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In this article a dense nonideal, nonisothermal plasma is considered. New effective screened interaction
potentials taking into account quantum-mechanical diffraction and symmetry effects have been obtained. The
effective potential of the ion-ion interaction in plasmas with a strongly coupled ion subsystem and semiclassical
electron subsystem is presented. Based on the obtained effective potentials the analytical expressions for internal
energy and the pressure of the considered plasma were obtained.
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I. INTRODUCTION

Currently, many experimental and theoretical investigations
aim at a better understanding of nonideal, dense, hot plasmas.
This is due to the importance of understanding the evolution of
planets and stars, whose cores consist of dense nonideal plasma
[1]. Moreover, many expectations are associated with the use
of plasma in inertial fusion reactors. Experimentally, dense
nonideal plasmas are analyzed by the shock wave compression
method [2], using high-power lasers [3] and ion acceler-
ators [4]. A characteristic feature of the above-mentioned
experiments is the nonisothermality of the resulting plasma.
The reason for that is a great difference between ion and
electron masses, which hampers the energy exchange between
them. Therefore, the equilibrium inside ionic and electronic
subsystems is reached much faster than that between ions and
electrons [5]. To calculate the plasma properties correctly it
is necessary to choose a model of interparticle interactions
taking into account specific features and parameters of the
system [6]. The subject of this paper is nonisothermal, weakly
nonideal, dense plasmas. To describe such a type of plasma it
is necessary to use a model of interparticle interactions taking
into account collective and quantum effects.

The problem of calculating the equation of state for dense
nonideal plasmas taking into account quantum effects was
studied by a number of authors [7]. For example, Vorberger
et al. [8,9] considered this problem using the Green’s function
method. In [10] quantum effects in dense plasmas were studied
using quantum molecular dynamics. However, these models
require a vast number of calculations. Therefore, to calculate
the static properties of plasma in various fields of physics
and astrophysics [11,12] it is necessary to have a simple
analytical approach. Such a simple self-consistent analytical
model, which can be used for the calculation of thermodynamic
and structural characteristics of dense weakly coupled plasmas
taking into account quantum effects, has been developed in this
work.

It is known that two methods are used to determine the
effective interparticle interaction potential taking into account
the collective effects of charge screening at large distances.
The first method is based on the solution to the generalized
Poisson-Boltzmann equation obtained from Bogolyubov’s
equations for the phase-space distribution function [13–16].
The second method is based on the dielectric response function
[17–21]. These effective potentials proved to be very useful

in calculations of various plasma properties [22–31]. In this
work the effective interaction potential is determined by the
second method: the method of dielectric response function.

The dense plasma is a plasma where the average inter-
particle distance is comparable to the thermal de Broglie
wavelength of particles. In dense plasmas, there is a high
probability of interparticle collisions at very short distances,
where it is important to consider the wave nature of the
colliding particles caused by quantum-mechanical effects such
as diffraction and symmetry. These effects at small distances
can be taken into account in the pair interaction potential of
particles or in the micro-potential [32–36]. Hence, at the first
step we had to choose such a pair interaction potential between
particles that would neglect the influence of the environment,
satisfy the considered plasma parameters, and, as mentioned
above, take into account the quantum effects of diffraction and
symmetry at short distances. As a micropotential we used the
Deutsch potential [32–34], which had been tested in a large
number of calculations [37–40]

φDeutsch
αβ (r) = ZαZβe2

r

(
1 − exp

(
− r

λαβ

))
, (1)

where α and β are particle species (ion or electron); Zα, Zα

are atomic numbers of particle species α, β; e is the electron
charge; λαβ = �/

√
4π mαβkBTαβ− is the thermal de-Broglie

wavelength of pairs of particles α, β; mαβ = mαmβ/(mα +
mβ) is the reduced mass and kB is the Boltzmann constant;
Tee = Te, Tii = Ti are the temperatures of the electron and ion
subsystems. To describe the nonisothermal two-temperature
plasma it is necessary to use not only temperatures of electrons
and ions but also an electron-ion temperature Tei [37,40]. In
[40] the microscopic properties of the nonisothermal, nonideal
plasma, particularly, in the long-wavelength limit of the static
structure factor, were analyzed. Using the Ornstein-Zernike
equation, it was shown that the electron-ion temperature should
be expressed in terms of electron and ion temperatures in the
following form:

Tei =
√

TeTi. (2)

Therefore, Tαβ = √
TαTβ .

For the interaction between ions the thermal wavelength for
an ion-ion pair should be taken as λii → 0 and the potential
(1) for that pair is reduced to the Coulomb potential.
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Using the potential (1), we will show that in the low
density limit the well-known analytical results for the equation
of state of plasmas, which were obtained from the general
quantum statistical theory, can be reproduced. This indicates
the correctness of the used potential (1). It should be noticed
that the first quantum potential was obtained by Kelbg [41].
However, the Kelbg potential does not enable us to obtain
analytical formulas for the effective screened interaction
potential and thermodynamic characteristics of dense plasmas.
A more detailed investigation of the correspondence between
classical and quantum systems on the basis of quantum
potentials may be found in [42].

As dimensionless plasma parameters, we use the coupling
parameters �ee, �ii , �ei and the density parameter rS , which
can be found from the following formulas:

�ee = e2

akBTe

, �ii = Zi
2e2

akBTi

(
ni

ne

)1/3

= �eeZ
5/3
i

(
Te

Ti

)
,

�ei = Zie
2

akBTei

= �eeZi

√
Te

Ti

, rS = a/aB, (3)

where a = (3/(4πne))1/3 is the average distance between
electrons. The ratio ni/ne is found from the semineutrality

condition. Further, we will consider a fully ionized plasma
with the following parameters: electron density varying from
1021 cm−3 to 1024 cm−3 and temperature varying from 104K
to 106K. We assume that there is only one type of ion and
ni/ne = 1/Zi .

II. EFFECTIVE INTERACTION POTENTIAL

As mentioned above, to obtain an analytical expression
for the effective potential we used the method of dielectric
response function, where the Deutsch potential was used as
a micropotential (1). The Fourier transform of the effective
potential is determined by the following formula:

�̃αβ(q) = ϕ̃αβ(q)(ε(q))−1, (4)

where φ̃αβ(q) is the Fourier transform of the interaction
micropotential (1), ε(q) is the dielectric function of the plasma
in the random phase approximation, which is determined by
the formula:

εRPA(q) = 1 +
∑

α

nα

kBTα

φ̃αα(q), (5)

where nα− is the density of α type of particles.
Using the inverse Fourier-transform formula we can obtain

the expression for the effective interaction potential

�αβ(r) = ZαZβe2

r

1

γ 2

√
1 − (2kD/λeeγ 2)2

((
1/λ2

ee − B2

1 − B2λ2
αβ

)
exp(−Br) −

(
1/λ2

ee − A2

1 − A2λ2
αβ

)
exp(−Ar)

)

− ZαZβe2

r

(1 − δαβ)

1 + Cαβ

exp(−r/λαβ), (6)

where (2kD/λeeγ
2)2 < 1, k2

D = k2
e + k2

i is the screening parameter taking into account the contribution of electrons and ions,
γ 2 = k2

i + 1/λ2
ee, and

Cαβ = k2
Dλ2

αβ − k2
i λ

2
ee

λ2
ee/λ

2
αβ − 1

, A2 = γ 2

2

(
1 +

√
1 −

(
2kD

λeeγ 2

)2)
, B2 = γ 2

2

(
1 −

√
1 −

(
2kD

λeeγ 2

)2)
. (7)

The effective potential (6) describes the interaction between all pairs of particles. In the last term on the right-hand side of
the equation, the symbol 1 − δαβ was included formally to indicate that this term disappears for ion-ion and electron-electron
interaction. The symbol 1 − δαβ can be neglected, as for ion-ion case λii → 0 and the term exp(−r/λαβ) tends to zero, for the
electron-electron case according to Eq. (11) Cee → ∞ and the last term on the right-hand side of the equation tends to zero.
Thus, the symbol 1 − δαβ enables us not to make transformations every time we consider ion-ion or electron-electron pairs.

From (6) we can obtain the analytical expressions for effective electron-electron interaction potential

�ee(r) = e2

(
1 + λ2

eek
2
i

)√
1 − (2kD/λeeγ 2)2

(exp(−Br) − exp(−Ar))

r
, (8)

for the effective ion-ion interaction potential

�ii(r) = ZiZie
2

γ 2

√
1 − (2kD/λeeγ 2)2

r

(
exp(−Br)

(
1

λ2
ee

− B2

)
− exp(−Ar)

(
1

λ2
ee

− A2

))
, (9)

and for the effective electron-ion interaction potential

�ei(r) = − Zie
2

λ2
eiγ

2

√
1 − (2kD/λeeγ 2)2

r

((
1/λ2

ee − B2

1/λ2
ei − B2

)
exp(−Br) −

(
1/λ2

ee − A2

1/λ2
ei − A2

)
exp(−Ar)

)
+ e2

r

1

1 + Cei

exp(−r/λei).

(10)
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The effective potentials satisfy all passages to the limit. If there is no screening kD → 0,ki → 0,ke → 0, formulas (8), (9),
and (10) can be written as

�ee(r) = e2

r
(1 − exp(−r/λee)), (11)

�ii(r) = ZiZie
2

r
, (12)

�ei(r) = −Zie
2

r
(1 − exp(−r/λei)), (13)

which coincides with the micropotentials used as initial potentials. When λee → 0,λei → 0 the expression for the effective
potential (6) transforms into the formula for the Debye screened potential without quantum effects

�αβ(r) = ZαZβe2

r
exp(−rkD). (14)

In the case ki → 0 the effective potential (8) coincides with the potential obtained in [18,32], and the effective potential (9)
coincides with the effective potential for ion interactions derived in [19]. These effective potentials were used to study various
properties of plasmas [24–31,43–47].

If the term (2kD/λeeγ
2)2 is greater than one in (6), the square root term becomes imaginary. As the effective interaction

potential (6) is always real, in the case of (2kD/λeeγ
2)2 > 1 it is convenient to use the formula (6) in a modified form without

the imaginary unit √
1 − (2kD/λeeγ 2)2 = √−1

√
(2kD/λeeγ 2)2 − 1.

In this case, it is easy to show that the effective potential (6) takes the following form:

�αβ(r) = ZαZβe2

r

dαβ

γ 2

√
(2kD/λeeγ 2)2 − 1

sin(
√

kD/λee sin(ω/2) r + θαβ) exp[−r
√

kD/λee cos(ω/2)]

− ZαZβe2

r

(1 − δαβ)

1 + Cαβ

exp(−r/λαβ), (15)

where (2kD/λeeγ
2)2 > 1 and the constants dαβ,θαβ,ω are defined as

dαβ =
√

a2
αβ + b2

αβ, θαβ = arctan(bαβ/aαβ ), ω = arctan[
√

(2kD/λeeγ 2)2 − 1],

aαβ = 2
(
1/λ2

ee − γ 2/2
)(

1 − γ 2λ2
αβ/2

) + γ 4λ2
αβ((2kD/λeeγ

2)
2 − 1)(

1 − γ 2λ2
αβ/2

)2 + γ 4λ4
αβ

(
4kD

2/λee
2γ 4 − 1

)/
4

,

bαβ =
γ 2

(
1 − λ2

αβ

/
λ2

ee

)√
(2kD/λeeγ 2)2 − 1(

1 − γ 2λ2
αβ

/
2
)2 + γ 4λ4

αβ

(
4kD

2
/
λee

2γ 4 − 1
)/

4
.

It should be noticed that the same result obtained if an
imaginary unit, first, is removed from (4) taking into account
the condition (2kD/λeeγ

2)2 > 1 and only then the inverse
Fourier transformation performed. We refer to [48] where the
similar mathematical procedure was used.

Figures 1–4 show the effective potentials (6) and (15) in
comparison with the Deutsch (1) and Debye potentials for
different types of interactions, where �ee = �ii = �ei = �. It
can be seen from the figures that, due to the collective effects
and the wave nature of electrons, the effective potentials for
the electron-electron and electron-ion interactions are screened
at large distances and finite at small distances. The effective
ion-ion interaction potential is also screened at large distances,
but, as a consequence, due to the wave nature of electrons, the
screening is slightly weaker than the Debye potential.

The effective interaction potentials (6) and (15) can be
used to describe multicomponent dense weakly coupled two-

temperature plasmas with parameters of nonideality less than
unity �ii < 1,�ee < 1. In the case where the ion subsystem
is strongly coupled �ii > 1, and the electron subsystem is
weakly nonideal �ee < 1 or ideal �ee � 1, then ki = 0 and
the effective potentials (8) and (15) (α = i,β = i) can be used
to study the strongly coupled one-component ion plasma with
a background of quasiclassical weakly coupled electrons. In
this case, the effective ion interaction potential is expressed as

�ii(r)

= Z2
i e

2

r
√

1 − (2λeeke)2

((
1

2
+ 1

2

√
1 − (2λeeke)2

)

× exp(−Br) −
(

1

2
− 1

2

√
1 − (2λeeke)2

)
exp(−Ar)

)
,

(16)
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FIG. 1. Interaction potentials at � = 0.8, rS = 2: Solid line
corresponds to (9) for i − i pairs; Dashed-dotted line is the Debye
potential; Dashed line—Eq. (8); Dotted line micropotential (1).

for (2keλee)2 < 1 and

�ii(r) = Z2
i e

2

r

2keλee√
(2λeeke)2 − 1

sin(
√

ke/λee sin(ω/2) r + θii)

× exp[−r
√

ke/λee cos(ω/2)], (17)

for (2keλee)2 > 1.
The constant coefficients in formulas (16) and (17) read

B2 = 1

2λ2
ee

(
1 −

√
1 − 4λ2

eek
2
e

)
,

A2 = 1

2λ2
ee

(
1 +

√
1 − 4λ2

eek
2
e

)
,

ω = θii = arctan
(√

4λ2
eek

2
e − 1

)
.

Thus, the effective potentials (16) and (17) can be used
molecular dynamics and Monte Carlo simulations or for the
calculation of the stopping power of plasmas with a strongly
nonideal ion component for �ee < 1.

FIG. 2. Interaction potentials at � = 0.9, rS = 1: Solid line
corresponds to (15) for i − i pairs; Dashed-dotted line, the Debye
potential; Dashed line—Eq. (15) for e − e pair; Dotted line—
micropotential (1).

FIG. 3. Effective potentials of interaction between electrons and
ions at � = 0.8, rS = 2: Solid line—Eq. (10); Dashed-dotted line-the
Debye potential; Dashed line, micropotential (1).

It should be noted that (16) and (17) describe the same
effective interaction potential [the same applies to (6) and
(15)]. The potential (16) transforms into (17) by replacing√

1 − 4λ2
eek

2
e = i

√
4λ2

eek
2
e − 1 and vice versa. In the case

4λ2
eek

2
e = 1, (16) and (17) take the same simple form

�ii(r) = Z2
i e

2

r

(
1 + r

2
√

2λee

)
exp

(
− r√

2λee

)
. (18)

Using dimensionless parameters, the condition 4λ2
eek

2
e = 1 can

be rewritten as �ee = √
π rS/6.

The effective potentials (17) and (18) and the Debye
potential φD = Z2

i exp(−r ke)/r are shown in Figs. 5 and 6. As
can be seen, the effect of screening is weaker due to quantum
effects.

The effective potential of ion-ion interaction (17), obtained
in the quasiclassical approximation, gives a negative mini-
mum (Fig. 7), i.e., the attraction between ions for certain
plasma parameters. A similar result was obtained in [48] in
the framework of the generalized quantum hydrodynamics
approximation and was considered in detail using the density
functional theory in [49–51].

FIG. 4. Effective potentials of interaction between electrons and
ions at � = 0.9, rS = 1: Solid line—Eq. (15); Dashed-dotted line-the
Debye potential; Dashed line-micropotential (1).
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FIG. 5. Effective potentials of ion interaction at �ii = 4, �ee =
0.8, rS = 1: Solid line—Eq. (17); Dashed line—the Debye potential.

III. DENSE PLASMA THERMODYNAMIC PROPERTIES

The resulting effective screened potentials enable us to
study various plasma properties directly. To study the ther-
modynamic properties of the plasma we used a method using
particle pair correlation functions gαβ(r). For weakly ionized
plasma

gαβ(r) = exp

(
−�αβ(r)

kBTαβ

)
≈ 1 − �αβ(r)

kBTαβ

.

Obviously, the behavior of the pair correlation function is
explained by the behavior of the effective interaction potential.
The graphs of the pair correlation function and the structure
factor with their description are given in Appendix. Further we
will show analytical formulas for the interaction correlation
energy and for the equation of state for a fully ionized plasma.

A. Interaction correlation energy

The total internal energy of a plasma is equal to U =∑
α 3/2NαkBTα + UN where the correlation energy of inter-

FIG. 6. Effective potentials of ion interaction at �ii = 4, rS =
2, �ee = √

π rS/6: Solid line—Eq. (18); Dashed line—the Debye
potential.

FIG. 7. Effective interaction potentials for �ii = 10, �ee =
0.8, rS = 0.4: Solid line—the effective potential of ion interaction,
Eq. (17); Dashed line—the Debye potential.

action is determined by the formula

UN = 2πV

∫ ∞

0

∑
α,β

nα,nβϕαβ(r)gαβ(r)r2dr. (19)

Taking the Deutsch potential (1) as the interaction microp-
otential ϕαβ(r) and using the obtained effective screened inter-
action potentials (6) to define the pair-correlation function, we
obtained the analytical expression for the correlation energy
for (2kD/λeeγ

2)2 � 1:

UN = −2πV
∑
α,β

nα,nβ e2
αe2

β

kBTαβγ 2

√
1 − (2kD/λeeγ 2)2

×
[

1/λ2
ee − B2

B
(
1 − B2λ2

αβ

)
(1 + Bλαβ)

− 1/λ2
ee − A2

A
(
1 − A2λ2

αβ

)
(1 + Aλαβ)

]

+ 2πV e2

(
2Zinineλ

2
ei − n2

eλ
2
ee + Zinineλeie

2

kBTei(1 − Cei)

)
.

(20)

The second term in (20) appears due to the quantum
diffraction effect at small distances. Let us denote it by Udif and
the first term by Ulong. If the wavelength of particles tends to
zero, Udif term vanishes, and Ulong gives the well-known Debye
correction. Formula (20) is consistent with the results of [33]
for the one-component electron plasma. The first term Udif are
proportional to ∼T −1

�
2 and second term is proportional to

∼T −3/2
�.

To account for the effect of symmetry it is necessary to
add a symmetrical member, taking into account the additional
effective repulsion between the electrons due to the Pauli
exclusion principle [32], into the Deutsch micropotential and
into the effective potential (6)

ϕS(r) = δαeδβekBTe ln 2 exp

(
− ln 2

π

(
r

λee

)2)
, (21)

where δαe, δβe are Kronecker symbols.
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When taking into account the effect of symmetry, there is an additional term in the correlation energy

Usym = 2πV n2
e

e2π2λ3
ee

4
√

ln 2
(
1 + λ2

eek
2
i

)√
1 − (2kD/λeeγ 2)2

[
B exp

(
π2B2λ2

ee

4 ln 2

)
erfc

(√
πBλee

2
√

ln 2

)

−A exp

(
π2A2λ2

ee

4 ln 2

)
erfc

(√
πAλee

2
√

ln 2

)]
− 2πV n2

e

(
1.21685e2λ2

ee

) + 2πV n2
e

(
1.9828kBTeλ

3
ee

)
. (22)

Thus, the correlation energy is the sum of expressions (20) and (22).
If (2kD/λeeγ

2)2 < 1 is not fulfilled, it is necessary to use the effective potential (15). For the correlation energy, excluding the
effect of symmetry from Eq. (19), we find

UN = −2πV
∑
α,β

nαnβ e2
αe2

β dαβ

kBTαβγ 2

√
(2kD/λeeγ 2)2 − 1

⎡
⎣

√
λee

kD

sin
(ω

2
+ θαβ

)
−

λ2
αβ

√
kD

λee
sin

(
ω
2 + θαβ

) + λαβ sin
(

ω
2

)
λ2

αβ
kD

λee
+ 2λαβ

√
kD

λee
cos

(
ω
2

) + 1

⎤
⎦

+ 2πV e2

(
2Zinineλ

2
ei − n2

eλ
2
ee + Zinineλeie

2

kBTei(1 − Cei)

)
, (23)

where (2kD/λeeγ
2)2 > 1.

Including the symmetry effect we get the following contribution to the correlation energy:

Usym = 2πV n2
e

e2π2λ3
ee

√
kD/λee

4
√

ln 2
(
1 + λ2

eek
2
i

)√
(2kD/λeeγ 2)2 − 1

exp
(
− π

4 ln 2
kDλee cos (ω)

){
cos

(
ω

2
− πkDλee

4 ln 2

)

× Im

(
erf

(
1

2

√
πkDλee

ln 2
exp

(
iω

2

)))
− sin

(
ω

2
− πkDλee

4 ln 2

)[
1 − Re

(
erf

(
1

2

√
πkDλee

ln 2
exp

(
iω

2

)))]}

− 2πV n2
e

(
1.21685 × e2λ2

ee

) + 2πV n2
e

(
1.9828 × kBTeλ

3
ee

)
. (24)

For (2kD/λeeγ
2)2 > 1 the correlation energy is the sum of

(23) and (24).
The first two terms in (22) and (24) for isothermal plasma

are proportional to ∼T −1
�

2 and the third term is proportional
to ∼T −1/2

�
3. It means that symmetry effects give only a small

contribution to the plasma correlation energy.
All expressions for the internal energy, regardless of the

sign of the radicand
√

1 − 4λ2
eek

2
e , are always real. Formulas

(23), (24) can be obtained by replacing
√

1 − 4λ2
eek

2
e =

i
√

4λ2
eek

2
e − 1 in expressions (20) and (22), respectively.

Figures 8 and 9 show a comparison of the internal energy
to the results of other studies, obtained by theoretical methods

FIG. 8. (Color online) Internal energy of isothermal hydrogen
plasma at T = 125 000 K.

and by computer simulation [23,52–55]. Figure 9 shows that
the obtained analytical expression for the correlation energy
coincides with the Debye correction for small values of the
coupling parameter. A slight difference between our internal
energy and the results of [23,52] for large values of the cou-
pling parameter, can be explained by the appearance of bound
states (neutral atoms), which were not considered in this paper.

B. Plasma equation of state

The plasma equation of state is written as

P = Pid − 2π

3

∫ ∞

0

∑
α,β

nα,nβ

dϕαβ (r)

dr
gαβ(r)r3dr, (25)

where Pid = nekBTe + nikBTi is the pressure of ideal plasma.

FIG. 9. (Color online) Correlation energy of a hydrogen plasma.
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As in the case of the correlation energy, taking the Deutsch potential (1) as the interaction micropotential ϕαβ(r) and using
the effective screened potentials without the diffraction effect, we obtain the following analytical expression for the equation of
state:

P = Pid − 2π

3

∑
α,β

nα,nβ e2
αe2

β

kBTαβγ 2

√
1 − (2kD/λeeγ 2)2

[
1/λ2

ee − B2

B
(
1 − B2λ2

αβ

)
(1 + Bλαβ)2 − 1/λ2

ee − A2

A
(
1 − A2λ2

αβ

)
(1 + Aλαβ)2

]

+ 2πe2

(
2Zinineλ

2
ei − n2

eλ
2
ee + Zinineλeie

2

12kBTei(1 − Cei)

)
. (26)

where (2kD/λeeγ
2)2 � 1.

Formula (26) also reproduces the results for the equation of state for a single-component electron plasma derived in [33].
When the thermal wavelength of particles tends to zero, the last term in (26) disappears and the Debye correction remains. Taking
into account the effect of symmetry, we get the following additional terms in the analytical expression for the equation of state:

Psym = 2π

3

e2π2n2
eλ

4
ee

4 ln 2
(
1 + λ2

eek
2
i

)√
1 − (2kD/λeeγ 2)2

[
γ 2

√
1 − (2kD/λeeγ 2)2 + πλee

2
√

ln 2
B

(
B2 + 6 ln 2

πλ2
ee

)

× exp

(
π2B2λ2

ee

4 ln 2

)
erfc

(√
πBλee

2
√

ln 2

)
− πλee

2
√

ln 2
A

(
A2 + 6 ln 2

πλ2
ee

)
exp

(
π2A2λ2

ee

4 ln 2

)
erfc

(√
πAλee

2
√

ln 2

)]

+ 2π

3
n2

e

(
0.618504 × e2λ2

ee

) + 2π

3
n2

e

(
2.4833 × kBTeλ

3
ee

)
. (27)

If (2kD/λeeγ
2)2 > 1, the equation of state without the symmetry effect is written as

P = Pid − 2π

3

∑
α,β

nαnβ e2
αe2

β dαβ

kBTαβγ 2

√
(2kD/λeeγ 2)2 − 1

⎡
⎣−

√
λee

kD

sin

(
ω

2
+ θαβ

)
+

λ2
αβ

√
kD

λee
sin

(
ω
2 + θαβ

) + λαβ sin
(

ω
2

)
λ2

αβ
kD

λee
+ 2λαβ

√
kD

λee
cos

(
ω
2

) + 1

+
λαβ sin

(
θαβ + 2 arctan

( √
kD/λee sin(ω/2)√

kD/λee cos(ω/2)+λ−1
αβ

))
λ2

αβ
kD

λee
+ 2λαβ

√
kD

λee
cos

(
ω
2

) + 1

⎤
⎦ + 2πe2

(
2Zinineλ

2
ei − n2

eλ
2
ee + Zinineλeie

2

12kBTei(1 − Cei)

)
. (28)

If the effect of symmetry is taken into account, the following additional term appears:

Psym = 2π

3
n2

e

(
0.618504 × e2λ2

ee

) + 2π

3
n2

e

(
2.4833 × kBTeλ

3
ee

)

+ e2π2n2
eλ

2
ee

2
(
1 + λ2

eek
2
i

)√
(2kD/λeeγ 2)2 − 1

∫ ∞

0
t exp

(
−t

λeekD

4 ln 2
cos (ω)

)
sin

(
t

λeekD

4 ln 2
sin (ω)

)
(1 + t)−5/2dt. (29)

All terms in (27) and (29) are proportional to various
degrees of the Plank constant, from 2 and higher. It is seen
that expressions (27) and (29) give positive contributions to
the pressure, which can be explained by the fact that the effect
of quantum symmetry generates an effective repulsion between
particles.

As in the case of the formulas for the correlation energy,
(28) and (29) can be obtained from (26) and (27) by directly
replacing

√
1 − 4λ2

eek
2
e = i

√
4λ2

eek
2
e − 1.

Figures 10 and 11 show the comparison with the results of
other works obtained by theoretical methods and by computer
simulation [56–60]. The figures show good agreement with
the results of molecular dynamics simulations based on wave
packets [56] and with the results of Monte Carlo simulation
based on path integrals [57,58]. The difference at high densities
is due to the appearance of bound states, which were not taken
into account in this paper.

Let us consider the low density limit. Neglecting the
terms proportional to ∼λ2

ee/r2
D in (26), in addition to the

Debye correction for the excess part of the equation of state,
we obtained the term −kBTeλee/(24πr4

D). This result agrees
with the Montroll-Ward contribution and corresponds to the
quantum ring sum [61,62]. Therefore we can conclude that the
derived equation of state for plasma has the correct asymptotic.

C. Thermodynamic properties on the basis
of the Coulomb potential

Here, taking the Coulomb potential as the interaction mi-
cropotential ϕαβ(r) and using the obtained effective screened
interaction potentials (6) to determine the pair-correlation
function, we obtained an analytical expression for the correla-
tion energy and the equation of state. The analytical expression
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FIG. 10. (Color online) Equation of state for a hydrogen plasma
at T = 100 000 K.

for the correlation energy was written as

UN = −2πV
∑
α,β

nα,nβ e2
αe2

β

kBTαβγ 2

√
1 − (2kD/λeeγ 2)2

×
[

1/λ2
ee − B2

B
(
1 − B2λ2

αβ

) − 1/λ2
ee − A2

A
(
1 − A2λ2

αβ

)
]

+ 2πV
Zinineλeie

4

kBTei(1 − Cei)
+ Usym, (30)

where Usym is the term due to the effect of symmetry

Usym = −2πV ne4
(
1.2168 × λ2

ee

)
. (31)

The analytical expression for the equation of state can be
written in the following form:

P = Pid − 2π

3

∑
α,β

nα,nβ e2
αe2

β

kBTαβγ 2

√
1 − (2kD/λeeγ 2)2

×
[

1/λ2
ee − B2

B
(
1 − B2λ2

αβ

) − 1/λ2
ee − A2

A
(
1 − A2λ2

αβ

)
]

+ 2π

3

Zinineλeie
4

kBTei(1 − Cei)
+ Psym, (32)

FIG. 11. (Color online) Excess part of equation of state for a
hydrogen plasma.

FIG. 12. (Color online) Correlation energy of isothermal hydro-
gen plasma at rs = 3. Solid line corresponds to the results of
Sec. III A, dashed line is obtained according to (30), dashed-dotted
line presents results of the Debye theory.

where Psym is the term due to the effect of symmetry

Psym = −π2

3
n2

ee
2λ2

ee. (33)

Neglecting the terms proportional to ∼λ2
ee/r2

D in (32), we
have obtained that in the low density limit there is no term
corresponding to the quantum ring sum (the Montroll-Ward
contribution). Figures 12 and 13 show that the main quantum
contribution is caused by the quantum ring sum proportional
to ∼λee/rD . More clearly, it is seen in Fig. 13. The quantum
effect causes a decrease in the correction due to nonideality in
both the correlation energy and the excess part of the equation
of state. The comparison with the result of Rieman et al.
[63], which was obtained within a perturbation expansion
using the thermodynamic Green’s function, shows that the
equation of state derived in Sec. IIIB is correct in the limit of
weak coupling. Moreover, as it is seen from comparison with
the results of the path integral Monte Carlo calculations by

FIG. 13. (Color online) Excess part of equation of state for
hydrogen plasma at rs = 1. The solid line corresponds to the results
of Sec. III B, the dashed line is obtained according to (32), the
dashed-dotted line presents results of the Debye correction. Circles
correspond to the results of Riemann et al. [63]. Squares denote
restricted path integral Monte Carlo calculations by Pierleoni et al.
[64].
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FIG. 14. (Color online) Correlation energy of nonisothermal hy-
drogen plasma at rs = 3 and Te = 250 000 K. Solid line corresponds
to the results of Sec. III A, dashed line is obtained according to (30),
dashed-dotted line presents results of the Debye theory.

Pierleoni et al. [64] at larger values of the coupling parameter
our results still have a correct behavior.

Finally, in Figs. 14 and 15 the correlation energy and the
excess part of the equation of state for the nonisothermal
plasma are shown. As the ratio Te/Ti decreases, the absolute
value of both the correlation energy and the excess part of the
equation of state for nonisothermal plasma increase.

IV. CONCLUSION

Using the method of the dielectric response function and
the potential interaction with the account of the wave nature
of the electron at small distances, we obtained the effective
interaction potentials for nonideal dense electron-ion plasmas.
These effective potentials can be used for nonisothermal and
isothermal plasmas. The expressions for the effective potential
for ion interactions in plasmas with a strongly nonideal
ionic subsystem and semiclassical weakly nonideal electron
subsystem were obtained. Based on the effective interaction

FIG. 15. (Color online) Excess part of the equation of state for
nonisothermal hydrogen plasma at rs = 3. Solid line corresponds to
the results of Sec. III B, dashed line is obtained according to (32),
dashed-dotted line presents results of the Debye correction.

FIG. 16. Pair correlation function for ion-ion pare (12), rS = 1;
solid line � = 0.1, dashed line � = 0.25; Dash-dotted line � = 0.5;
dotted line � = 0.7.

potentials, analytical expressions for the internal energy and
the equation of state for a fully ionized plasma were derived.
The term ∼e2 in the internal energy and in the equation of
state disappears when λee → 0, λei → 0 in agreement with the
recent work of Kraeft, Kremp, and Reopke [65]. It is found that
due to the symmetry effect the additional term ∼nekBT (neλ

3
ee)

in the inner energy of plasma and in the equation of state
appears [see (24) and (27)].

To take into account the partial degeneracy of electrons at
high densities, the electron screening parameter ke is calculated
by the formula k2

e = (4e2me)/(π�
3)

∫
fe(p)dp, where fe(p)

is the Fermi distribution, and the electron temperature is
replaced by the effective temperature, which is determined
by the quantum kinetic energy with the contribution of Fermi
energy Te = EF θ5/2

∫ ∞
0 y3/2/(exp(y − βμ) + 1) dy, where μ

is chemical potential of electrons, β = 1/(kBT ) and θ =
kBT /EF is the degeneracy parameter,EF is Fermi energy [21].

A comparison to the asymptotic theory and computer sim-
ulations suggests that the effective potentials, obtained in this
paper, can be used to adequately describe the thermodynamic
properties of the two-temperature dense plasma.

FIG. 17. Pair correlation function for electron-electron pare (13)
neglecting symmetry effect, rS = 1; solid line � = 0.1, dashed line
� = 0.25; dash-dotted line � = 0.5; dotted line � = 0.7.
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FIG. 18. Pair correlation function for an electron-electron pare
(13) taking into account symmetry effect rS = 1; solid line � = 0.1,
dashed line � = 0.25; dashed-dotted line � = 0.5; dotted line � =
0.7.

In the case of stationary flowing plasma with a low
streaming velocity the effect of dynamic screening can be
taken into account by rescaling of the screening length as it
was first suggested by Kremp et al. [66] for weakly coupled
plasma. Grabowski et al. [67] extended their approach to
strongly coupled plasmas. However, in the case of highly
nonequilibrium plasma with a high streaming velocity a
reliable treatment by simple rescaling of the screening length is
not possible. For such systems the effective dynamic potential
has strong oscillations with a deep minimum that can lead to
attraction between ions [68]. A more detailed comparison of
the nonrelativistic and ultrarelativistic cases is given in [69].

APPENDIX

Figures 16–21 show graphs of pair correlation function,
derived from the effective interaction potential (6)

gαβ(r) = exp

(
−�αβ(r)

kBTαβ

)
. (A1)

FIG. 19. Pair correlation function for an electron-ion pare (14),
rS = 1; solid line � = 0.1, dashed line � = 0.25; dash-dotted line
� = 0.5; dotted line � = 0.7.

FIG. 20. Pair correlation function for an electron-ion pare (14),
� = 0.5, rS = 1; solid line effective potential (14), dashed line Debye
potential.

FIG. 21. Pair correlation function for an electron-electron pare
(14), � = 0.5, rS = 1; solid line effective potential (14), dashed line
Debye potential.

FIG. 22. Structural factor for an electron-electron pare (dashed
line), an ion-ion pare (solid line), and an electron-ion pare (dash-
dotted line); Te/Ti = 1, � = 0.5, rS = 1.
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FIG. 23. Structural factor for an electron-electron pare (dashed
line), an ion-ion pare (solid line), and an electron-ion pare (dashed-
dotted line); Te/Ti = 2, � = 0.5, rS = 1.

The figures show that the contribution of quantum effects
gives a finite value of the pair correlation function at zero
for the electron-electron and electron-ion interactions. As
the coupling parameter increases, the probability of finding
particles with the same charge at a given distance decreases,
whereas the probability of finding particles with opposite
charge increases. Accounting for the effect of symmetry in
gee(r) reduces the probability of finding particles at a given
distance.

The Fourier transform of the effective potential enables
us to calculate the structure factor directly according to the
formula

Sαβ(q) = δαβ −
√

nαnβ

kBTαβ

�̃αβ(q). (A2)

FIG. 24. Structural factor for an electron-electron pare (dashed
line), an ion-ion pare (solid line), and an electron-ion pare (dash-
dotted line); Te/Ti = 0.5, � = 0.5, rS = 1.

The Fourier transform of the effective interaction potential
reads

�̃αβ(q) = 4πe2ZαZβ

λ2
αβ

(
q2 + 1/λ2

ee

)
(
q2 + 1/λ2

αβ

)
(q2 + A2)(q2 + B2)

.

(A3)

Figures 22–24 show the dependence of the structure factor
for different pairs of particles for different values of Te/Ti .
To determine the electron-ion temperature, was used. The
structure factor has the following long-wave asymptotics [40]:

See(q → 0) = Z
Te

Ti

Sii(q → 0) =
√

Z

√
Te

Ti

Sei(q → 0).

(A4)
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