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Dust acoustic waves in three-dimensional complex plasmas with a similarity property
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Dust acoustic waves in the bulk of a dust cloud in complex plasma of low-pressure gas discharge under
microgravity conditions are considered. The complex plasma is assumed to conform to the ionization equation
of state (IEOS) developed in our previous study. This equation implies the ionization similarity of plasmas. We
find singular points of IEOS that determine the behavior of the sound velocity in different regions of the cloud.
The fluid approach is utilized to deduce the wave equation that includes the neutral drag term. It is shown that the
sound velocity is fully defined by the particle compressibility, which is calculated on the basis of the used IEOS.
The sound velocities and damping rates calculated for different three-dimensional complex plasmas both in ac
and dc discharges demonstrate a good correlation with experimental data that are within the limits of validity
of the theory. The theory provides interpretation for the observed independence of the sound velocity on the
coordinate and for a weak dependence on the particle diameter and gas pressure. Predictive estimates are made
for the ongoing PK-4 experiment.
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I. INTRODUCTION

A low-temperature plasma, which includes dust particles
with sizes ranging from 1 to 103 μm, is usually referred to as
dusty or complex plasma. Since the mobility of electrons is
much greater than that of ions, particles acquire a significant
negative electric charge. This leads to formation of a strongly
coupled plasma [1–9], in which various collective phenomena
at the level of individual particles can be observed. Complex
plasmas are studied in gas discharges at low pressures,
e.g., in radio frequency (RF) discharges. Under microgravity
conditions, large volumes of three-dimensional (3D) complex
plasma can be observed. These conditions are realized either
in parabolic flights [10–14] or on board the International Space
Station (ISS) [10,15–20].

The PK-4 project is intended to be a continuation of
successful series of PK-1, PK-2, PK-3, and PK-3 Plus ex-
periments on board the ISS. The PK-4 setup was exhaustively
tested in ground-based conditions [21] and in parabolic flights
[22–24]. Since the PK-4 experiments are focused on dynamical
phenomena in complex plasmas including formation and
propagation of the shock waves and solitons, investigation
of the waves associated with the motion of dust particles is
of special interest. The linear waves with a long wavelength
larger than the interparticle distance and the Debye length are
commonly called dust acoustic waves (DAWs).

From the time that the notion of DAWs was first introduced
by Rao, Shukla, and Yu [25], DAWs became a subject of
extensive investigations [26]. Havnes et al. [27] predicted that
if the disturbance generating DAWs in a strongly coupled
system of the dust particles moves with a supersonic velocity,
then the Mach cone emerges. The Mach cone observations
were used for the determination of dust sound velocity, first,
in the experiments with a 2D lattice plane [28–34] and
then in a 3D strongly coupled system of charged particles
[11,12,14,19,20] formed in RF discharge in argon. In Ref. [35],
the Mach cone observation in a complex plasma of the neon
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RF discharge was used for the determination of the dust
sound velocity. An interesting feature of the 3D studies was
independence of the sound velocity (within the experimental
error) of the system parameters such as the dust particle radius,
argon pressure, and the location in the bulk of a dust cloud.
The latter fact is most surprising because according to the
assessment [36], the particle number density in the inner and
outer regions of the dust cloud differ almost by an order of
magnitude; the particle charge also changes significantly along
the bulk of the cloud. In addition, the sound velocity was found
to be isotropic; i.e., it is independent of the direction of wave
propagation with respect to the direction of the gas discharge
electric field. In experiments with argon [11,12,14,19,20], the
measured sound velocity ranged from 2 to 3 cm/s; the sound
velocity measured in neon proved to be twice as low (about
1 cm/s) [35], but it was still independent of the particle number
density.

In the pioneer work [25], calculation of the dust sound
velocity was based on the fluid approach. This result is valid
if the dust component of the complex plasma conforms to the
ideal gas equation of state while the average kinetic energy
of particles (particle temperature Td ) is equal to zero. The
resulting formula for the sound velocity is similar to that
for the ion acoustic waves [37]. However, the systems of
dust particles, for which the sound velocity was measured,
are strongly coupled with a typical coupling parameter � =
Z2e2/rdTd > 200 [38], where Z is the dust particle charge in
units of the electron charge, e is the elementary electric charge,
rd = (3/4πnd )1/3 is the Wigner–Seitz radius for the dust
particles, nd is the particle number density, and the Boltzmann
constant is set to unity. Note that this estimate is most likely a
low bound for �, which relates to the smallest particles used in
experiments and to the lowest estimates for the particle charge;
for real systems, � can be orders of magnitude higher. Note
that the dust kinetic temperature determined experimentally is
rather high: according to Ref. [39], Td < 0.8 eV; in Ref. [40],
the dust temperature was found to be in the range from 0.1 to
1 eV. Thus, Td/Tn ∼ 30, where Tn is the temperature of gas
molecules usually assumed to be equal to room temperature.
In spite of this fact, � � 1.
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Khrapak and Thomas [41] showed that for strongly coupled
Yukawa systems, the dust sound propagation is defined by the
nonzero compressibility of the particles resulting from their
correlation energy. The term in the expression for the sound
velocity corresponding to the electric field perturbation due
to charge separation in the sound wave, which was solely
taken into account in Ref. [25], appeared to be canceled out
exactly by the plasma-related contribution to the isothermal
compressibility modulus. However, the results of this work
are not directly applicable to the complex plasmas because the
latter is different from the Yukawa systems [42,43]. A principal
difference comes from the fact that the complex plasma is an
open system characterized by an intense energy exchange with
the environment; due to the production of electrons and ions,
their recombination and loss on chamber walls, and charging
of the dust particles, the charged components of complex
plasma do not form a fixed ensemble. Therefore, equilibrium
thermodynamics along with all related thermodynamic notions
such as the entropy is not applicable for this system. Another
difference lies in the presence of an external electric field
typical for both the ac and dc discharges. This field is
responsible for the emergence of ion drag force, which along
with the electric field defines the dynamics of dust particles
[36]. It is also important that the particle charge is not fixed
but is a function of the local number densities of electrons,
ions, and particles, whose variation may reach an order of
magnitude. Note that the particle charge variation was not
allowed for in Refs. [25] and [41]. Nevertheless, the real
complex plasma can be locally treated as a system of strongly
correlated particles on a uniform charge background formed
by the electrons and ions, i.e., as the one-component plasma.
This determines a principal similarity between the complex
plasma and the strongly coupled Yukawa system.

The objective of this work is to develop a theory of DAWs
propagation in a real system (the dust cloud in a low-pressure
discharge). Our approach is based on the model of complex
plasma [36]. According to this model, the dust cloud can be
stable if the electric force from an external electric field is
balanced by the force due to collisions with the ions drifting in
this electric field (ion drag force). The key assumption of the
model is overlapping of the Coulomb potentials of neighboring
particles, due to which the cross section of ion scattering on
the particles is a function of the particle number density. This
made it possible to relate the number density of electrons, ions,
and particles and the particle charge in such a way that each
parameter defines uniquely the others. The “dust invariant” was
obtained that is nearly constant for the dust clouds observed
in different experiments. As a consequence, a reasonable
estimation for the stationary particle number density, which
was shown to be independent of the number of injected
particles, was obtained. The resulting ionization equation of
state (IEOS) was written in two dimensionless variables. As
follows from this IEOS, for two different systems, the ratio of
characteristic quantities in corresponding ionization states is
the same as that at the critical points (generally, at all singular
points). For this reason, one can call such plasmas similar.

The propagation of DAWs is investigated using the fluid
approach. Note that the Navier–Stokes equation can be applied
for the collective motion of dust particles even at the length
scales commensurable with several interparticle distances

[38,44,45]. The same approach was used for the strongly
coupled Yukawa systems in Ref. [41]. In the fluid dynamics
equations, we take into account the electric force and the ion
and the neutral drag. Linearization of these equations shows
that the balance of forces in an unperturbed medium leads to
full compensation of the contribution from the electric field
perturbation. Thus, the sound velocity is solely defined by the
dust compressibility, which can be calculated on the basis of
used IEOS. Here the situation is similar to that for the strongly
coupled Yukawa systems [41]. In addition, we allow for the
interaction between the particles and the neutrals (neutral
drag), which makes it possible to calculate the damping rate
of DAWs.

The resulting formula for the dust sound looks quite
different from that of Ref. [25] (and also from Ref. [41]).
In accordance with IEOS, an increase of the particle number
density entails a decrease in the particle charge. Consequently,
the dust compressibility and the sound velocity prove to be al-
most constant everywhere in the bulk of dust cloud, in spite of a
considerable variation of the complex plasma parameters. The
sound velocity proves to depend weakly on the dust particle
radius and gas pressure. For the experiments with argon, it is in
a reasonable agreement with the experimental data, in contrast
to the calculation using the formula obtained in Ref. [25].
Developed theory makes it possible to perform predictive
estimations for conditions typical for the PK-4 experiments.

The paper is organized as follows. In Sec. II we formulate
the governing equations for similar complex plasmas. In
Sec. III we represent IEOS for the stationary dust cloud in
the one-parametric form and explore its singular points, which
are the boundaries of characteristic behavior regions of the
sound velocity. In Sec. IV we obtain the DAWs’ dispersion
relation and calculate the sound velocity by derivation of the
dust compressibility. We compare the calculation results with
available experimental data in Sec. V. The results of this study
are summarized in Sec. VI.

II. THE FLUID APPROACH TO COMPLEX PLASMA

Consider a dust cloud in the low-pressure gas discharge.
Under microgravity conditions (either in parabolic flights
or on board the ISS), a dust particle is subject to three
basic forces: the electric driving force, the ion drag force
arising from scattering of the streaming ions on dust particles,
and the neutral drag force (friction force) due to collisions
of the atoms with the moving particles. Note that in a
strongly coupled system, the correlation energy originating
from particle ordering results in the difference between the
volume-averaged electric field and the electric field at the point
of particle location. This effect can be included if we introduce
the dust pressure. The effect of this pressure on the force
balance equation in a stationary plasma is discussed in Sec. III,
where we consider the stationary (unperturbed) state of the dust
cloud.

If we represent the dust component of complex plasma as
a fluid, we have the following basic equations. The first is the
Euler equation

∂v
∂t

+ (v · ∇)v + νv = 1

ρ
(fe + fid − ∇p), (1)
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where v(t, r) is the velocity field, p and ρ are the pressure
and density of a fluid, respectively; ρνv is the neutral drag
force acting on unit volume, ν = (8

√
2π/3)δmnnnvTn

a2/M is
the friction coefficient [6,46], δ � 1.4 is the accommodation
coefficient; mn is the mass of a gas molecule; nn and vTn

=
(Tn/mn)1/2 are the number density and thermal velocity of the
gas molecules, respectively, Tn = 300 K is the temperature of
a gas; a is the particle radius, M = (4π/3)ρda

3 is its mass; ρd

is the particle material density; and fe and fid are the electric
field driving force and the ion drag force acting on unit volume,
respectively. Here

fe = −ZendE = −aTe

e
�ndE, (2)

where Te is the electron temperature, � = −Ze2/aTe is the
dimensionless potential of a dust particle, E = (Te/e)∇ ln ne

is the electric field strength, ne is the electron number density,
and

fid = 3

8

(
4π

3

)1/3

n
1/3
d niλeE, (3)

where λ is the ion mean free path with respect to the collisions
against gas atoms, and ni is the electron number density.
Equation (3) is based on a simple estimation of the momentum
transfer from the ions to the particle for the case of overlapping
Coulomb potentials of neighboring particles [36]. Note that
this equation is invalid for an isolated particle.

In addition, the fluid of dust particle obeys the continuity
equation

∂ρ

∂t
+ ∇ · (ρv) = 0. (4)

For the dust pressure, we use the expression derived in Ref. [36]

p = 1

8π

(
adTe

eλ2

)2

p∗, p∗ = �2n∗4/3, (5)

where n∗ = (4π/3)λ3nd and nd = ρ/M is the particle number
density (we mark dimensionless quantities with an asterisk).
The expression (5) can be rewritten in the form p = ZthndTd ,
where Zth = �/6 is the compressibility factor for the dust.
Since � � 1 even for Td � Tn, we have Zth � 1; practi-
cally, Zth > 30. This agrees qualitatively with the results of
calculation for the strongly coupled Yukawa system [47].
Hence, the thermal equation of state for the dust component
is fully defined by its strong coupling. Equation (5) results in
a typical dust pressure of 10−7–10−6 Pa, which is in a good
agreement with its estimate following from the assessment of
the deformation threshold for a cavity around a large particle
in a complex plasma [45] and of the radius of such cavity
[36]. The same orders of magnitude of the dust pressure
were determined Ref. [39], where the dust acoustic shock
waves in strongly coupled dusty plasma were investigated
experimentally.

III. SINGULAR POINTS OF IEOS FOR
A STATIONARY DUST CLOUD

As follows from Eq. (1), the stationary state condition for
a dust cloud (v ≡ 0) is

fe + fid − ∇p = 0. (6)

It can be easily shown that the third term on the l.h.s. of
Eq. (6) is much smaller than fe and fid . Indeed, this term can
be represented in the form

∇p = dp

dρ
∇ρ = c2∇ρ = Mndc

2∇ ln nd, (7)

where c2 = dp/dρ. It is shown below that c is defined
by ordinary rather than partial derivative and its physical
meaning as the sound velocity is clarified in Sec. IV. Since
fe = −ZndTe∇ ln ne, where |∇ ln ne| ∼ 1/L and L is the
length of the dust cloud, we have |fe| ∼ and�T 2

e /Le2 not too
close to the void boundary. Hence, we obtain from Eq. (7) and
the estimation |∇ ln nd | ∼ 1/L that the condition |fe| � |∇p|
is satisfied if

a�T 2
e

Mc2e2
� 1. (8)

For the conditions of experiment [20], the l.h.s. of (8) is of the
order of 103 (if c = 2.4 cm/s).

Thus, Eq. (6) is reduced to fe + fid = 0 or

π

2
r2
dniλ = aTe

e2
�, (9)

which coincides with the balance equation (1) of Ref. [36].
The combination of this equation with the equation for particle
potential that follows from the orbital motion limited (OML)
approximation [48,49] at Te/Ti � 1

θ�e� = ne

ni

, (10)

where θ = √
Teme/Timi , Ti ≈ Tn and mi are the ion temper-

ature and mass, respectively, and me is the electron mass, and
the local quasineutrality condition

ni = aTe

e2
�nd + ne (11)

yields the stationary IEOS

θ�e� + 3

8

(
πn∗

i

2�

)1/2

= 1, (12)

where n∗
i = (e2λ3/aTe)ni . In contrast to IEOS (1) of Ref. [36],

(12) includes a single parameter θ . The solution of Eqs. (9)–
(11) can be represented in the form of a one-parametric relation
between each desired pair of the variables ni , ne, nd , and �

(each relation is IEOS as well), e.g., the relation between nd

and �. Note that temperatures are included in the parameter θ

because they are assumed to be fixed. Thus, for treated system,
the dust compressibility is proportional to ordinary rather
partial derivative dp/dρ, which implies that differentiation
is performed along the ionization equilibrium line.

Figure 1 illustrates two IEOS in the variables n∗
i , n∗

and n∗
i , n∗

e , where n∗
e = (e2λ3/aTe)ne is the dimensionless

electron number density, for typical conditions of the PK-3
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FIG. 1. (Color online) Dimensionless dust particle (n∗, solid
line) and electron number density (n∗

e , dashed line) as a function
of the dimensionless ion number density n∗

i , θ = 0.0431.

Plus experiment [20]. The dependence n∗
e (n∗

i ) shows that
both n∗

i and n∗
e have a maximum, which corresponds to

two singular points of IEOS. The maximum ion number
density n∗

ic is reached at the first singular point. Here n∗
has a maximum (Fig. 1). The first singular point, which is
similar to the critical point and can be associated with the void
boundary, is defined by the condition (dn∗

i /dn∗
e )|

n∗
e=n∗

ec
= 0.

Since (d�/dn∗
e )|

n∗
e=n∗

ec

= 0, this condition can be rewritten as

(dn∗
i /d�)|

�=�c
= 0 (see Fig. 4 in Ref. [36]). We substitute n∗

i

from (12) in the latter derivative to obtain the equation defining
the potential �c at the first singular point

θ�ce
�c (2�c + 3) = 1. (13)

Its solution is

�c � − ln θ − ln
�0

2
− ln(�0 + 3), (14)

where �0 is the potential of an isolated particle obtained from
(10) with ne = ni : θ�0e

�0 = 1. An approximate solution of
this equation is �0 � − ln θ − ln(− ln θ − 1). From (12) and
(13) we obtain the ion number density at the first singular point
(critical number density)

n∗
ic = 512

9π
�c

(
�c + 1

2�c + 3

)2

. (15)

Given n∗
ic, one can calculate from Eqs. (10)–(12) the

dimensionless electron number density n∗
ec at the first singular

point. With due regard for (13), we obtain

n∗
ec = 512

9π
�c

(�c + 1)2

(2�c + 3)3
. (16)

In a similar way, we obtain from (11) the particle number
density at the first singular point

n∗
c = 4096

27

(
�c + 1

2�c + 3

)3

. (17)

Note that n∗
c is the maximum of n∗ at fixed θ . At θ → ∞

and �c → ∞, n∗
c → 512/27, which is the upper bound

for this quantity. The Havnes parameter H = Znd/ne =
(3/4π )(�n/n∗

e ) is introduced to quantify the fraction of
negative charge accumulated on the particles. At the first
singular point, Hc = 2(�c + 1).

We exclude ni from (10) and (12) to derive IEOS in the
variables ne and �

n∗
e = 128

9π
θ�2e�(1 − θ�e�)2. (18)

The second singular point corresponds to the maximum of
ne (Fig. 1). We denote the quantities corresponding to this
point by subscript s. The second singular point is defined by
the condition (dn∗

e/dn∗
i )|

n∗
i =n∗

is
= 0. Since (dn∗

i /d�)|
�=�s


=
0, we rewrite it in the form (dn∗

e/d�)|
�=�s

= 0. This yields
the equation for the potential �s :

2θe�s (�s + 1)

1 − θ�se�s
= 1 + 2

�s

. (19)

It is seen from Eq. (19) that �s � − ln 3θ at θ → 0 and
�s � 1/2θ at θ → ∞. The decreasing behavior of �s(θ ) is
illustrated by Fig. 2, in which the solutions of Eq. (19) for
different θ are shown.

The combination of (18) and (19) yields the electron
number density n∗

es at the second singular point

n∗
es = 512

9π
�s

(�s + 2)(�s + 1)2

(3�s + 4)3
. (20)

One can estimate the ion number density n∗
is using (10) and

(20),

n∗
is = 512

9π
�s

(
�s + 1

3�s + 4

)2

. (21)

θ

Φ

Φ

FIG. 2. (Color online) Dimensionless quantities at the second
singular point as a function of the temperature parameter θ . Solid
line indicates the sound velocity c∗

s ; dashed line, the dust particle
potential �∗

s ; and dashed-dotted line, the particle number density n∗
s .

023108-4



DUST ACOUSTIC WAVES IN THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 92, 023108 (2015)

We substitute ne/ni from (10) into (11) and then ni from
(11) into (12) to derive IEOS in the variables n∗ and �:

n∗ = 512

27
(1 − θ�e�)3. (22)

It follows from (19) and (22) that

n∗
s = 4096

27

(
�s + 1

3�s + 4

)3

. (23)

It is seen in Fig. 2 that the particle number density at the second
singular point n∗

s ≈ 4, and it is almost independent of θ . At
this point, the Havnes parameter is

Hs = 2
�s + 1

�s + 2
. (24)

For example, under conditions of the experiment [20],
θ =0.0431, �s =1.708, and we obtain from (24) Hs =1.461.

Strictly speaking, at the second singular point, the balance
equation (9) is invalid along with IEOS (12) and (18) because
∇ne = 0 and the electric field E vanishes. However, as follows
from (8), the width of singular region is of the same order of
magnitude as the interparticle distance. At this point, E must
change its direction. It is possible that this region corresponds
to that of inverse ion streaming considered in Ref. [50].

In this section, we have generalized and extended the
results of the previous study [36]. We have shown that IEOS
for the dust cloud has two singular points, which define the
maximum ion and electron number density, respectively, that
can be attained in a spatial region occupied by the cloud.
The complex plasma parameters at these points are typical
for performed experiments. For each singular point, we have
obtained analytical expressions for the dimensionless number
densities of the electrons, ions, and particles, as well as for
the particle electrostatic potential and the Havnes number. We
have demonstrated that all these quantities are functions of
a single quantity, the dimensionless particle potential � at a
corresponding point. The latter is defined by the parameter θ ,
which is a function of the gas molecular mass and the electron
temperature.

The spatial location of two singular points can be illustrated
in application to the dust cloud in RF discharge plasma
(e.g., PK-3 Plus [18] or IMPF-K2 [11] experiments). The
configuration of a dust cloud can be very crudely regarded
as a sphere with an empty spherical region in the center (void).
Then we can associate the first singular point with the void
boundary and the second singular point, with a sphere of the
radius larger than that of the void. Thus, we have two spatial
regions separated by spherical surfaces: the region between
the first and the second singular points and the region outside
the second singular point.

IV. DUST ACOUSTIC WAVES
AND THE SOUND VELOCITY

In what follows, we will treat a nonstationary solution
of Eqs. (1) and (4) corresponding to DAWs. As usual, we
imply that the wavelength 2πc/ω, where ω is the frequency,
is the largest length scale of the problem and that the
wave propagates adiabatically and can be treated in the
linear approximation. First, we represent the sum fe + fid

in (1) in the form (ge + gid )E, where ge = −aTe�nd/e and
gid = (3/8)(4π/3)1/3n

1/3
d niλe [cf. (2) and (3)]. Then we write

ge = ge0 + g′
e, gid = gid0 + g′

id , and E = E0 + E′, where ge0,
gid0, and E0 are the unperturbed quantities and g′

e, g′
id , and E′,

the perturbed ones. Assuming a small perturbation, we write

fe + fid � (ge0 + gid0)E0 + (ge0 + gid0)E′ + (g′
e + g′

id )E0

= (g′
e + g′

id )E0 (25)

due to the force balance condition ge0 + gid0 = 0. It is
noteworthy that this condition cancels out exactly the field
perturbation E′. In other terms, although the field perturbation
is nonzero, it does not contribute to the equation of fluid
dynamics (1). Therefore, the effect of charge separation due to
the ion shift that determines the sound velocity in equilibrium
plasma [25] is fully compensated in the complex plasma of
gas discharge treated in this work. Thus, the sound velocity is
solely defined by the dust compressibility. A similar situation
takes place in strongly coupled Yukawa systems [41].

Calculation of the sum g′
e + g′

id in (25) is a separate
problem, which cannot be solved within the framework of
the model [36] we use in this work. In fact, the model
assumes that at least one stationary spatial distribution of
the number densities of the charged components (electrons,
ions, and particles) is known. Hence, to evaluate g′

e + g′
id , we

have either to develop a self-consistent theory of the complex
discharge plasma (which is now lacking) or to add another
assumption to our model, in other words, to redefine the model
so that it would be applicable for dynamic processes. Note
that the models of equilibrium plasma and of strongly coupled
Yukawa systems are also defined by a set of assumptions.
Our additional assumption will be g′

e = −g′
id , which means

simply that the variations of all quantities in the sound wave
are related by IEOS (12) or that the electric and ion drag forces
are always kept in balance. This assumption is similar to that
made for an ordinary acoustic wave. What is more important,
this assumption allows one to provide an interpretation of
the sound velocity isotropy known from experiment. Indeed,
the sound velocity was found to be independent of the wave
propagation direction with respect to the direction of external
electric field E0, which is almost radial in some setups. If only
g′

e 
= −g′
id , the resulting sound velocity would be anisotropic.

With this assumption, Eq. (1) is reduced to

∂v
∂t

+ (v · ∇)v + νv = − 1

ρ
∇p. (26)

Actually, (26) corresponds to a fluid of soft spheres with no
Coulomb interaction. This equation was successfully applied
for the problem of dust particle collective dynamics [38,44,45].
Equation (26) differs from the standard wave equation by the
neutral drag force term on its l.h.s. We linearize Eqs. (26)
and (4) following the common procedure [51] by substitution
of p = p0 + p′ and ρ = ρ0 + ρ ′, where p0 and ρ0 are the
stationary (unperturbed) pressure and density of the dust
particles and p′ and ρ ′ are their perturbations, respectively.
With due regard for the fact that p′ = c2ρ ′, we obtain

1

c2

∂p′

∂t
+ ρ0∇ · v = 0 (27)
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and

∂v
∂t

+ νv = −∇p′

ρ0
. (28)

We represent the velocity in the form v = ∇ψ to derive from
(28)

p′ = −ρ0

(
∂ψ

∂t
+ νψ

)
. (29)

Substitution of (29) into (27) yields the wave equation

∂2ψ

∂t2
+ ν

∂ψ

∂t
= c2ψ, (30)

where c is the sound velocity. If the sought solution has the
form ψ = Aei(ωt−k·r), where k is the wave vector, then we
arrive at the dispersion relation c2k2 = ω2 − iων or

ck

ω
=

√√
1 + ν̃2 + 1√

2
− i

√√
1 + ν̃2 − 1√

2
, (31)

where ν̃ = ν/ω. If ν̃ � 1 then

ck

ω
� 1 + ν̃2

8
− i

ν̃

2
. (32)

It is seen from (32) that the sound velocity is not much different
from c, and the damping length cν/2 is defined by a half of
the damping frequency ν.

One can calculate c by differentiation of (5) with respect to
ρ = Mnd ,

dp∗

dn∗ = 2�n∗4/3

(
dn∗

d�

)−1

+ 4

3
�2n∗1/3. (33)

We differentiate n∗ with due regard for (22),

dn∗

d�
= −8θn∗2/3e�(1 + �), (34)

to arrive at

c = aTec
∗

e
√

6Mλ
,

c∗2 = 4

3
�2n∗1/3

[
1 − 3

2

n∗1/3

(� + 1)(8 − 3n∗1/3)

]
, (35)

where n∗1/3 = (8/3)(1 − θ�e�). Note that the sound velocity
(along with the particle compressibility) is a continuous
function at the second singular point.

Using (13) and (35) one can easily show that c2(�c) = 0,
c2 > 0 at � > �c, and c2 < 0 at � < �c. Since n∗(�) is
a decreasing function, in the latter case n > nc. We can
conclude that the corresponding branch of solutions of Eq. (12)
relates to an unstable state of the dust cloud with a negative
compressibility. Such a state would tend to collapse and to
quench the discharge. Hence, we confine ourselves to the
treatment of a positive compressibility branch with � > �c

and n < nc.
According to (35) the sound velocity is a function of

the spatial coordinate. This dependence can be qualitatively
illustrated if we consider the dependence c(ni) determined by
(12) and (35) (Fig. 3). For Fig. 3, the experimental conditions
[20] were selected as typical ones. It is seen that the sound
velocity is almost independent of the ion number density,

FIG. 3. (Color online) Dependence of the sound velocity on the
dimensionless ion number density (solid line), θ = 0.0431. Dashed
lines indicate the boundaries of a band, in which the sound velocity
measured at different locations inside the dust cloud are scattered
[20], and dotted line points to the location of the second singular
point.

i.e., of the coordinate in the volume of the dust cloud. This
is accounted for by the fact that the particle pressure (5)
increases but the particle potential decreases with the increase
of the dust number density. The increase in n∗ is almost
compensated by the decrease in �. Thus, c(ni) has a very wide
maximum with the maximum point situated approximately
in the center of a cloud (Fig. 3). The variation of c(ni) is
so small that the entire curve lies within the band, in which
the sound velocity measured at different locations inside the
dust cloud is scattered [20]. This accounts for the fact that
the dependence of sound velocity on the coordinate was not
resolved in experiments. It is also seen in Fig. 3 that in the
close vicinity of the inner boundary of the cloud, which we
associate with the first singular point, c vanishes very sharply.
Apparently, behavior of c in this region cannot be resolved
experimentally as well.

Obviously, the average sound velocity is close to its value
at the second singular point cs . Using (19) and (23) we obtain
from (35)

cs = Zec∗
s√

6Mλ
= Tec

∗
s

e
√

8πρdaλ
, c∗

s = 8

3

�s(�s + 1)√
(3�s + 4)(�s + 2)

.

(36)

It is seen in Fig. 2 that c∗
s is a decreasing function of the

temperature parameter θ . Since �s → ∞ at θ → 0 (Sec. III),
cs → ∞ in this limit; at θ → ∞, we have �s → 0 and cs → 0.
As it follows from (36), cs is weakly dependent on the particle
radius a.

V. ANALYSIS OF EXPERIMENTAL DATA

In Fig. 4 we compare the calculation using formula (36)
with the available results of experiments where the sound
velocity was determined. In these experiments performed
under microgravity conditions both in parabolic flights and
on board the ISS, a 3D dust cloud was formed in argon RF
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μ

FIG. 4. (Color online) Sound velocity in the dust clouds formed
by the particles of different diameter in argon RF discharge. Solid line
indicates the calculation using (36); dashed line, using the formula in
Ref. [25] (37). Dots represent experimental data for different particle
diameter (from left to right): 2ad = 1.55 [19], 2.55 [20], 6.8 [11,12],
and 9.55 μm [11,14].

discharge. One can confirm a satisfactory agreement between
proposed theory and experiment in a wide range of the particle
diameter. Note a very weak dependence of cs on this parameter.
According to (36), this follows not only from the dependence
cs ∼ 1/

√
a but also from cs ∼ 1/

√
λ and from the fact that

the experimental pressure is higher for larger particles. A
good correlation between (36) and experiment is illustrated
by Fig. 3, where the range of n∗

i variation corresponds to the
experiment [20] (for the spatial distributions of ni and nd in
the dust cloud; see Ref. [36]). The variation of sound velocity
is noticeably smaller than the experimental data scatter.

Figure 4 also shows the results of calculation using the
formula c = √

ZTiH/M(H + 1) [25]. For the correctness
of comparison, we estimate c at the second singular point.
Thereby, we include the effect of particle charge decrease
as compared to the charge of an isolated particle, which is
sometimes called “the charge cannibalism” [52,53]. Using (24)
we obtain for this point

cs = 1

ae

√
3TeTi

2πρd

�2
s

3�s + 4
. (37)

Note that (37) is entirely different from (36). Figure 4 shows
that formula (37) demonstrates a trend incompatible with that
of experimental data. Estimates show a significant variation
of the sound velocity [25] as a function of the position in the
dust cloud. Under conditions of Ref. [20], c would change by a
factor of 1.6, which could be detected in this experiment. Thus,
one can confirm a better overall applicability of formula (35).

Although the linear theory of DAWs is not applicable to
the self-excited nonlinear dust-density waves, it is of interest
to consider their phase velocities determined in experiments
[54,55]. In the experiment [54] performed in argon with
particles of diameter 9.55 μm under microgravity conditions,
the phase velocity varied in the range from 1 to 3 cm/s. In the
ground-based experiment [55], the particles of the diameter

TABLE I. Parameters of a dust cloud in the PK-4 experiments
with neon complex plasma for the different diameters 2a of monodis-
perse particles and their number density nd (experimental data were
borrowed from Ref. [22]). The “dust invariant” κ = r2

d /aTe and the
sound velocity cs (36) at different neon pressures were calculated at
Te = 7 eV for the silica particles of 2a = 1.2 μm and the melamine
formaldehyde particles of larger diameters.

nd, κ, cs, cm/s cs, cm/s
2a, μm 104 cm−3 cm/eV (pn = 15 Pa) (pn = 30 Pa)

1.2 20 0.268 4.14 5.85
6.8 4 0.138 1.95 2.76
11 1.3 0.181 1.53 2.17

0.97 μm in argon were used, and the average phase velocity
was found to be 7.5 cm/s. In both studies, the phase velocity
showed considerable spatial variations. These results are best
fitted by Eq. (37) (cf. dashed line in Fig. 4). Apparently, a
qualitative difference from the results concerning the sound
velocity can be explained by the fact that the phase velocity of
dust-density waves is defined by the ion density modulation,
which is explicitly taken into account in (37) but does not
contribute to the sound velocity in our case.

In the ongoing PK-4 experiments, dust clouds are predom-
inantly formed in the dc (or combined dc+RF) discharge in
neon. First, it is necessary to check if IEOS used in this
work is applicable for such systems. The results of calculation
of the “dust invariant” κ = r2

d /aTe, which was introduced in
Ref. [36] for the argon RF discharge, for conditions of the PK-4
experiment with neon is presented in Table I. It is seen that κ

is not much different for neon and argon (κ = 0.209 cm/eV
[36]). This makes it possible to apply formula (36) for the
prediction of typical sound velocities in the PK-4 experiments.
It is worth mentioning that for 2a = 1.2 μm, κ is twice as high
as for 6.8 μm (Table I). This may indicate a poor applicability
of the approximation of similar complex plasmas for the
smallest particles (2a < 2 μm). The reason why the theory
may be flawed in this range of diameters may lie in the fact that
for the smallest particles, the Debye length and the momentum
transfer cross section for an isolated particle are no longer
greater than rd , so that the Coulomb potentials of neighboring
particles do not overlap [36]. Therefore, the momentum
transfer cross section of the ion scattering on particles may
be different from that used in this work. Another one reason
may be the higher electron temperature as compared to argon
at low neon pressure. Under such conditions, the ion drag force
can be proportional to the square of the electric field, which
is not taken into account in used formula for the ion drag
force (3).

One can also suggest the mechanisms of particle charging
other than OML approximation, which can effectively change
θ , such as the ion-neutral collisions [21,56]. However, as was
demonstrated in Refs. [21,56], the effect of collisions, which
reduces the particle charge, is negligibly small at the pressures
pn < 30 Pa and the Havnes number greater than unity. It is
noteworthy that the typical particle charge Z = −aTe�c/e

2

calculated using formula (14) for Te = 7 eV and a = 1.3 μm
amounts to |Z| ≈ 3500, which is almost half the charge of
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an isolated particle. This estimate is close to the charge
determined in experiment [21] performed at the same electron
temperature and particle radius. Note that a particle flow rather
than a stationary dust cloud was realized in Ref. [21], for which
(14) is not directly applicable. We also note that DAWs are
unlikely to be resolved at pn > 30 Pa due to the high damping
rate [35], so that inclusion of the effect of ion-neutral collisions
would not change the numerical results significantly.

Thus, in PK-4 experiments, one can expect the sound
velocity ranging from 2 to 3 cm/s with a weak trend to
the increase with the increase in pressure and the decrease
in particle diameter, while greater velocities seem to be
overestimated in Table I. It is worth mentioning that for neon,
formula (37) would lead to the sound velocities ranging from
0.89 to 7.33 cm/s.

Unfortunately, no direct measurement of the sound velocity
was performed in PK-4 experiments. However, the experi-
mental data on dust acoustic shock waves are best fitted at a
sound velocity of 2.5 cm/s [39]. For melamine formaldehyde
particles of diameter 2a = 3.4 μm used in this experiment,
pn = 15 Pa, and Te = 7 eV, formula (36) yields a close value
cs = 2.76 cm/s.

The sound velocity was measured for the RF discharge in
neon in the PK-3 Plus experiment [35]. For the silica particles
of the diameter 2a = 1.55 μm, the neon pressure pn = 15 Pa,
and the electron temperature Te = 7 eV (θ = 0.0858), the
sound velocity reported in Ref. [35] is cs = 0.96 cm/s. For this
set of parameters, formula (36) yields cs = 3.6 cm/s and (37),
cs = 5.7 cm/s. Despite that the result of (36) is significantly
closer to the experiment, it is still rather inappropriate. To find
the reason of such discrepancy, we will analyze the basic limits
of validity of IEOS formulated in Ref. [36]. The Coulomb
momentum transfer cross section for an isolated particle
∼(aTe/Ti�)2 must be much greater than the cross section
of the particle Wigner-Seitz cell ∼r2

d . At the second singular
point, we have from (23) rd ≈ 0.63λ, and this condition can
be written as

2.5

(
a�sTe

λTi

)2

� 1. (38)

The second condition requires that the maximum impact
parameter of ion scattering on an isolated particle with due
regard for the Debye screening (2�aλDTe/Ti)1/2, where
λD = (Ti/4πnie

2)1/2 is the ion Debye screening length, is
much larger than rd . At the second singular point, we use (21)
and (23) to write this condition as

0.33�1/2
s

3�s + 4

�s + 1

(
aTe

λTi

)1/2

� 1. (39)

As is seen from (38) and (39), the limit of validity of used
theory is reached at sufficiently small particle diameters. Under
the experimental conditions [35], the l.h.s. of (38) and (39) are
close to unity, and therefore, the theory may be flawed in this
region.

In addition to the reasons of the inapplicability of (36) for
the smallest particles discussed above, one can assume that in
the presence of the particles in RF discharge, the electron
temperature can be lower than that in the absence of the
particles, i.e., less than 7 eV. However, for the experiment

[35], there is a good agreement between the damping rates of
DAWs first measured for a 3D dust cloud and the theoretical
result ν/2 [see (32)]. In fact, for pn = 20 Pa, the damping rates
are 43 and 46 s−1 from the theory and experiment, respectively,
and for pn = 15 Pa, 33 and 32 s−1.

VI. CONCLUSION

To summarize, we have calculated the sound velocity
corresponding to DAWs in a nonequilibrium stationary 3D
dust cloud formed in the low pressure ac-dc discharge under
microgravity conditions. The dust cloud is assumed to conform
to the model of similar complex plasmas, which treats a
stationary state of the dust cloud as a balance between the
electric force from an external electric field of the discharge
and the ion drag force. The ionization state of such a system
is fully defined by the one-parametric IEOS, which can relate
each pair of four dimensionless variables. To find characteristic
regions of behavior of the sound velocity, we determine two
singular points of this IEOS related to the maximum of the
ion and electron number densities, respectively. We use the
fluid approach (the Euler and continuity equations) to account
for the dynamics of the dust plasma component. We have
demonstrated that in the presence of the external electric field,
the field perturbation associated with the sound wave is domi-
nated by the gradient of the dust pressure, which emerges due
to the particle correlations in a strongly coupled system. Thus,
the sound velocity is fully determined by the compressibility
of the dust cloud. We have shown that only one branch of
two IEOS solutions that implies the high particle potentials
and low number densities can be realized. We have included
the neutral drag term in the Euler equation to derive a
dispersion relation that makes it possible to estimate the
damping rate of a sound wave. Based on this equation, we
calculated the dependence of the sound velocity on the ion
number density, which mimics a real spatial distribution of
this quantity in the dust cloud. The sound velocity was found
to be almost independent of the coordinate and to assume its
typical value at the second singular point.

Comparison with available experimental data reveals a good
correspondence with the measurements of sound velocity.
The obtained formula for this quantity can account for all
experimentally observed regularities, such as independence of
the coordinate, of the particle radius, and of the gas pressure.
The damping rates of a dust cloud in neon are also in good
agreement with experiment.

A comparison with the well-known result of Ref. [25]
performed at the same point of the plasma ionization state
diagram, thus including the effect of particle charge lowering,
shows a trend entirely different from experimentally observed
one. For small particle diameters, the calculated sound velocity
is more than twice as high as the experimental one, and for
large diameters, vice versa. This is not surprising because the
result [25] is quite correct for equilibrium ideal plasma in the
absence of an external electric field. In contrast, our system is
strongly nonequilibrium and strongly coupled.

In regard to the PK-4 experiment, the analyses of up-to-
date data demonstrates that the dust cloud in neon can be
quantified by the “dust invariant” of our model, which have
approximately the same value for different dust clouds in neon.
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Its value is close to that typical for PK-3 Plus experiments. This
allows one to make some predictive estimations of the sound
velocity, which can be helpful in the analysis of dust acoustic
shock wave propagation. A best fit sound velocity that follows
from such analysis [39] almost coincides with that calculated
in this work.

A single experimental datum, which proved to be incom-
patible with the proposed theory, is a low sound velocity in
the PK-3 Plus experiment with neon [35], which is more
than twice as low as the theoretical estimation. We show
that our theory is valid for sufficiently large particles, but
the dust particles used in the experiment [35] are too small

for the theory. A correct approach to the theory of a cloud
of small particles requires treatment of the Yukawa rather
than the Coulomb system, although the corresponding model
may not have the property of similarity. Another problem of
interest is the sound propagation in a cloud with different
particle sizes. These problems will be addressed in the
future.
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