid
transport velocity, and the phase velocity of the excited plasma
wave, valid in the early stages of the laser-plasma interaction
(i.e., before significant depletion takes place). These are
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calculated by using an envelope description for the laser
pulse and the linearized quasistatic approximation for the
(cold, collisionless) plasma response. The analytical solutions
are shown to be in good agreement with simulation results
obtained with the 2D-cylindrical, ponderomotive PIC code
INF&RNO [10,11]. We find that the correct expressions, valid
in 3D, characterizing the laser evolution and the plasma-wave
phase velocity cannot be inferred from 1D results, and that
the difference between 1D and 3D results is not simply
given by a predetermined geometric factor. This is due to
the interplay between longitudinal and transverse effects in
the laser evolution, which, in turn, depends on the functional
form of the laser intensity profile. In fact, we find that, for
a laser pulse with a longitudinal and transverse Gaussian
intensity profile in the limit of a very broad pulse, the
expression for the energy depletion, self-steepening rate, and
intensity transport velocity are different, in general, from the
corresponding expressions obtained in the 1D case discussed
in Refs. [8,12], while the 3D expression for the phase velocity
reduces to the 1D case. We also study the dependence of the
phase velocity on laser driver evolution. In this respect, we
identify and discuss the role of transverse pulse evolution
(due to mismatched propagation, self-focusing, or plasma-
wave guiding) and longitudinal evolution (self-steepening,
energy depletion, and redshifting).

The paper is organized as follows. In Sec. II we describe
the basic equations for the laser evolution and for the plasma
response. In Sec. III we derive the analytical expressions for the
laser energy depletion, the self-steepening rate, and the laser
intensity centroid velocity. Analytical results are compared
with PIC simulations results. Calculations and numerical
results for the phase velocity of the laser-driven plasma wave
are presented in Sec. IV. Conclusions are presented in Sec. V.

II. LASER EVOLUTION AND PLASMA-WAVE
EXCITATION IN THE WEAKLY RELATIVISTIC REGIME

We consider a linearly polarized laser pulse propagating
in a parabolic plasma channel with a transverse density
distribution, n0(r), parametrized as

n0(r)/n0,0 = 1 + αr2, (1)

where r is the transverse coordinate, n0,0 is the on-axis
(i.e., r = 0) electron plasma density, and α is a parameter
describing the depth of the channel (α = 0 corresponds to
a transversally uniform plasma). Throughout the paper we
use dimensionless units, normalizing the time to ω−1

p (plasma
frequency corresponding to the on-axis density n0,0), and the
lengths to k−1

p = c/ωp.
The laser pulse is represented via the transverse component

of its (normalized) vector potential, A⊥, according to

a⊥(ζ,r,s) ≡ eA⊥
mc2

= â(ζ,r,s)

2
exp

(
i
k0

kp

ζ

)
+ c.c., (2)

where â(ζ,r,s) is the (complex) laser pulse envelope, and
the exponential term describes the (fast) laser oscillations. In
Eq. (2) we introduced the variables ζ = z − t and s = t , which
are, respectively, the longitudinal comoving variable and the
propagation distance. Given the transverse component of the
vector potential, the longitudinal component can be derived

from the Coulomb gauge condition, ∇ · a = 0. Assuming a
short-pulse laser plasma interaction, i.e., a pulse length ∼ k−1

p

and propagation in an underdense plasma such that kp/k0 � 1
[this condition enables a separation between fast, (ck0)−1 (laser
oscillation), and slow, ∼ (ckp)−1 (laser envelope variation and
plasma oscillation), time scales], the wave equation for the
laser envelope reads [1][

∇2
⊥ + 2

(
i
k0

kp

+ ∂

∂ζ

)
∂

∂s

]
â = ρâ, (3)

where ρ = n(ζ,r)/[n0,0γ (ζ,r)] is the normalized proper den-
sity, n(ζ,r) and γ (ζ,r) being, respectively, the electron density
(including the laser-induced perturbation) at a given location
and the relativistic factor associated with the local plasma fluid
velocity. Associated with Eq. (3) is the following adiabatic
invariant (wave action) [13]:

A =
∫

dζ

∫
dr r

[
|â|2 + i

kp

k0

(
â
∂â∗

∂ζ
− â∗ ∂â

∂ζ

)]
, (4)

such that ∂sA = 0.
In the following we will consider as an initial condition a

laser pulse with a transverse Gaussian profile, namely

â(ζ,r,s = 0) = a0 exp
( − r2/w2

0

)
f (ζ ), (5)

where a0 is the normalized field strength, w0 is the laser spot,
and f (ζ ) describes the longitudinal (temporal) profile of the
laser [0 � f (ζ ) � 1]. The laser pulse defined in Eq. (5) is
(linearly) matched in the parabolic channel given by Eq. (1),
i.e., it propagates without spot (and intensity) oscillations, if
α = 4/w4

0. This is true in the low-intensity and low-power
limit, namely a0 � 1 and P/Pc = w2

0a
2
0/32 � 1 (P and

Pc[GW] � 17k2
0/k2

p being, respectively, the laser power and
the critical power for self-focusing) [1]. If the laser intensity
and/or power are not negligible (i.e., a0 ∼ 1 and/or P/Pc ∼ 1),
the matching condition needs to be modified to take into
account plasma-wave guiding and relativistic self-focusing
effects as discussed in Ref. [14]. For simplicity, in the
remainder of the paper we will consider a linearly matched
laser pulse.

For a slowly varying laser envelope, namely |(k0/kp)â| �
|∂ζ â|, and in the early stages of the laser-plasma interaction,
the leading order term describing the evolution of the envelope
is given by ∂sâ � (kp/k0)[ρâ − ∇2

⊥â]/(2i). Therefore, we
have 2∂2

s,ζ â � −i(kp/k0)∂ζ [ρâ − ∇2
⊥â], and so Eq. (3) can

be approximated as [15]

∂â

∂s
� − i

2

kp

k0

[
ρâ − ∇2

⊥â + i
kp

k0
∂ζ (ρâ − ∇2

⊥â)

]
. (6)

For any given laser pulse configuration, the evaluation
of the proper density requires solving Maxwell’s equations
coupled with the cold plasma fluid equations, exploiting the
quasistatic approximation (i.e., we assume that individual
plasma particles are passed over by the laser pulse and the
associated wake in a short time compared with the time over
which the laser pulse, or the wake, evolve) [16–18]. In the
nonlinear (relativistic) regime, |â|2 � 1, the proper density
can be evaluated numerically. Analytical solutions can be
obtained in the weakly relativistic limit, |â|2 < 1, where the
laser contribution can be treated as a perturbation. In this limit,
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we have

ρ(ζ,r) = ρ0(r) + δρ(ζ,r), (7)

where ρ0(r) = n0(r)/n0,0 is the unperturbed background
density [in our case the parabolic plasma channel Eq. (1)],
and the laser-induced perturbation, δρ, satisfies [1,19](

∂2

∂ζ 2
+ 1

)
δρ = −(1 − ∇2

⊥)
|â|2

4
. (8)

In the derivation of Eq. (8) we assumed a broad plasma channel
[i.e., α � 1 for the background plasma density Eq. (1)]. The
Green function solution to Eq. (8), valid at early times of the
laser-plasma interaction, when the laser envelope is described
by Eq. (5), reads

δρ(ζ,r) = a2
0

4

[
1 + 8

w2
0

(
1 − 2r2

w2
0

)]
e−2r2/w2

0

×
∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)f 2(ζ ′). (9)

The self-consistent coupling of the laser-driven density per-
turbation, Eq. (9), to the laser evolution, Eq. (3), describes the
laser propagation as discussed in Sec. III.

III. CHARACTERIZATION OF LASER PROPAGATION:
ENERGY DEPLETION RATE, SELF-STEEPENING RATE,

AND INTENSITY CENTROID VELOCITY

In this section we present analytical expressions, valid at
early times of the laser-plasma interaction, in 3D and in the
weakly relativistic limit, for three quantities characterizing
the propagation of a short and intense laser pulse matched
in a parabolic plasma channel, namely the energy depletion
rate, laser self-steepening rate, and intensity centroid velocity.
Analytical results obtained for a laser pulse with a Gaussian
longitudinal and transverse intensity profile are compared with
numerical results performed with the ponderomotive code
INF&RNO.

A. Laser energy depletion rate

During propagation, the laser driver deposits its energy into
the plasma, where a wakefield is created, by means of the
transverse plasma current associated with the electron quiver
motion in the laser field. This current will do work extracting
energy from the laser pulse. An expression for the normalized
laser energy, E , as a function of the laser envelope is given by

E =
∫

dζ

∫
dr r

[∣∣∣∣
(

1 − i
kp

k0

∂

∂ζ

)
â

∣∣∣∣
2

+ 1

2

(
kp

k0

)2∣∣∣∣∂â

∂r

∣∣∣∣
2
]
,

(10)

where the integral is taken over the whole laser domain.
Note that, with the definition of E given above, the laser
energy in physical units is Ulaser = (m2c4k2

0/4e2k3
p)E . The

evolution equation for the normalized energy Eq. (10) can be
obtained by using Eq. (3), rewritten as ∂s[1 − i(kp/k0)∂ζ ]â =
−i(kp/k0)[ρâ − ∇2

⊥â]/2, and by making use of the operatorial

expansion Eq. (6):

∂E
∂s

� − k2
p

2k2
0

∫
dζ

∫
dr r

∂ρ

∂ζ
|â|2

+ i
k3
p

4k3
0

∫
dζ

∫
dr r

∂ρ

∂r

[
∂â

∂r
â∗ − â

∂â∗

∂r

]
, (11)

where terms O[(kp/k0)4] have been neglected. We note that
Eq. (11) is valid at early times of the laser-plasma interaction
for any laser intensity. If we assume for â the Gaussian laser
envelope defined in Eq. (5), we have that the second integral in
Eq. (11) vanishes [since â = â∗, then (∂r â)â∗ = â(∂r â

∗)]. With
this assumption the expression for the initial rate of change of
the laser energy Eq. (11) then reads [8,20]

∂E
∂s

∣∣∣∣
s=0

� − k2
p

2k2
0

∫
dζ

∫
dr r

∂ρ

∂ζ
|â|2. (12)

For a short laser pulse ∂ζ ρ > 0 in the region of the driver,
yielding ∂sE |s=0 < 0, and so energy is extracted from the laser.

The mean laser wave number (normalized to the initial
value) can be expressed as a function of the normalized
energy and the wave action as 〈k/k0〉 = E/A. From action
conservation we have that A ∂s〈k/k0〉 � ∂sE , and so, as the
laser depletes, the mean wave number decreases (redshifts).
The rate of redshifting equals the rate of energy depletion
[8,21].

An analytical expression for the initial (i.e., at early times)
laser depletion rate can be obtained in the mildly relativistic
regime for a laser with a transverse Gaussian intensity profile
matched in a parabolic plasma channel, where the proper
density can be expressed as in Eq. (7). We have ∂ζ ρ = ∂ζ δρ,
where δρ is given in Eq. (9), and so the initial rate of change
of the laser energy is

∂E
∂s

∣∣∣∣
s=0

� −k2
p

k2
0

a4
0w

2
0

64

(
1 + 4

w2
0

)
F , (13)

where F , which depends only on the longitudinal profile of
the laser pulse, is defined as

F =
∫ +∞

−∞
dζ

∫ ∞

ζ

dζ ′ cos(ζ − ζ ′)f 2(ζ )f 2(ζ ′). (14)

For a laser pulse with a longitudinal Gaussian intensity profile,
namely f (ζ ) = exp(−ζ 2/L2), where L is the pulse length, the
initial (normalized) laser pulse energy is

E0 �
√

π

2
La2

0
w2

0

4
, (15)

where we assumed L � kp/k0, and w0 � kp/k0, and

F = π

4
L2 exp(−L2/4). (16)

Using Eqs. (13), (15), and (16), we obtain the following
expression for the initial laser energy depletion rate for a
matched bi-Gaussian laser driver,

ηE ≡ 1

E0

∂E
∂s

∣∣∣∣
s=0

� − 1

32

√
π

2

k2
p

k2
0

a2
0

(
1 + 4

w2
0

)
Le−L2/4. (17)

An expression for ηE for a half-sine longitudinal laser profile
can be found in Ref. [22]. The laser energy pump depletion
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length may be defined as Lpd = −η−1
E [i.e., the initial laser

energy evolution is E(s)/E0 � 1 − s/Lpd , for s/Lpd � 1].
In the very broad pulse (and channel) limit, w2

0 � 4, the
energy depletion rate is

η
(3D, broad pulse)
E � − 1

32

√
π

2

k2
p

k2
0

a2
0Le−L2/4. (18)

In 1D, the energy depletion rate is [12] η
(1D)
E = 2η

(3D, broad pulse)
E .

The difference between the 1D result and 3D broad pulse result
is due to the fact that, in 3D, the laser intensity, and so the
transverse current that mediates the energy exchange between
the laser and the plasma, is transversally changing due to the
laser radial profile, while, in 1D, no transverse laser envelope
effects are included. As a consequence, the exact value of
the ratio η

(1D)
E /η

(3D, broad pulse)
E depends on the details of the

transverse intensity distribution. Namely, if the initial laser
envelope is described by a(ζ,r,s = 0) = a0g(r)f (ζ ), where
g(r) is a generic (smooth) function [we assume that g(r) satis-
fies g(0) = 1, and

∫
dr r g2(r) < +∞ (finite laser power)], we

have that η
(1D)
E /η

(3D, broad pulse)
E � ∫

dr r g2(r)/
∫

dr r g4(r).
We compared the prediction for the initial energy depletion

rate Eq. (17) with numerical results obtained with the 2D-
cylindrical, ponderomotive, quasistatic PIC code INF&RNO
[10,11]. The resolution of the computational grid used for
the numerical calculations was 
z = 1/40 (longitudinal
direction), and 
r = 1/30 (transverse [radial] direction).
The electron plasma distribution was represented with five
numerical particles per (transverse) cell. The time step for
the laser envelope advance was 
s = 0.2. The error tolerance
in the iterative quasistatic solver was set to 10−6. Numerical
parameters have been varied to check for numerical conver-
gence. The numerical results are presented in Fig. 1, where
we show the initial energy depletion rate as a function of
the laser spot, w0, for different values of the normalized
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FIG. 1. (Color online) Initial energy depletion rate, ηE , as a
function of the laser spot, w0, for different values of the normalized
laser strength, a0 = 0.1 (red circles), a0 = 0.2 (green dots), and
a0 = 0.5 (blue circles). The longitudinal laser profile is Gaussian
with L = 2, and k0/kp = 20. The black dotted lines are the theoretical
predictions Eq. (17).

laser strength: a0 = 0.1 (red circles), a0 = 0.2 (green dots),
and a0 = 0.5 (blue circles). The longitudinal laser profile
is Gaussian with L = 2, and k0/kp = 20. The black dotted
lines are the theoretical predictions Eq. (17) for the three
laser intensities. The PIC results are in good agreement with
theory. The discrepancy between numerical and theoretical
energy depletion rate observed at higher laser intensities can
be ascribed to the fact that the linear description for the wake
amplitude [see Eqs. (7) and (8)] loses its validity.

B. Laser self-steepening rate

The laser self-steepening of a short laser pulse can be
described using the integrated normalized intensity of the laser
pulse [8,20,23], defined as

Q =
∫

dζ

∫
dr r|â|2. (19)

Alternatively, the self-steepening rate can be studied by
examining the skewness of the laser energy distribution, as
shown in Ref. [24]. The initial rate of change of Q is obtained
by means of the operatorial expansion Eq. (6). We obtain

∂Q
∂s

� k2
p

2k2
0

∫
dζ

∫
dr r

∂ρ

∂ζ
|â|2. (20)

We note that for a matched laser pulse (i.e., with flat phase
fronts) ∂sQ = −∂sE . We recall that for a short laser pulse
matched in a plasma channel ∂sE < 0, then, as the laser
depletes, the quantity Q increases. An increase in the value
of Q is related, as in 1D, to the increase of the peak laser
normalized field strength, a0 (i.e., laser self-steepening). In
fact, owing to the transverse (radial) integral in the definition
of Q, the evolution of this quantity is rather insensitive to the
transverse redistribution of the laser energy from laser (self-)
focusing and/or diffraction, but is sensitive to longitudinal
pulse evolution.

In the mildly relativistic limit, and for the Gaussian laser
pulse defined in Eq. (5), assuming, as before, matched propaga-
tion in a parabolic plasma channel and a longitudinal Gaussian
intensity distribution, f (ζ ) = exp(−ζ 2/L2), we obtain the
following expression for the initial self-steepening rate:

ηQ ≡ 1

Q0

∂Q
∂s

∣∣∣∣
s=0

� 1

32

√
π

2

k2
p

k2
0

a2
0

(
1 + 4

w2
0

)
Le−L2/4, (21)

where Q0 = (π/2)1/2La2
0w

2
0/4. Note that ηQ = −ηE .

We compared the prediction for the initial laser self-
steepening rate Eq. (21) with quasistatic PIC results obtained
with the code INF&RNO. Simulation results are presented
in Fig. 2, where we show the initial self-steepening rate as
a function of the laser spot, w0, for different values of the
normalized laser strength: a0 = 0.1 (red circles), a0 = 0.2
(green dots), and a0 = 0.5 (blue circles). The longitudinal
laser profile is Gaussian with L = 2, and k0/kp = 20. The
black dotted lines are the theoretical predictions Eq. (21)
for the three laser intensities. The PIC results are in good
agreement with theory. As noted in the previous section,
the discrepancy between numerical and theoretical energy
depletion rate observed at higher laser intensities can be
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FIG. 2. (Color online) Initial energy depletion rate, ηQ, as a
function of the laser spot, w0, for different values of the normalized
laser strength, a0 = 0.1 (red circles), a0 = 0.2 (green dots), and
a0 = 0.5 (blue circles). The longitudinal laser profile is Gaussian
with L = 2, and k0/kp = 20. The black dotted lines are the theoretical
predictions Eq. (21).

ascribed to the fact that the linear description for the wake
amplitude loses its validity.

C. Laser intensity centroid velocity

The normalized-intensity-weighted laser centroid position,
ζi , is defined as

ζi =
∫

dζ
∫

dr rζ |â|2∫
dζ

∫
dr r|â|2 = 1

Q

∫
dζ

∫
dr r ζ |â|2, (22)

and the laser intensity centroid velocity, βi , is given by

βi − 1 = dζi

ds
. (23)

By using the operatorial expansion Eq. (6) in Eq. (22),
and assuming that, initially, ζi = 0, we obtain the following
expression valid at early times of the laser-plasma interaction
for the laser intensity centroid velocity:

βi − 1 � − 1

Q0

k2
p

2k2
0

∫
dζ

∫
dr r

×
[
ρ

(
2|â|2 + ζ

∂|â|2
∂ζ

)
+ ∂â

∂r

∂â∗

∂r

]
. (24)

Note that Eq. (24) is valid for any laser intensity. The last term
in the integral, which is not multiplied by ρ, is the contribution
to laser velocity due to laser diffraction. The initial value of
the laser intensity centroid velocity, βi,0, computed choosing
for â the Gaussian laser envelope defined in Eq. (5) is

βi,0 − 1 = −k2
p

k2
0

{[∫
dζ f 2

]−1 ∫ ∞

0
du e−u

×
∫

dζ ρ

(
ζ,w0

√
u

2

)
[f 2 + ζf ∂ζ f ] + 1

w2
0

}
.

(25)

An analytical expression for the initial laser intensity
centroid velocity can be obtained in the weakly relativistic
regime for a Gaussian laser pulse matched into a parabolic
plasma channel. In this case, using Eq. (7) for the proper
density, where δρ is given by Eq. (9), and choosing, as before,
f (ζ ) = exp(−ζ 2/L2), we obtain

βi,0 − 1 � − k2
p

2k2
0

(
1 + 4

w2
0

)

×
{

1 − a2
0

√
2

16
L

[
3

2
P0(L) − P2(L)

]}
, (26)

wherePm(L) = ∫ ∞
0 dx sin(xL)xm exp(−x2). We note that the

factor (1 + 4/w2
0) is the contribution to the laser velocity

coming from the channel, while the term in the curly brackets
is the contribution from the laser-induced wakefield. For a
very short pulse, L � 1, we have Pm(L) � L�(m/2 + 1)/2,
where �(x) is the gamma function. In this limit, the intensity
transport velocity reads

βi,0 − 1 � − k2
p

2k2
0

(
1 + 4

w2
0

)(
1 −

√
2

64
L2a2

0

)
. (27)

For a very long pulse, L � 1 (adiabatic limit), we have that
P0 � 1/L and P2(L) � −2/L3, and so

βi,0 − 1 � − k2
p

2k2
0

(
1 + 4

w2
0

)(
1 − 3

√
2

32
a2

0

)
. (28)

For a resonant pulse, L = 2, the coefficients Pm can be
computed numerically, and we obtain

γi,0 � k0

kp

(
1 + 4

w2
0

)−1/2(
1 + 0.05a2

0

)
, (29)

where we introduced the Lorentz factor for the velocity,
namely γi,0 = (1 − β2

i,0)−1/2. The intensity transport velocity
grows linearly with the laser intensity for a2

0 � 1, with
the coefficient determined by the specific longitudinal and
transverse laser profile. In the limit of a very broad pulse (and
channel), w2

0 � 4, the Lorentz factor of the intensity transport
velocity is γ

(3D, broad pulse)
i,0 � (k0/kp)(1 + 0.05a2

0). We note that
the coefficient that determines, in 3D, and in the broad
pulse limit, the dependence of the centroid velocity from
laser intensity differs from that in the 1D case [8], where
γ

(1D)
i,0 � (k0/kp)(1 + 0.1a2

0). As in the case of the laser energy
depletion rate, the difference between 1D and 3D broad pulse
limit results can be ascribed to the transverse laser envelope
effect.

We compared the prediction for the initial intensity trans-
port velocity Eq. (29) with quasistatic PIC results obtained
with the code INF&RNO. Numerical results are presented
in Fig. 3, where we show the Lorenz factor of the initial
intensity transport velocity as a function of the laser spot, w0,
for different values of the normalized laser strength: a0 = 0.1
(red circles), a0 = 0.2 (green dots), a0 = 0.5 (blue circles),
and a0 = 0.8 (purple dots). The longitudinal laser profile is
Gaussian with L = 2, and k0/kp = 20. The black dotted lines
are the theoretical predictions Eq. (29) for the four laser
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FIG. 3. (Color online) Lorenz factor of the initial intensity trans-
port velocity, γi,0, as a function of the laser spot, w0, for different
values of the normalized laser strength, a0 = 0.1 (red circles),
a0 = 0.2 (green dots), a0 = 0.5 (blue circles), and a0 = 0.8 (purple
dots). The longitudinal laser profile is Gaussian with L = 2, and
k0/kp = 20. The black dotted lines are the theoretical predictions
Eq. (29).

intensities. The PIC results are in excellent agreement with
theory.

IV. PHASE VELOCITY OF LASER-DRIVEN PLASMA
WAVES

In this section we present analytical expressions, valid
in 3D and in the weakly relativistic limit, for the initial
value of the wake phase velocity generated by a short laser
pulse with a longitudinal and transverse Gaussian intensity
profile (linearly) matched in a parabolic plasma channel.
Analytical results are compared with numerical results. We
also discuss evolution of the phase velocity during the laser-
plasma interaction, showing its dependence on the details of
longitudinal and transverse driver evolution.

A. Initial value of the wake phase velocity

In this section we compute, as an example, the phase
velocity of the “back” of the first plasma wave period,
corresponding to the on-axis point behind the laser driver
(i.e., where the laser field is negligible) where the longitudinal
wakefield is equal to zero. The velocity of any other phase (e.g.,
location of the maximum of the longitudinal wakefield, etc.)
can be computed in a similar manner. We notice that, in general,
the value of phase velocity depends on the chosen wake phase.
However, in the weakly relativistic regime, where the nonlinear
dependence of plasma wavelength on laser intensity can be
neglected, the phase velocity of any point behind the laser
driver is independent of the wake phase.

Let us denote by Ez(ζ,r,s) the longitudinal wakefield
generated by the laser after a propagation distance s. We denote
by ζp(s) the value of the phase for which we want to compute
the velocity. In our example ζp(s) satisfies Ez[ζp(s),r =
0,s] = 0 (zero crossing of the longitudinal wakefield). At

later times, s ′ = s + 
s, with 
s � 1, the phase of the zero
crossing will be ζp(s + 
s) � ζp(s) + [βp(s) − 1]
s, where
βp(s) is the value of the phase velocity for the phase ζp(s).
Since we are interested in tracking the phase of the zero
crossing of the longitudinal wakefield, we have, by definition,
Ez[ζp(s + 
s),r = 0,s + 
s] = 0. By considering the Taylor
expansion of the latter expression with respect to 
s, and by
taking the limit 
s → 0, we obtain the following expression
for the phase velocity of the zero crossing of the longitudinal
wakefield,

βp − 1 = − ∂sEz

∂ζ Ez

∣∣∣∣
ζ=ζp,r=0

= − ∂2
ζ,sψ

∂2
ζ,ζ ψ

∣∣∣∣
ζ=ζp,r=0

, (30)

where we have introduced the wake potential, ψ , such
that Ez = −∂ζψ . Similarly, denoting by ζ ′

p(s) the phase
location of the maximum of Ez behind the laser driver (i.e.,
∂ζEz|ζ=ζ ′

p,r=0 = 0), an expression for the (on-axis) phase
velocity of the maximum of the longitudinal field is given
by

β ′
p − 1 = − ∂2

ζ,sEz

∂2
ζ,ζ Ez

∣∣∣∣
ζ=ζ ′

p,r=0

= ∂3
ζ,ζ,sψ

∂3
ζ,ζ,ζ ψ

∣∣∣∣
ζ=ζp,r=0

. (31)

We note that Eqs. (30) and (31) are valid for any laser intensity.
An explicit evaluation of the phase velocity for any given
propagation distance requires the knowledge of the functional
dependence of the longitudinal wakefield (or wake potential)
on spatial coordinates, ζ and r , and propagation distance, s.
Neglecting the transient phase at the early stages of the laser-
plasma interaction where the wake is being formed, the wake
potential as a function of the driver properties can be evaluated
via the quasistatic approximation. Its variation as a function
of the propagation distance is determined via Eq. (6), which
describes the evolution of the laser driver.

An analytical expression for the phase velocity can be
obtained in the weakly relativistic regime. Assuming a broad
plasma channel, and using the quasistatic approximation, the
wake potential is given by [1]

∂2ψ

∂ζ 2
+ 1 = |â|2

4
, (32)

where |â|2 < 1. The Green function solution to Eq. (32) is

ψ(ζ,r,s) = −
∫ ∞

ζ

dζ ′ sin(ζ − ζ ′)|â(ζ ′,r,s)|2/4, (33)

yielding the following expression for the longitudinal wake-
field:

Ez(ζ,r,s) =
∫ ∞

ζ

dζ ′ cos(ζ − ζ ′)|â(ζ ′,r,s)|2/4. (34)

The phase of the on-axis point behind the laser driver where
the longitudinal wakefield vanishes, ζp, is then given by∫ +∞

−∞
dζ ′ cos(ζp − ζ ′)|â(ζ ′,0,s)|2 = 0, (35)

where we replaced ζp with −∞ in the lower integration
extreme owing to the fact that we are considering phases
behind the driver where the laser field is negligible. By using
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Eqs. (30) and (33), the phase velocity of the zero crossing of
Ez reads

βp − 1 =
∫ ∞
ζp

dζ ′ cos(ζp − ζ ′)∂s |â(ζ ′,r = 0,s)|2∫ ∞
ζp

dζ ′ sin(ζp − ζ ′)|â(ζ ′,r = 0,s)|2 . (36)

At early times, the term ∂s |â|2 in the numerator of Eq. (36)
can be evaluated by using the operatorial expansion Eq. (6),
we have

∂|â|2
∂s

� − i

2

kp

k0
[â∇2

⊥â∗ − â∗∇2
⊥â] + k2

p

2k2
0

[
2
∂ρ

∂ζ
|â|2

+ ρ
∂|â|2
∂ζ

−
(

â∇2
⊥

∂â∗

∂ζ
+ â∗∇2

⊥
∂â

∂ζ

)]
. (37)

At s = 0, for the Gaussian laser envelope given in Eq. (5),
and choosing f (ζ ) = exp(−ζ 2/L2), with L ∼ 1, we have that
the expression for the phase location of the zero crossing
Eq. (35) becomes

cos ζp = 0. (38)

Equation (38) has multiple solutions. For a short laser pulse
the solution corresponding to the phase location of the zero
crossing of Ez at the back of the first plasma wave period is
ζp = −3π/2. We note that at this phase location the field of
the (short) laser driver is negligible. Since the initial envelope
given in Eq. (5) satisfies â = â∗, Eq. (37) takes the following
simplified form for r = 0:

∂|â|2
∂s

∣∣∣∣
s=0,r=0

� k2
p

k2
0

a2
0e

−2ζ 2/L2

×
[
∂δρ0

∂ζ
− 2ζ

L2

(
1 + 4

w2
0

+ δρ0

)]
, (39)

where we used Eq. (7) for the proper density, and δρ0 is given
by Eq. (9) evaluated at r = 0. By using Eqs. (5), (38), and (39)
in Eq. (36), we obtain the following expression, valid in the
weakly relativistic regime, for the initial value of the phase
velocity (βp,0) of a wake generated by a bi-Gaussian laser
driver matched in a parabolic plasma channel,

βp,0 − 1 � − k2
p

2k2
0

[
1 + 4

w2
0

− a2
0

2
K(L)

(
1 + 8

w2
0

)]
, (40)

where the function K(L), which depends on the driver length,
is defined as

K(L) = eL2/16

√
2

[
1

L2

∫ ∞

0
dx x sin x sin

x

2
e−x2/L2

+ 1

4

∫ ∞

0
dx sin x cos

x

2
e−x2/L2

−
∫ ∞

0
dx cos x sin

x

2
e−x2/L2

]
. (41)

For a short laser pulse, L � 1, K(L) � L2/(8
√

2). For a
resonant laser pulse, K(L = 2) � 0.3853, and so the Lorentz
factor of the initial phase velocity reads

γp,0 � k0

kp

(
1 + 4

w2
0

)−1/2[
1 + 0.1 a2

0

(
1 + 4

w2
0

)]
. (42)
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FIG. 4. (Color online) Lorenz factor of the initial wake velocity,
γp,0, as a function of the laser spot, w0, for different values of the
normalized laser strength, namely a0 = 0.1 (red circles), a0 = 0.2
(green dots), and a0 = 0.5 (blue circles). The longitudinal laser profile
is Gaussian with L = 2, and k0/kp = 20. The black dotted lines are
the theoretical predictions Eq. (42).

Note that in the limit of a broad pulse, w2
0 � 4, the 3D

expression for the wake velocity Eq. (42) reduces to the 1D
result [8]. We also note that while in 1D, and in the weakly
relativistic limit, the wake phase velocity is approximately
the intensity transport velocity; this is not the case in 3D.
This difference can be ascribed to the fact that in 3D the
intensity transport velocity is defined via an integration over
the whole (i.e., longitudinal and transverse) laser domain,
while, as shown in Eq. (36), the phase velocity of the wake
depends on the on-axis (r = 0) behavior of the laser driver.

We compared the prediction for the wake phase velocity
Eq. (42) with quasistatic PIC results obtained with the code
INF&RNO. Numerical results are presented in Fig. 4, where
we show the Lorenz factor of the initial wake velocity as
a function of the laser spot, w0, for different values of the
normalized laser strength: a0 = 0.1 (red circles), a0 = 0.2
(green dots), and a0 = 0.5 (blue circles). The longitudinal
laser profile is Gaussian with L = 2, and k0/kp = 20. The
black dotted lines are the theoretical predictions Eq. (42) for
the three laser intensities. The PIC results are in excellent
agreement with theory.

B. Evolution of the phase velocity

As the laser evolves, so do the plasma wave and its phase
velocity. In 3D, the laser driver can evolve longitudinally
or transversally. Longitudinal evolution (present also in 1D)
is due to self-steepening, depletion and redshifting (i.e.,
energy exchange with the plasma). Transverse evolution
is present every time that, slice-by-slice along the pulse,
the guiding contribution from the channel, plasma-wave
guiding, self-focusing, and laser diffraction are not exactly
balanced. Longitudinal and transverse laser driver evolution
are characterized by different characteristic length scales.
This can be shown by performing a scale-length analysis of
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the laser envelope evolution equation (3). We find that the
longitudinal driver evolution occurs over a propagation length
Llong ∼ k2

0/k2
p (assuming a short laser pulse, L ∼ 1), while

transverse evolution usually happens over a typically shorter
length scale, Ltrans ∼ (k0/kp)r2

⊥ , where r⊥ is the characteristic
transverse size of the laser. As a consequence, for laser-plasma
parameters of interest for current and future LPA experiments,
and for propagation distances shorter than the depletion length,
the evolution of the phase velocity will be sensitive to the
details of the transverse evolution of the laser driver (e.g.,
position of the laser focus in the plasma, laser mode properties,
contributions from self-focusing and plasma-wave guiding,
etc.).

To illustrate the laser and wake evolution we consider the
propagation of a short and moderately intense, bi-Gaussian
laser pulse in parabolic plasma channel. The laser envelope
is the one defined in Eq. (5), with a0 = 0.5, w0 = 4, f (ζ ) =
exp(−ζ 2/L2), and L = 2. The laser is linearly matched in the
channel, and k0/kp = 20. The modeling of the laser-plasma
interaction has been done with the quasistatic PIC code
INF&RNO. The use of a quasistatic code allows us to neglect
the initial transient corresponding to the generation of the
wake, which depends on the details of the incoupling geometry.
The evolution during laser propagation of the wake phase
velocity, measured at the back of the first plasma period, at the
location of the zero crossing of the longitudinal electric field
Ez, is shown in Fig. 5 (black solid line). The black dashed curve
in Fig. 5 is the evolution of the normalized-intensity-weighted
laser radius, defined as w(s) = [2

∫
dζ

∫
r dr r2|â|2/Q]1/2.
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FIG. 5. (Color online) Evolution of the wake phase velocity,
γp(s) (black solid line), and normalized-intensity-weighted laser
radius w(s) (black dashed line), for a Gaussian laser driver with
a0 = 0.5, w0 = 4, and f (ζ ) = exp(−ζ 2/L2) with L = 2. The laser is
linearly matched in a parabolic plasma channel, and k0/kp = 20. The
two insets show snapshots of the laser envelope for two propagation
distances: (i) s = 0 and (ii) s = 252, illustrating the compression of
the laser driver in the region towards the back of the pulse. The red
solid line and the red dashed line show, respectively, the evolution of
the wake phase velocity and laser radius for a “supermatched” driver.

With this definition, w(s = 0) = w0. As the laser propagates,
different longitudinal slices along the laser driver experience
different amounts of self-focusing and plasma-wave guiding.
In particular, the slices towards the front of the laser pulse
are well matched in the parabolic plasma channel since the
additional contribution to guiding coming from self-focusing is
canceled by plasma response, while the slices towards the back
of the laser driver experience enhanced focusing compared to
those in the front. In fact, for s � 250, w(s) decreases. The two
insets in Fig. 5 show snapshots of the laser envelope for two
propagation distances, (i) s = 0, and (ii) s = 252, illustrating
the compression of the laser driver in the region towards the
back of the pulse.

Owing to the transverse redistribution of the laser energy,
the on-axis intensity profile is also changed. Initially, the
on-axis laser intensity is Gaussian, at later times it becomes
longitudinally asymmetric, with the location of the intensity
peak slipping back compared to s = 0. This change in the
laser intensity profile induces a change in the lineout of the
longitudinal wakefield, with the position of the zero crossing of
the Ez shifting progressively towards the back (more negative
phases) as the propagation distance approaches s � 250. This
is the reason why the phase velocity, whose initial value is
given by γp,0 � 18.5 [see Eq. (42)], is always slower than the
initial value for s � 250. The minimum value of the phase
velocity, γp,min � 14, is reached for s � 50. At s � 250 the
driver reaches the maximum compression, and, afterwards,
for 250 � s � 500, the back of the laser driver expands and
the initial laser envelope configuration is (almost) recovered at
s � 500. During this time span the location of the zero crossing
of Ez moves forward, giving a value for the phase velocity that
is consistently higher than the initial one. The maximum value
of the phase velocity, γp,max � 28, is reached for s � 430.
For s � 500 the cycle described repeats. We note that the
length over which the phase velocity evolves corresponds to
the characteristic scale length for mismatched oscillations in a
parabolic plasma channel, Zmismatch � π (k0/kp)w2

0/2 � 500,
which is, in these laser-plasma conditions, the characteristic
scale for transverse laser evolution. The damping of the
oscillations in both w(s) and γp(s) at later times is due to the
fact that a short laser driver, as the one used in this example,
is not monochromatic [25]. Each chromatic component of
the laser is characterized by a different oscillation frequency,
and the decoherence between these modes damps out the
oscillations.

Besides the evolution due to transverse laser dynamics, the
phase velocity evolves, as in 1D, because of the longitudinal
evolution of the driver. In particular, we see that the average
value of the phase velocity slowly decreases during laser
propagation. As shown in Ref. [8], this is due to laser
redshifting (i.e., energy depletion).

To further support the point that the large variations of the
phase velocity during the early stages (i.e., for a propagation
length short compared to the depletion length) of the laser-
plasma interaction are due to transverse laser evolution, we
considered a second example replacing the linearly matched
Gaussian laser pulse driver with a “supermatched” laser driver,
fixing all the other laser-plasma parameters. A supermatched
laser pulse (see the Appendix) has a slice-by-slice intensity
distribution adjusted such that, on each slice, laser diffraction,
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TABLE I. This table compares the 1D and 3D expressions for the initial value of the laser pump depletion, Lpd , laser intensity centroid
velocity, γi,0, and wake phase velocity, γp,0, valid in different laser-plasma interaction regimes, namely, linear (a0 � 1) and mildly relativistic
(a0 � 1). The expressions assume a resonant Gaussian pulse profile.

Lpd γi,0 γp,0

1D (a0 � 1) ∞ k0
kp

k0
kp

3D (a0 � 1) ∞ k0
kp

(
1 + 4

w2
0

)−1/2 k0
kp

(
1 + 4

w2
0

)−1/2

1D (a0 � 1)
k2

0
k2
p

27/2e

π1/2
1
a2

0

k0
kp

(1 + 0.1a2
0 ) k0

kp
(1 + 0.1a2

0 )

3D (a0 � 1)
k2

0
k2
p

29/2e

π1/2
1
a2

0

(
1 + 4

w2
0

)−1 k0
kp

(
1 + 0.05a2

0

)(
1 + 4

w2
0

)−1/2 k0
kp

[
1 + 0.1a2

0

(
1 + 4

w2
0

)](
1 + 4

w2
0

)−1/2

channel guiding, self-focusing, and plasma-wave guiding are
perfectly balanced, yielding an intensity distribution that does
not change during propagation (for propagation distances
much shorter than laser depletion). In this numerical example
we are using a supermatched driver of order q = 0 (see
the Appendix for details), and we use the same parabolic
background density profile utilized in the Gaussian example
discussed before. As shown by the red dashed line in Fig. 5,
the quantity w(s) for the supermatched driver simulation is
constant. The evolution phase velocity of the wake generated
by the supermatched driver is shown by the red solid line in
Fig. 5. As expected, since there is no transverse evolution of
the driver, the phase velocity does not oscillate. The slow and
steady decrease of the phase velocity is due, as in the Gaussian
case, to longitudinal evolution of the driver (redshifting and
depletion).

V. CONCLUSIONS

In this paper we have investigated the evolution, in
3D, of a moderately intense (a0 < 1) short-pulse (L ∼ 1)
laser propagating in an underdense (kp/k0 � 1) parabolic
plasma channel, and that of the associated plasma wave.
Understanding the details of the propagation of short and
intense laser pulses in plasmas is a topic of fundamental
importance in the field of laser-plasma interactions and, in
particular, for the design and optimization of LPAs. For
instance, the phase velocity of the laser-generated plasma
waves determines the trapping threshold for particle self-
injection and sets the dephasing length, while the energy
depletion rate determines the maximum laser propagation
distance. We derived analytical expressions, valid in the early
stages of the laser plasma interaction (i.e., before significant
depletion takes place), for the laser energy depletion rate,
the laser self-steepening rate, the intensity centroid transport
velocity, and the wake phase velocity. These quantities are
calculated by using an envelope description for the laser pulse
and the linearized quasistatic approximation for the plasma
response. Analytical results computed for a bi-Gaussian laser
pulse matched in a parabolic plasma channel are found to
be in excellent agreement with results from PIC simulations
performed with the code INF&RNO. A summary of the
quantities computed in this paper is shown in Table I, together
with the corresponding 1D expressions valid in the linear and
in the mildly relativistic regimes. We note that the correct 3D
expressions characterizing the laser evolution and the plasma-

wave phase velocity cannot be inferred from 1D results. This
is due to the interplay between longitudinal and transverse
effects in the laser evolution, which, in turn, depends on the
details of the laser envelope. In fact, the difference between
1D and 3D results is not simply given by a predetermined
geometric factor. For instance, we find that, for a laser pulse
with a longitudinal and transverse Gaussian intensity profile
in the limit of a very broad pulse, the expression for the energy
depletion, self-steepening rate, and intensity transport velocity
are different from the corresponding expressions obtained in
the 1D case discussed in Refs. [8,12], while the 3D expression
for the phase velocity reduces to the 1D case.

We also studied the dependence of the phase velocity on
laser driver evolution, identifying and discussing the role of
transverse and longitudinal evolution. We found that, in 3D,
and for laser-plasma parameters of interest for current and
future LPA experiments, the evolution of the phase velocity
is mainly determined by the details of the transverse laser
evolution, whereas changes in the phase velocity related to
longitudinal driver evolution only play a role over propagation
distances comparable with the depletion length.

All the results presented in this paper are valid in the weakly
relativistic regime, a0 � 1. The extension of these 3D results
to the relativistic regime, a0 � 1, will be the subject of future
work.
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APPENDIX: PERFECT MATCHING OF AN INTENSE,
SHORT-PULSE LASER IN A PARABOLIC

PLASMA CHANNEL

The laser envelope evolution equation for propagation
distances much shorter than the depletion length is given by
the paraxial wave equation, which can be obtained from Eq. (3)
by dropping the mixed derivative, ∂2

ζ,s â,(
∇2

⊥ + 2i
k0

kp

∂

∂s

)
â = ρâ. (A1)
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Consider solutions to Eq. (A1) of the form

â(ζ,r,s) = a0f (ζ )g(ζ,r,s) exp[iϕ(ζ,r,s)], (A2)

where a0 is the initial peak amplitude, f (ζ ) describes the
longitudinal profile [f (0) = 1, and 0 � f (ζ ) < 1, for ζ �= 0],
g(ζ,r,s) describes, for any given longitudinal slice, ζ , the
transverse intensity profile, and ϕ(ζ,r,s) is a phase. We assume
that

∫
dr r[g(ζ,r,s = 0)]2 = const, so the initial longitudinal

power profile is determined uniquely by the choice of f (ζ ).
By inserting Eq. (A2) into Eq. (A1), we obtain the following
set of coupled equations for g(ζ,r,s) and ϕ(ζ,r,s):

∇2
⊥g − (∂rϕ)2g − 2

k0

kp

(∂sϕ)g = ρg, (A3)

g∇2
⊥ϕ + 2(∂rϕ)(∂rg) + 2

k0

kp

(∂sg) = 0. (A4)

A laser pulse propagating in a plasma channel for which
the intensity distribution is, slice-by-slice, constant for propa-
gation distances short compared to the depletion length (i.e.,
laser diffraction, channel focusing, plasma-wave guiding, and
self-focusing are perfectly balanced) is said to be “perfectly
matched” in the channel (supermatched laser pulse). A
quasimatched laser pulse [14], where the intensity distribution
at each longitudinal slice is assumed to be Gaussian, and the
spot size is ζ dependent, can be considered an approximation
of a supermatched pulse. For the laser envelope described in
Eq. (A2), a constant intensity distribution during propagation
implies ∂sg = 0. Equation (A4) then gives r(∂rϕ)g2 = const.
Taking into account that ϕ is an even function of r near
r = 0, and so (∂rϕ)|r=0 = 0, and assuming that g(r = 0) has
a finite value, then ∂rϕ = 0 for any r , and the phase fronts of
a supermatched driver are flat. Equation (A3) then becomes

∇2
⊥g − 2

k0

kp

(∂sϕ)g = ρg. (A5)

We can solve Eq. (A5) once boundary (asymptotic) conditions
for g are specified. For longitudinal phases, ζ , well ahead of the
laser pulse peak, where the laser amplitude and the associated
wake are negligibly small, the proper density coincides with
the unperturbed (background) plasma density, ρ = ρ0. For a
parabolic plasma channel parametrized as ρ0 = 1 + 4r2/R4,
where R is a constant, possible solutions to Eq. (A5) are
given by g(ζ,r) = Lq(2r2/R2) exp(−r2/R2), where Lq(x) is
the Laguerre polynomial of order q, as shown in Refs. [1,26].
Similarly, for phases around the laser peak, but in the limit
of r very large, where the laser and wakefield amplitudes
are negligible, we have, as before, ρ = ρ0 = 1 + 4r2/R4.
Invoking continuity with the phases ahead, we assume that,
asymptotically, g(ζ,r) = Lq(2r2/R2) exp(−r2/R2). Since ϕ

does not depend on r , we can compute the quantity ∂sϕ using
Eq. (A5) in the limit for large r , where the wakefield vanishes.
With the assumptions on the asymptotic behavior of g, we
obtain

−2
k0

kp

(∂sϕ) = 1 + 4

R2
(1 + 2q). (A6)

By inserting the expression for ∂sϕ given by Eq. (A6) into
Eq. (A5), we can rewrite the equation describing, slice-by-
slice, the transverse field amplitude ensuring perfect matching
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FIG. 6. (Color online) Normalized laser intensity field |â(x,y =
0,ζ )| for a “supermatched” laser pulse driver in a parabolic plasma
channel. The form of the laser envelope is given in Eq. (A2), with
a0 = 1, and where we choose f (ζ ) = exp(−ζ 2/L2), with L = 2. The
function g(ζ,r) is the solution of Eq. (A7) with q = 0 and R = 5.

in a parabolic plasma channel as

∇2
⊥g =

[
ρ − 1 − 4

R2
(1 + 2q)

]
g. (A7)

Equation (A7) depends on the proper density; hence it must
be solved self-consistently together with the equation for the
wake amplitude. In particular, in the mildly relativistic regime,
we have that ρ = ρ0 + δρ = 1 + 4r2/R4 + δρ, with δρ given
by Eq. (8), where |â|2 = a2

0f
2g2. In the nonlinear (relativistic)

regime the proper density can be evaluated numerically.
An example of supermatched laser profile obtained solving

numerically Eq. (A7) for q = 0, a0 = 1, R = 5, and choosing
f (ζ ) = exp(−ζ 2/L2), with L = 2, is shown in Fig. 6. We
notice that the laser intensity distribution of a supermatched
pulse in a parabolic channel has a conical shape (narrower
towards the back). Physically this is due to the fact that
the slices towards the back of the pulse experience larger
plasma-wave guiding compared to the slices in the front, so
the laser spot has to shrink to increase diffraction and recover
equilibrium.

In the mildly relativistic limit, the phase velocity for
the wake generated by a supermatched laser pulse can be
computed by using Eq. (36), where the laser envelope is given
by Eq. (A2), and using the conditions Eqs. (A6) and (A7) that
define the supermatched solution. We obtain the following
expression for the wake phase velocity,

βsupermatched
p − 1 = − k2

p

2k2
0

[
1 + 4

R2
(1 + 2q)

]
, (A8)

and so

γ supermatched
p = k0

kp

[
1 + 4

R2
(1 + 2q)

]−1/2

. (A9)

We see that for a0 < 1 the phase velocity for the wake
generated by a supermatched laser pulse is independent

023109-10



PULSE EVOLUTION AND PLASMA-WAVE PHASE . . . PHYSICAL REVIEW E 92, 023109 (2015)

of the laser intensity to order a2
0 , and depends only on

the on-axis density, plasma profile, and transverse laser
mode (defined via the parameter q). Note that this result

differs from that of a Gaussian laser pulse, and in the
limit of a broad pulse, R2 � 4, we do not recover the 1D
limit [8].
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