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A drop translating in the presence of an electric field is studied analytically. The flow is a combination of a
Hadamard-Rybczynski and a Taylor circulation due to the translation and electric field, respectively. We consider
chaotic advection that is generated by (1) tilting and (2) time-dependent modulation of the electric field. For the
analysis we consider small perturbations in time and space to what is otherwise an integrable flow. By using a
robust analytical technique we find an adiabatic invariant (AI) for the system by averaging the equations of motion.
The chaotic advection is due to quasirandom jumps of the AI after crossing the separatrix of the unperturbed
flow. We demonstrate that the asymptotic analysis leads to a set of criteria that can be used to optimize stirring
in these systems.
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I. INTRODUCTION

Transport of scalar quantities such as heat and/or mass from
translating drops is typically controlled by diffusion. This is
due to the fact that the steady axisymmetric streamlines are
closed, with the consequence that transport remains diffusion
limited at high Pe [1]. It has been proposed that stirring
inside of the dispersed phase by chaotic advection may lead
to enhanced transport. The belief is that complex-internal
circulations inside of a translating drop [2–9] or even a
stationary bounded domain [10,11] will lead to a breakup
of the closed streamlines associated with an axisymmetric
flow. Subsequently a fluid particle trajectory occupies a
larger domain and therefore mass transport is not necessarily
diffusion limited [12]. There is one main caveat to this theory
since sampling a larger domain does not imply sampling the
total domain. So even a chaotic flow field can experience
ordered domains called Kolmogorov-Arnold-Moser (KAM)
regions where mass transport can still be diffusion limited.
Determining the conditions for the appearance of these regions
is necessary to produce a robust qualitative approach to
enhanced interphase transport. But it can be elusive since it
requires accurate computation of differential equations that
contain intrinsic stiffness due to the complexity of the flows.

Chaotic flow fields have been generated by taking advantage
of the linearity associated with incompressible low-Reynolds-
number circulations inside of drops or Stokes flow conditions.
Under these conditions it is possible to use the superposition
principal to add any number of flows to a base or stationary
flow v(x,t) = ∑

vi(x,t). These flow are characterized as
linear (shear flow), quadratic (translation, Hill’s spherical
vortex, Hadamard-Rybczynski), cubic (quadrupole, Taylor
circulation), and higher order. Then, by carefully solving the
advection equation

ẋ = v(x,t), (1)

it is possible to determine individual particle trajectories.
Here and throughout the overdot denotes a derivative with
respect to time. The two main techniques for determining the

presence of deterministic chaos in superimposed flow fields
has been through Poincaré mapping and calculating Lyapunov
exponents. Each has advantages and disadvantages where
Poincaré mapping of individual (long-time analysis) or many
(short-time analysis) fluid particles is extremely accurate in
mapping ordered regions. It is computationally costly, though,
and requires highly accurate implicit numerical solvers since
stiff equations must be advanced in time, possibly over long
periods. Lyapunov exponents provide information for the rate
of divergence of trajectories initially in close proximity. But
these exponents are only valid over short times and can provide
nonphysical results where the rate of divergence (based on a
linearization of the velocity field) can produce fluid particle
displacements that exceed the boundaries of the domain.

The field of chaotic advection inside drops has been divided
into two main types of flow: axisymmetric unsteady and three-
dimensional (3D) steady. Although axisymmetric unsteady
flows are analytically and computationally less intensive than
their three-dimensional steady flow counterparts, the first
systems to be studied were of the three-dimensional flavor.
Bajer and Moffatt [10], were the first to analyze and compute
steady three-dimensional flows inside drops. They treated
general bounded quadratic flows in the context of fast dynamo
action caused by the Earth’s magnetic field. These authors
showed that such flows could exhibit “stretch-twist-fold”
(STF) kinematics and that these were the necessary ingredients
that lead to chaotic advection. Stone, Nadim, and Strogatz
[2] and Stone and Krouijiline [13] analyzed numerically the
possibility of chaotic advection in a steady three-dimensional
Stokes flow. Stone and Krouijiline [13] considered two
possible three-dimensional internal velocity fields. The first
consisted of a drop translating due to buoyancy forces and
the second a drop in an extensional flow. The addition of
a vorticity vector that is not aligned to the axis of each
of these velocity fields produced steady three-dimensional
chaotic streamlines. A computational parametric study of
the mixing was performed through an analysis of Poincaré
maps.
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More recently, unsteady axisymmetric flows have been de-
veloped to address the need to validate many of the underlying
chaotic advection concepts through experimentation. This is
a natural consequence of the fact that axisymmetric flows are
generally easier to study experimentally when considering the
advancement of laser techniques to analyze flow fields [14].
Furthermore, it has been shown that it is possible to produce
one-to-one comparisons between experimental and computa-
tionally generated short-time Poincaré maps in axisymmetric
flows [6]. The types of axisymmetric flows, though, that can
be generated experimentally are limited to a superpositioning
of the quadratic translation flow and quadrupole generated
by electrohydrodynamics [4–6]. Nevertheless, more precise
details have been provided by studying the axisymmetric
systems, where it is now generally understood that efficient
stirring inside of a drop requires the presence of an internal
hyperbolic fixed point. For the case of the axisymmetric flow
this produces a stagnation plane that separates the counter-
rotating torodial elliptic points caused by the quadrupole
circulation. Then by modulating the location of the stagnation
plane, where some trajectories must cross, it is possible to
generate a domain where efficient stirring occurs i.e., fluid
particle trajectories sample a larger fluid domain than without
modulation of the stagnation plane.

This concept of crossing a stagnation plane, or a separatrix,
to generate efficient stirring has a fairly robust history in the
context of dynamical systems. Neishtadt [15] and Cary et al.
[16] were apparently the first to study small perturbations
of a particle’s trajectory as a means to efficient stirring of
a fixed domain. The Neishtadt analysis has been applied
to steady three-dimensional systems where, in two separate
studies [3,17], an averaging-perturbation analysis method was
applied to the flow situations proposed by Bajer and Moffatt
[10] and by Stone and Krouijiline [13]. In the former case the
unperturbed flow is the axisymmetric quadrupole circulation
and the perturbation is the addition of a rotation in the drop with
a slight tilt. The change that a Lagrangian particle undergoes
predicted from the analysis was in good agreement with
numerical simulation of the full three-dimensional equations
of motion. The results show that even small tilt O(ε), (ε � 1)
can produce O(1) regions of mixing due to multiple separatrix
crossings of individual fluid particles.

Neishtadt’s averaging method involves treating one flow as
a base flow and linearizing the other in terms of a perturbative
expansion. The motions are separated into fast and slow,
where the fast motion typically involves the motion around
an elliptic point of the unperturbed system, s = f (ṙ ,θ̇ ). The
two slow motions are (1) perturbations from a two-dimensional
to a three-dimensional flow which typically involve motions
in the azimuthal direction, φ, and (2) the change in mass
transport across streamlines from the stream function ψ of
the unperturbed flow. By averaging the slow motions over
the fast, the three-dimensional system is approximately two
dimensional with some perturbation. Then, by focusing on a
region in the vicinity of the separatrix of the unperturbed flow
(SUF), it is possible to characterize changes to an adiabatic
variant (AI) � in terms of the slow motions. Motion along
the AI that do not cross the separatrix are clearly KAM
regions since their � value is constant in the slow variable
domain.

Here we propose a perturbative analysis of two cases: (1)
a drop translating in the presence of an electric field that
is not parallel to the direction of displacement and (2) an
axisymmetric unsteady flow caused by a drop translating in
the presence of a modulated electric field. In the next section
details describing the electrohydrodynamically generated flow
are discussed along with a description of the unperturbed
system. Then the three-dimensional problem is presented using
the perturbation expansion proposed by Neishtadt. A novel
approach to the axisymmetric unsteady problem is presented
in the following section. Finally, a discussion of both analyses
is presented along with some future direction for the analytical
methods followed by concluding remarks.

II. PROBLEM STATEMENT:
ELECTROHYDRODYNAMICALLY DRIVEN

STIRRING INSIDE A DROP

Consider a drop of radius a translating in the presence of a
spatially uniform steady electric field denoted E. The drop is
assumed to remain spherical such that drop deformation due to
the electric stresses and viscous stresses, or, equivalently, the
capillary numbers CaE and CaU , respectively, are assumed
small (�1). The physical parameters are the resistivities
1/σi , the electric permittivities κ0κi (where κ0 is the electric
permittivity constant), the absolute viscosities μi , and the
densities ρi , where subscripts 1,2 will denote the continuous
and dispersed phases, respectively. The incompressible flow
depends on the dimensionless property ratios X = σ2/σ1,
S = κ1/κ2, and λ = μ2/μ1. Under Stokes flow condition the
drop settles with characteristic velocity U . The characteristic
velocity generated by the electric field V is proportional
to |E|2 [18,19]. Then the dimensionless velocity written as
W = 4V (1 + λ)/U represents the relative strength of the
Taylor to the Hadamard-Rybczynski circulations.

Now we ask the following question: How can we modify
the base flow to stir the fluid inside the drop, preferably in a
domain the size of which can also be controlled. There are two
natural ways to achieve this. First, we can tilt the electric field,
thus breaking the axial symmetry (this method is discussed in
the next section). Alternatively, we can make the amplitude of
the field oscillate in time, thus breaking the autonomity of the
flow (Sec. IV). It is the objective of the paper to compare those
two approaches. Note that as the approaches are somewhat
similar, the derivations have a lot in common. Therefore, we
put most of the explanations in the next section, and this is
followed by the analysis using these two approaches.

A. Unperturbed velocity field

The base flow is a superposition of the aligned version of the
steady Taylor and steady Hadamard-Rybczynski circulations.
In this case the flow is axisymmetric and is defined by a stream
function ψ = ψB + WψE :

ψ = (r4 − r2) sin2 θ + W (r3 − r5) sin2 θ cos θ, (2)

where ψB is the stream function for the Hadamard-Rybczynski
circulation and ψE for the Taylor circulation. The stream
function is related to a two-dimensional velocity according
to the expression v = ∇ × ψ where the vector potential for
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FIG. 1. Assembly of Hadamard-Rybczynski and Taylor circulations yields the unperturbed flow structure.

the stream function is defined ψ = (0,0,ψ/r sin θ ) in spherical
coordinates. The quadrupole structure of the Taylor circulation
is characterized by stagnation points at the equator and the
poles along the interface. The four stagnation points are joined
by a hyperbolic fixed point at the drops center. The spherical
vortex structure of the Hadamard-Rybczynski circulation is
characterized by two stagnation points at the poles. For large-
enough values of W the quadrupole structure of the Taylor
circulation is preserved with some offset in the stagnation
points at the center and the equator due to the Hadamard-
Rybczynski circulation. The segment joining the stagnation
point on the vertical axis with the points on the surface
of the sphere is the separatrix of interest. The separatrix lies
on a horizontal plane, the axial location from the center of the
drop given by 1/W [20].

The function ψ plays the role of a stream function: At any
fixed moment of time the velocity field (3) satisfies

ṙ = 1

r2 sin θ

∂ψ

∂θ
, θ̇ = − 1

r sin θ

∂ψ

∂r
.

Note that ψ is a classical axisymmetric stream function in
a sense that streamlines are the line of constant ψ for a fixed
value of φ.

It follows from (2) that the advection equations (or
equations of motion) are

ṙ = 2(r2 − 1) cos θ + W (r − r3)(3 cos θ − 1)

θ̇ = 2

r
(1 − 2r2) sin θ + W (5r2 − 3) sin θ cos θ (3)

φ̇ = 0.

Clearly, flow (3) possesses two integrals: the azimuthal
angle φ and the stream function ψ . Therefore, all the
streamlines, except for those passing through the singular
points discussed above, are closed curves. A typical phase
portrait is shown in Fig. 1.

III. STEADY THREE-DIMENSIONAL FLOW

The first application of the averaging technique for electro-
hydrodynamically driven stirring involves a classic example
of a bounded three-dimensional flow. To generate a three-
dimensional flow a steady electric field is tilted by an angle
α relative to the drops settling motion as shown in Fig. 2. In
Cartesian coordinates the velocity field for this flow is written

as v(x,xα) = vH (x) + J(α)vE(xα), where

J(α) =
⎛
⎝ cos α 0 sin α

0 1 0
− sin α 0 cos α

⎞
⎠

is a Jacobian matrix, and

xα = x cos α − z sin α

zα = z cos α + x sin α.

Under these conditions the flow inside the drop is chaotic
where streamlines fill a large portion of either the northern
or southern hemisphere, or both, depending on the initial
conditions. The flow is unique for an internal circulation since
it possesses a plane of symmetry located at y = 0 for 0 < α <

π/2. When the electric field orientation is perpendicular to the
translational motion, α = π/2, then another symmetry plane
forms, dividing the drop into four cells when viewed along the
translational axis. The presence of the symmetry plane was
experimentally verified in Ref. [9].

We are interested in the situation when the tilt angle α of
the Taylor circulation relative to the Hadamard-Rybczynski
circulation is small or cos α ≈ 1 and sin α ≈ ε for ε � 1 and
the coordinates of the Taylor circulation xα [9] are xε = x − εz

and zε = z + εx. The resulting velocity field v = vH+E + εvε

in spherical coordinates is

ṙ = 2(r2 − 1) cos θ + W (r − r3)(3 cos θ − 1)

+ εW6r cos φ sin θ (1 − r2)

θ̇ = 1

r
(2 − 4r2) sin θ + W (5r2 − 3) sin θ cos θ (4)

+ εW (5r2 − 3) cos φ(1 − 2 cos2 θ )

φ̇ = εW (5r2 − 3) sin φ cot θ,

where vH+E = vH + vE is the sum of the unperturbed-
axisymmetric velocity fields.

A. Averaging method and phase portraits of the
averaged system

We now apply the averaging technique developed by
Neishtadt et al. [3,17] to flow (4). By averaging we develop a
mathematical expression for the adiabatic invariant � for the
perturbed system. A point inside the drop that does not lie on
the z axis can be specified by the coordinates ψ , φ, and s, where
ψ and φ are the values of the unperturbed system integrals and
s(mod2π ) is the phase (angle variable) along the unperturbed
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FIG. 2. Assembly of Hadamard-Rybczynski and Taylor circulations yields a perturbed steady flow structure for ε = 0.01. The three-
dimensional trajectory is viewed using the xz, yz, and xy planes, respectively.

streamline passing through the point under consideration. In
terms of new variables the equation of motions can be written
as:

ψ̇ = εf (ψ,φ,s), φ̇ = εg(ψ,φ,s),
(5)

ṡ = �(ψ) + εh(ψ,φ,s),

where �(ψ) is the frequency around a closed streamline of the
unperturbed system. As �(ψ), being of order 1 in this analysis,
is much larger than the rate of change in ψ̇ or φ̇, there are two
time scales in the system: s is a fast variable while ψ and
φ are slow variables. This is illustrated in Fig. 2 where we
plot a long streamline from a single initial condition. As the
trajectory quickly winds around a path resembling a closed
streamline from the unperturbed flow, the azimuthal position
and the stream function slowly changes.

Thus, we can simplify the description of motion by
averaging (5) over a fast period to get

ψ̇ = εF (ψ,φ), φ̇ = εG(ψ,φ), (6)

where

F = 1

T (ψ)

∮
(∇ψ · vε)dt G = 1

T (ψ)

∮
(∇φ · vε)dt.

(7)

Here vε is the perturbed velocity field [the terms with ε in
(4)] and T (ψ) = 2π/�(ψ) is the period of the unperturbed
system.

Following Neishtadt et al. [3,17] we denote �(ψ,φ) as
the flux of the perturbation vector vε across a surface S

spanning the streamline of the unperturbed system �ψ,φ . This
flux depends on ψ and φ and is independent of the choice of
the spanning surface, since the flow is incompressible. Thus

�(ψ,φ) =
∫

S

vε · ndS, (8)

where n and dS are the unit normal on S and an area element
in S. The positive direction of n is defined as follows: On the
surface S, there is the natural direction of rotation, specified by
the unperturbed motion along its edge. The positive direction
of the normal is taken to be the direction of the angular velocity
of this rotation. � is the Hamiltonian for the average system
and the adiabatic invariant (AI) of the perturbed system. Using
the Stokes theorem, we can write � as an integral along the

curve:

�(ψ,φ) =
∮

�ψ,φ

A · d�, (9)

where d� is the length element on �ψ,φ and A is the vector
potential of the perturbation velocity field (vε = ∇ × A) and
is given by

(Ar,Aθ ,Aφ) → ((5r4 − 3r2) sin θ sin φ, 0,

2(r2 − r4) cos φ sin2 θ ). (10)

Substituting (10) into (9) we obtain

�(ψ,φ) =
∮

�ψ,φ

(5r4 − 3r2) sin θ sin φ dr. (11)

In (11) we took into account that dφ = 0 along �ψ,φ .
Portraits of the averaged system for W = 2,4,10 are shown

in Fig. 3. The vertical axes are the values for ψ and the
scale varies with W . The separatrix for the unperturbed flow
(indicated in the graphs) is located at ψ = 0. The horizontal
axis is the azimuthal location φ on the domain 0 < φ < π

(recall the flow is symmetric about φ = π ). The (closed)
curves are lines of constant � where ψ�max+ ,ψ�max− is the
maximum value of the AI in the region above or below
the separatrix, respectively. The closed curves represent a
streamline that travels in the azimuthal direction, encounters
the symmetry plane, and changes hemispheres and rotation
then travels to the same symmetry plane from the other
direction (see Fig. 2).

In Fig. 3(a), where W = 2, the separatrix intersects just a
small region near the top of the plot, and below ψ = 0 there
is a family of closed orbits that do not intersect the separatrix.
In Fig. 3(b), where W = 4, the separatrix intersects a larger
portion of the domain as we see the appearance of closed
curves in the region above the separatrix whereas in Fig. 3(a)
we do not. In Fig. 3(c), where W = 10, the separatrix intersects
still a larger portion of the trajectories than in the two previous
figures but, once again, we see that in the region above the
separatrix for larger W there is a larger portion of the domain
that contains closed curves and a decrease in the number of
intersections along φ.

The location of the maximum � is important in determining
stirring kinematics since the largest difference between the
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FIG. 3. Plots of ψ vs φ for W = (a) 2, (b) 4, and (c) 10.

values above and below the separatrix yield the largest change
in the AI for the trajectories that cross it. The maximum
value always appears at the farthest point from the symmetry
plane φ = π/2. Shown in Fig. 4(a) is the ψ location of
ψ�max for various values of W . Figure 4(b) shows the values
of �max versus W above and below the separatrix. There
is a local minimum in the �max that occurs at W = 2
below the separatrix. Above the separatrix the value increases
logarithmically for the range of W values shown in Fig. 4(b).

B. Asymptotic analysis near the separatrix

In the vicinity of the separatrix of the unperturbed flow (a
horizontal plane located at z = r sin θ = 1/W and is defined
by ψ = 0) the frequency of fast motion, �(ψ), goes to 0 and
the method of averaging is invalid. This is due to the fact
that the separatrix consists of two fixed points, so it requires
an infinite amount of time to traverse. Therefore, we expect
that the value of the AI changes as a streamline crosses the
separatrix.

To analyze this behavior, first we expand the expression for
the AI near the separatrix (for small ψ) which yields

�(ψ,φ) = sin φ

(
1

W 5
− 1

W 3

)
+ 2a(φ,W )

√
|ψ | + O(ψ),

where

a(φ,W ) = sin φ

∫ 1

1/W

5r3 − 3r√
(Wr − 1)(1 − r2)

dr.

Following Ref. [3], let us define the change in AI due to
a single separatrix crossing as follows. Consider a segment
of a perturbed streamline that crosses the separatrix once. Let
M− and M+ be its initial and final points lying at a distance
of order 1 from the separatrix. Denote using ψ±, φ±, �± the
values of functions ψ , φ, � at the points M±. To be specific,
we suppose that the point M− lies in the southern hemisphere
(ψ− < 0) and M+ lies in the northern hemisphere (ψ+ > 0).
The segment resembles a plane spiral with the size of the
turns slowly increasing in the southern hemisphere (before the
crossing) and slowly decreasing in the northern hemisphere
(after the crossing). The objective is to calculate �� = �+ −
�− for small ε.

To numerate the turns of the spiral between M− and M+,
on each turn of the spiral mark the point, where

.
r= 0,r >

1/W (the closest to the surface of the sphere point of the
turn). We shall use notation Mk to represent these points. We
enumerate these points so k � 0 for ψ < 0 and k > 0 for ψ >

0; increasing |k| corresponds to receding from the separatrix.
Thus, M0 is the last of the points Mk prior to the separatrix
crossing, and M1 is the first of them after the crossing. The
turn of the streamline between Mk−1 and Mk is called the kth
turn and denoted by γk .

On each turn γk in the first approximation and the value of
ψ changes by the same quantity

� = ψk − ψk−1 = cos φ0

(
1

W 5
− 1

W 3

)
+ O(ε).
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FIG. 4. (a) Plots of ψ�max+ (northern hemisphere) and ψ�max− (southern hemisphere) vs W . (b) Plots of �max vs W for the southern ψ < 0
and northern ψ > 0 hemispheres.

Now we can write �� as a sum over changes in � on
a single turn γk . This derivation is very similar to the one
presented in Ref. [3] and we do not repeat it here. We finally
get:

��(φ0,ξ ) =
√

ε|�|
π

a(W,φ0)f (ξ ), (12)

where

f (ξ ) =
∫ ∞

0

√
τ

e−ξτ − e−(1−ξ )τ

1 − e−τ
dτ.

In (12), ψ0 and φ0 are the values of ψ and φ at the last
point M before the crossings, namely at M0. The quantity
ξ = ψ0/(ε|�|) ∈ (0,1) defines the crossing. The value of ξ

is very sensitive to small changes in initial conditions: O(ε)
changes in ψ− and φ− may lead to large changes of order
of 1 in ξ . Therefore for multiple crossings ξ can be treated
as a random variable uniformly distributed on (0,1) [3,17].
Consequently, �� is also a random variable. In the Fig. 5(a)
inset we show a plot of the integral in (12) versus ξ . The change
in the AI is singular at ξ = 0 and ξ = 1. It follows from (12)

that the ensemble average value of �� is zero:

〈��〉 =
∫ 1

0
��(ξ )dξ = 0. (13)

The comparison of the analytical predictions of the change
in AI given by (12) with the results of numerical simulations
of (4) for different W are shown in Fig. 5 as a log-log plot of
�� vs ε for ξ = 0.3, φ0 = π/4, and W = 2 and 4. Both plots
show an increase in the change of �� as the tilt angle, ε, is
increased. Overall, the change in the AI for W = 4 is slightly
larger than with W = 2. Both plots show that the numerical
data and the analytical results are in good agreement.

C. Long-time dynamics

There are two types of the streamlines. Some intersect the
separatrix and some do not. Portraits of the averaged system
of equations reveal AI trajectories that cross the separatrix
surface and AI trajectories that orbit closed trajectories. We
qualitatively show that the closed trajectories of the averaged
system are KAM surfaces which are the ordered regions that
coexist with chaotic regions.

2W

)(f

 

(a)

4W

 

(b)

FIG. 5. Log-log plot of the change in the adiabatic invariant � vs ε for (a) W = 2 and (b) W = 4. Straight line is the analytical result.
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FIG. 6. Trajectory plots (ψ vs φ) of multiple crossing in the vicinity of, and away from, the separatrix of the unperturbed flow for W = (a) 2
and (b) 4.

In the previous section we showed that crossing the SUF
leads to quasirandom jumps in the AI. We were able to expand
the AI in the region near the SUF to an accuracy of O(ε) and
estimate the AI jump. There was good agreement between the
averaged system and the full system for the AI jump versus ε.
We now discuss the situation when the AI crosses the separatrix
more than once.

For the averaged system the AI (�) is conserved as it crosses
the separatrix. This is not the case though for the exact system
where it is shown to suffer a quasirandom jump in the AI by
an amount

√
ε an O(ε) away from the SUF as shown in Fig. 6.

Here in Fig. 6 we show plots of the exact system in term of the
slow variables ψ versus φ for ε = 0.0001 and W = 2 and 4
with two separate initial conditions in each plot. The regions
far from the separatrix never suffer the quasirandom jumps in
the AI that are experienced by the trajectories that do.

Furthermore, it was shown in Refs. [3,21] that the character-
istic time of mixing is t ∼ ε−2 for bounded three-dimensional
systems. In Fig. 7 we plot on a semilog scale the maximum
value of the AI for four difference values of ε as indicated in
the graph. The initial conditions are chosen so the trajectories
cross the AI but with initial � values that are close to zero.
Although we were not able to start from � = 0 the values are
close enough to show relative behavior where the diffusion of

)max(

t10log

FIG. 7. Plot illustrating the long-time evolution of the adiabatic
invariant � versus log10 t for ε = 0.01, 0.001, and 0.0001. The initial
condition is chosen so � ≈ 0.

the AI (where we simply use the approximate time required to
reach the maximum) scales more like t ∼ ε−4/3. We believe
that better agreement with theory [3,17,21] would be achieved
for smaller initial �.

Following Ref. [21], the long-time mixing due to multiple
separatrix crossings can be quantitatively described in terms of
the probability distribution function � = �(�,N ): d�, which
represents the number of streamlines whose values of adiabatic
invariant are in (� − d�/2,� + d�/2) after N periods of
slow motion (i.e., 2N separatrix crossings). This method,
which relates the spreading (diffusion) of � = �(�,N ) to the
solution of a diffusion-type PDE, is described in more detail
in the second part of the paper, Sec. IV E, in application to the
unsteady flow. In the present setup the results are very similar
to the ones presented in Ref. [21], and we do not reproduce
them here.

IV. UNSTEADY AXISYMMETRIC FLOW

We now turn to mixing inside a drop settling with a spatially
uniform unsteady electric field oriented parallel relative to the
translational motion [5,6]. Instead of an autonomous three-
dimensional flow discussed in the previous section, we get
a nonautonomous two-dimensional (axisymmetric) flow. As
shown in Fig. 1, the resulting velocity field is an superposition
of Taylor and Hadamard-Rybczynski circulations due to the
electric field and settling, respectively. Mixing in this flow
is driven by time-periodic perturbations of the base Taylor
circulation yielding ψ = ψB + W (t)ψE , where

W (t) = W1 + W2 cos(εt). (14)

Parameter ε appearing here is frequency ω normalized by the
residence time: ε = 2aω(1 + λ)/(Uπ ), see Ref. [6]. For the
sake of definiteness, we assume that W1,W2 > 0. We also
assume that the direction of the Taylor circulation does not
change sign, i.e., W1 � W2. One can see that the value of W

changes varies over time 2π/ε. Thus, characteristic values of
the time t are of order of 1/ε.

To illustrate two time scales in this problem, it is convenient
to denote εt ≡ φ (an analog of the azimuthal angle in the
3D case) and augment (3) with φ̇ = ε. Thus the equations of

023030-7



FAN WU, DMITRI VAINCHTEIN, AND THOMAS WARD PHYSICAL REVIEW E 92, 023030 (2015)

0

(a) (b)

FIG. 8. Typical unperturbed streamlines for different values of
the slow phase φ; W1 = 2, W2 = 2. (a) φ = ±π , only one elliptic
point is present on each side of the vertical axis; (b) φ = 0, two
elliptic points are present.

motion can be written as

ṙ = 2(r2 − 1) cos θ + W1(r − r3)(3 cos θ − 1)

+W2 cos φ(r − r3)(3 cos θ − 1)

θ̇ = 1

r
(2 − 4r2) sin θ + W1(5r2 − 3) sin θ cos θ (15)

+W2 cos φ(5r2 − 3) sin θ cos θ

φ̇ = ε.

In this modified system, different moments of (slow) time
correspond to different values of φ. Notice that the equation
φ̇ = ε does not have a singularity near the vertical axis (θ = 0).

A. Unperturbed system

The unperturbed system corresponds to fixing the value of
W defined in (14) or, equivalently, fixing the value of φ in
(15). Naturally, the shape of the instantaneous unperturbed
streamlines differ for different values of W (or φ). Note that
just setting ε = 0 is misleading: In that case we get W = W1,
which is not what we want. The setup becomes clearer if we
consider φ and t to be separate variables, related by the last
line in (15). Different trajectories of the unperturbed system
will correspond to different, but fixed, vales of φ.

The unperturbed system (with fixed value of φ or W ) has
the following fixed points. Regardless of the value of W1 and
W2, there are elliptic fixed points in the southern hemisphere
(below the separatrix), see Fig. 8. For W (φ) < 1, the only other
fixed points are the hyperbolic fixed points at the poles of the
sphere [Fig. 8(a)]. For W (φ) > 1, there are additional fixed
points: the elliptic fixed point in the northern hemisphere and
hyperbolic fixed points on the surface of the sphere and on the
axis of the sphere. The horizontal plane passing through those
hyperbolic points,

W (εt) r cosθ = 1,

is the separatrix. On it the stream function, ψ , is equal to
zero, see (2). The separatrix penetrates the drop at least for
a part of the slow period when W (εt) > 1, which happens if
W1 + W2 > 1. In terms of z = r cos θ (the vertical coordinate
in Fig. 1 or Fig. 8), the separatrix is moving between
zmin = 1/(W1 + W2) and zmax = 1/(W1 − W2). If zmin > 1,
the separatrix is always outside the drop, and in that regime
the regular domain covers the entire drop. If zmin < 1 and

zmax � 1, then the separatrix is always inside the drop. If
zmin < 1 and zmax > 1, then the separatrix is outside the drop
for a part of the slow period.

B. Averaged system and the adiabatic invariants

In the case ε � 1 there is a separation of time scales: r

and θ are fast variables while ψ and εt are slow variables.
Therefore, in the first approximation, we can average the
equations of motion over the fast time scale. The quantity �̃0,
which is the normalized-by-2π area surrounded by a closed
curve �ψ,φ of the unperturbed system, is an integral of the
averaged system and an adiabatic invariant of the exact system
(see, e.g., Ref. [3]). The superscript “0” indicates that �̃0

is the zeroth-order approximation to the AI. Note that if we
consider the augmented system (with φ = εt and φ̇ = ε), then
2π�̃0 has exactly the same meaning, the flux of perturbation
[vε = (vr,vθ ,vφ) = (0,0,1)] through a surface spanned over
the closed curve of the unperturbed system, as in the previous
section. Using a vector potential Aε = (r2 cos θ,0,0) we can
write �̃0 as

�̃0(ψ,φ) = 1

2π

∮
r2 cos θdr = 1

2π

∫
T

r2 cos θ

(
dr

dt

)
dt.

(16)

Here T = T (ψ,φ) is the period on �ψ,φ . Direct calculations
indicate that 2π�̃0 has a step of the magnitude 2/3 on the
separatrix. To avoid that discontinuity, we redefine �̃0(ψ,φ)
as

2π�0 = 2π�̃0 − 1/3 sgn(ψ). (17)

The quantity �0 defined by (16) and (17) has the maximum
value 2π�0

max = 1/3 at the elliptic fixed point in the southern
hemisphere (below the separatrix), see Fig. 8. The minimum
value, 2π�0

min = −1/3 is achieved either at the elliptic point
in the northern hemisphere (above the separatrix), if that point
exists, see Fig. 8(a), or at the streamline that covers the whole
semicircle, if the northern elliptic points are outside the drop,
see Fig. 8(b).

In the exact system the value of �0 oscillates with the am-
plitude of order ε over a period of fast motion. In the 3D case,
considered in the previous section, this accuracy was sufficient
(recall that the jumps in the adiabatic invariant at the separatrix
were of order of

√
ε � ε). In the time-dependent case, it

was shown in Refs. [15,16] that for a proper description we
need to introduce an improved adiabatic invariant by adding
a correction term to �0 to reduce the oscillations. Following
Ref. [15], we have for the improved adiabatic invariant

�(φ,ψ) = �0(φ,ψ) + εu(ψ), (18)

where the correction u is given by

2πu(ψ) = 1

ε

∫
T

(
T

2
− t

)
∂ψ

∂t
dt. (19)

The integral in (19) is taken along a closed trajectory of
the unperturbed system [given by (15) with W = const]
that passes through a given point. Note that as ∂ψ/∂t ∼ ε,
characteristic values of εu are of order ε. It was shown in
Ref. [15] that, far from the separatrix, � oscillates with the
amplitude of order ε2. A typical evolution of the original,
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FIG. 9. Evolution of the adiabatic invariants. Dash: The zeroth
order AI, �0; solid: improved AI, �. A significant difference in the
magnitude of oscillations is clearly visible.

�0, and improved, �, adiabatic invariants is presented in
Fig. 9. One can see that the oscillations of � is by orders of
magnitude smaller than the oscillations of �0.

C. Separatrix crossings and the change of adiabatic invariant

The averaging method is not valid near the separatrix
surface. Thus we need to apply additional considerations to
describe the dynamics in that region.

Following Refs. [3,17] and Sec. III, let us define the change
in AI due to a single separatrix crossing as follows. Identical
to Sec. III, consider a segment of a perturbed streamline that
crosses the separatrix once. Let M− and M+ be its initial and
final points lying at a distance of order 1 from the separatrix.
Denote by ψ±, φ±, �± the values of functions ψ , φ, � at
the points M±. To be specific, we suppose that the point M−
lies in the southern hemisphere (ψ− < 0) and M+ lies in the
northern hemisphere (ψ+ > 0). The segment almost looks like
a plane spiral with the size of the turns slowly increasing
in the northern hemisphere (before the crossing) and slowly
decreasing in the southern hemisphere (after the crossing). The
objective is to calculate �� = �+ − �− for small ε.

To numerate the turns of the spiral between M− and M+, on
each turn of the spiral we mark the point where

.
r= 0,r > 1/W

(the closest to the surface of the sphere point of the turn in
terms of r). We use the notation Mk to represent these points,
enumerating them so k � 0 for ψ < 0 and k > 0 for ψ > 0;
increasing |k| corresponds to receding from the separatrix.
Thus, M0 is the last of the points Mk prior to the separatrix
crossing, and M1 is the first of them after the crossing. The
turn of the streamline between Mk−1 and Mk is called the kth
turn and denoted by γk . The location of some of the points Mk

immediately near S is shown in Fig. 10.
For the parts of the streamline that are close to the separatrix

(in other words, for small values of ψ) the adiabatic invariant
�0 can be expressed as

�0(φ,ψ) = �0(φ) + �1(φ,ψ). (20)

In (20), �0 = �0(φ) is the value of �0 at S:

2π�0 = 1

6W 3∗
− 1

2W∗
, (21)

where W∗ = W1 + W2 cos φ∗ is the value of W at the moment
of crossing.

The expression for �1(φ,ψ) can be found directly as a flux
of perturbation through a narrow strip between the separatrix
contour and �ψ,φ . However, there is a simpler way. It was
shown in Refs. [3,17] that adiabatic invariant �0(φ,ψ) is a
Hamiltonian for the averaged system:

ψ̇ = 1

T (φ,ψ)

∂�0

∂φ
, φ̇ = − 1

T (φ,ψ)

∂�0

∂ψ
. (22)

Thus, we can get the expression for �0(φ,ψ) by computing
the change in φ and ψ over one period.

The change in the slow time, εt , equals ε times the period
of the unperturbed system, T :

�φ = φk − φk−1 = εT .

In the vicinity of the separatrix surface the period T has
a logarithmic singularity that in the leading order can be

(a)

 

(b)

FIG. 10. Numerical simulation of a particle trajectory near the separatrix for W1 = 2, W2 = 2, ε = 10−4: (a) Projection on the fast,
(r cos θ,r sin θ ) plane and (b) the corresponding averaged system [projection on the slow, (εt,ψ) plane] .
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T

 | 
FIG. 11. Period T versus ln |ψ | for W1 = 2,W2 = 2,ε = 10−4.

The stars are obtained from numerical simulations of the unperturbed
system, and the solid lines correspond to (23) and (24), with b±
computed numerically using (25) for the rightmost point. Bottom:
Before the separatrix crossing (T−); top: after the separatrix crossing
(T+).

written as:

T± = A±(φ) ln |ψ | + b±(φ). (23)

Note that both A and b differ before and after the crossing, in
other words, for ψ < 0 and ψ > 0. Direct calculation yields

A− = − 1

W∗ + 1

(
W∗

W∗ − 1
+ 1

4

)
,

(24)

A+ = − 1

W∗ − 1

(
W∗

W∗ + 1
+ 1

4

)
.

In (24) and below, the plus or minus subscripts correspond to
the sign of ψ . The analytical expressions for b± can be written
as well, but they are quite complex and it is easier to compute
them numerically using direct definition (23):

b = T (ψ = const,W = const) − A ln |ψ |. (25)

The change of unperturbed period of a perturbed particle
trajectory is presented in Fig. 11. The analytical expression
of unperturbed period (23) with b± obtained by (25) shows a
good agreement with the results of numerical simulations. It
follows from (22) that

�φ = −∂�0

∂ψ
= −∂�1

∂ψ
,

and we obtain the expression for �0(φ,ψ):

2π�0 = 2π�0 + A±(ψ ln |ψ | − ψ) + b±ψ + o(ψ). (26)

The change of ψ between Mk and Mk−1 is in the leading
order given by

�ψ = ψk − ψk−1 =
∫

T

∂ψ

∂t
dt

= εW2 sin(φ∗)
1

2W 2∗

(
1

W 2∗
− 1

)
≡ ε�.

u2

 | 

FIG. 12. The values of u± computed at the points Mk versus
ln |ψ | for W1 = 2,W2 = 2,ε = 10−4. The stars are the results of the
numerical computation, and the solid line corresponds to (27) with
d± computed using (27) for the rightmost point. Bottom: Before
separatrix crossing (u−); top: after separatrix crossing (u+).

Comparing the above expression with ∂�0/∂φ, one can see
that (22) is satisfied.

Similarly, we can expand the function u from (19) at the
points Mk to get

2πu± = �

(
−1

8

1

W∗ ∓ 1
ln |ψ | + d±

)
, (27)

with the values of d± to be computed numerically using (27)
as a definition. Typical comparison is presented in Fig. 12.

Thus, we can readily apply a general formula from [15] to
get

�� = ε�

2π

{
A− − A+

2
(1 − 2ξ ) ln |ε�| + A− + A+

2
ln 2π

− [A+ ln �(ξ ) + A− ln �(1 − ξ )]

+ [b+(1 − ξ ) + b−ξ ] + (d− − d+)

}
. (28)

Note that in (28) the quantities b±, d±, A±, and � are functions
of the slow time and must be computed at the moment of
crossing, εt = εt∗. The quantity ξ = ψs/ε� ∈ (0,1) defines
the location of crossing: ψs denotes the value of ψ at the last
point M before crossing (M0) for a crossing from south to
north or the first point M after crossing (M1) for a crossing
from north to south. The value of ξ is very sensitive to small
changes in initial conditions: O(ε) changes in ψs and φ∗ may
lead to large changes, of order 1, in ξ .

The comparison of the analytical predictions of the change
in � given by (28) with the results of direct numerical
simulations of (15) for different ξ are shown in Fig. 13 for
ε = 10−4. The dots are results of direct numerical simulations
while the solid curve is the plot of (28). Figure 13 shows that
the numerical data and the analytical results are in a good
agreement. There are logarithmic singularities in �� at ξ = 0
and ξ = 1. In reality, expression (28) becomes invalid for very
small values of ξ or 1 − ξ . It was shown in Ref. [22] that
corrections must be applied to (28) if ξ < ε or 1 − ξ < ε.
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FIG. 13. The change in the adiabatic invariant ��(ξ ) for W1 = 2,
W2 = 2, φ∗ = 5π/3, and ε = 10−4. The solid line corresponds to
(28), the stars are the values obtained by numerically integrating
exact system (15).

D. Long-time dynamics

As the motion of the separatrix plane forces some stream-
line to cross it, it was shown in our previous publications (see,
e.g., Ref. [3]) that the chaotic and regular domains are filled
with the streamlines that do and do not cross the separatrix,
respectively. The respective location of the regular and chaotic
domains depends on the relation between the values of W1 and
W2. (Recall that for the sake of definiteness we assumed that
0 < W2 � W1).

The regular domain near the elliptic fixed points in the
southern hemisphere is always present (independently of the
values of W1 and W2 as long as 0 < W2 � W1). The regular
domain near the elliptic fixed points in the northern hemisphere
is present only if those fixed points exist for all the values of
φ, in other words, for W2 � W1 − 1. The larger the value of
W2, the smaller the regular domain.

The division of the drop between the regular and chaotic
domains is illustrated in Fig. 14. In Fig. 14(a), the regular
domain exits in the northern hemisphere [above the curve
defined by the condition ψ = 0 at φ = ±π , or � = �0

nb =
�0(0,π )] and in the southern hemisphere [below the curve
defined by the condition ψ = 0 at φ = 0, or � = �0

sb =
�0(0,0)]. The expressions for �0

nb and �0
sb are given by

(21) with W∗ = W1 − W2 and W∗ = W1 + W2, respectively. In
Fig. 14(b), the regular domain exits in the southern hemisphere
only [below the curve defined by the condition ψ = 0 at φ = 0
or � = �0

sb = �0(0,0)]. The expression for �0
sb is given by

(21) with W∗ = W1 + W2.
To describe the overall mixing, we need to discuss the

evolution of the system over the times of order ∼1/ε3.
Consider streamlines that cross the separatrix many times.
Upon every crossing, the value of the improved adiabatic
invariant changes according to (28). As ξ is a random variable,
the change of AI due to a separatrix crossing can be viewed a
1D random walk (see, e.g., Refs. [3,22]) with the characteristic
step size given by (28).

Following Ref. [23], the long-time mixing can be described
in terms of the probability distribution function � = �(�,N ):
The number of streamlines whose values of adiabatic invariant
are in (� − d�/2,� + d�/2) after N periods of slow motion
is given by �(�,N )d�. During every period of the slow
motion, Tslow = 2π/ε, streamlines inside the chaotic domain
(see Sec. IV B) cross the separatrix twice. Recall that on
every single crossing a characteristic change in AI is small.
Therefore, the consecutive crossings occur at approximately
the same location in terms of the separatrix (i.e., at the same
value of W∗). By combining two successive crossings during
every period of slow motion, we can describe the long-term
diffusion of the adiabatic invariant with a 1D nonlinear
diffusion equation:

∂�

∂N
= ∂

∂�

[
D(�)

∂�

∂�

]
. (29)

Here D(�) is the diffusion coefficient, which is discussed next.
For any random walk, the diffusion coefficient is equal

to one half of the second moment of the corresponding
distribution of the magnitude of a single step. Thus, from ��

at a single separatrix crossing we obtain

D1(�) = 1

2

∫ 1

0
[��(ξ ) − 〈��〉]2dξ, (30)

where 〈��〉 = ∫ 1
0 ��(ξ )dξ , is the average of �� for one

crossing. Since we combine two successive crossings in (29),
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FIG. 14. Phase portraits on the slow plane: regular and chaotic domains. (a) W1 = 2,W2 = 0.5 < W1 − 1; (b) W1 = 2,W2 = 2 > W1 − 1.
The north [in panel (a)] and the south (in both panels) bounds of the chaotic domain are indicated.
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FIG. 15. Diffusion coefficient D [see (31)] as a function of 2π�

for W1 = 2, W2 = 2, ε = 10−2.

the total diffusion coefficient, D(�), is twice as large as D1(�):

D(�) = 2D1(�). (31)

We performed a set of numerical experiments of (15) and
compared those results to the theoretical results obtained using
(29). As the mixing process occurs over a long time scale [of
order O(1/ε3)], a relatively large value of the dimensionless
frequency for the slow motion, ε = 10−2, was used for all
computations discussed in the current section. For this value
of ε, approximate expression (28) is still valid, but is not as
accurate as it would be for smaller values of ε. The other
parameters were W1 = 2 and W2 = 2, the same values used
in the previous sections. For this particular set of W1 and
W2 values, the range of W∗ for the occurrence of separatrix
crossing (i.e., the presence of separatrix inside the droplet) is
W∗ ∈ [1,4]. By substituting this range of W∗ into (21), the
range of the adiabatic invariant of the streamlines inside the
chaotic domain is approximately 2π� ∈ [−1/3,−0.1224].

A plot of the diffusion coefficient defined by (30) and
(31) is shown in Fig. 15. Note that D(2π�) is presented
for the convenience of presentation. The value of D has
a logarithmic singularity at 2π� = −1/3, at which value
trajectories come to the separatrix at the hyperbolic fixed point
in the northern hemisphere. On the other side of the plot, the
diffusion coefficient drastically decreases as � approaches
2π� ≈ −0.1224, which is the interface between the chaotic
and regular domains.

For the numerical experiments, 600 initial conditions were
evenly distributed inside a small box ([r cos θ ] × [r sin θ ] =
[0.6 − ε,0.6 + ε] × [0.25 − ε,0.25 + ε]). Tracers were re-
leased from those initial conditions and tracked for 1500
periods of the slow motion. Initially the tracers have a very
small variance in the values for the AI. The evolution of
�(�,N ) for those tracers are shown as histograms in Fig. 16.
The histograms are compared with solutions of diffusion
equation (29) under the following initial and boundary
conditions: An initial distribution possessed the same values
of first and second moment as the numerical experiment at
N = 0 [Fig. 16(a)] and flux-free boundary conditions were
applied at the boundaries of the chaotic domain [Fig. 16(b)].
Those solutions are shown in Fig. 16 with solid lines. The
evolution of first and second moments of both numerical and
theoretical �(�,N ) is demonstrated in Fig. 17. One can see
that properties of the long-time mixing considered here are
accurately captured by diffusion equation (29).

V. DISCUSSION

The averaged system corresponding to the steady three-
dimensional flow retains much of the features of the unper-
turbed flow for W > 1 (the value must be greater than 1 for
the separatrix of the unperturbed flow to appear). The plots
of the equations of motion using the slow variables, ψ versus
φ, reveal an elliptic point where the AI is a maximum. The
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FIG. 16. Evolution of �(�,N ) for 600 particle trajectories for W1 = 2, W2 = 2, ε = 10−2. Histograms: numerical; solid lines: solutions
to (29).
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FIG. 17. Evolution of the first (a) and second (b) moment of �(�,N ) shown in Fig. 16. Solid line: numerical; bold line: theoretical.

location of the maximum AI goes like

ψ�max+ = 0.00095W 2 − 0.0024W + 0.0016

and

ψ�max− = −0.00055W 2 − 0.003W − 0.16

in the northern and southern hemispheres of the drop, respec-
tively. The value for �max increases nearly logarithmically
in the northern hemisphere while there is a minimum in the
southern hemisphere at approximately W = 2 (see Fig. 3).
Therefore, there is a local maximum change in �max between
the northern and southern hemispheres of the averaged systems
for W = 2. This value also corresponds to a maximum in
the stirred volume computed by Ward and Homsy [9]. These
authors estimated the maximum stirred volume by integrating
the three-dimensional steady flow equations assuming a fluid
element travels along a trajectory with finite volume. The
computed stirred volumes were consistently higher for W = 2
independent of α when compared to smaller and large values of
W . This seems to confirm that the average system analysis can
provide useful information for optimizing stirring, especially
in steady three-dimensional flows without the need to calculate
trajectories with different initial position for long periods of
time.

This should not be confused, though, with the change in
the adiabatic invariant for trajectories that cross the separatrix,
see Fig. 5, where it was shown that the change in �� actually
increases with an increase in ε or, equivalently, the tilt angle
α. Larger values correspond to larger jumps in the AI but not
necessarily better stirring. Recall that the slow variable plots
shown in Fig. 3 show the formation of larger closed � domain
in the northern hemisphere for larger W .

In the perturbation analysis of the unsteady flow, a small
value ε ∼ 10−4 was used. While values that small cannot be
realized in experiments, they are necessary for the described
phenomena to manifest itself. Thus, we can say that the
present discussion is inspired by the experiments rather than
is performed to match experiments that were performed at
higher modulation frequencies [6]. But the data do seem to
confirm their results for the stirred volume versus modulation
frequency. There these authors showed that at low modulation
frequencies there was an asymptotic limit for the stirred
cross-sectional volume that was determined by the sweep of
the stagnation plane. The asymptotic limit for the percentage

of stirred volume increased with increasing sweep and scaled
nearly one to one with the magnitude of the sweep. So this
seems to confirm the main result for the averaged unsteady
flow system, i.e., the percentage of the stirred volume is
proportional to the magnitude of the distance traveled by the
stagnation plane at low frequency. Furthermore, the volume
swept by the separatrix is the minimum mixed volume for low
frequencies. This is distinct from the global minimum which
occurs at very high frequencies according to Ref. [6].

As far as the diffusion time of the AI this varied greatly
between the two systems. The steady three-dimensional
flow AI diffusion time scales according to t ∼ ε−2 while
it was t ∼ ε−3 for the unsteady two-dimensional flow. The
numerically calculated value for the three-dimensional system
was slightly larger, separating the two even further. But the
separation in time scales may be beneficial for removing KAM
surfaces since there would not be any possibility of resonance
generated by modulating the electric field via an unsteady
three-dimensional flow generated by an unaligned electric field
with an ac component.

When both time dependency and 3D perturbation are
present, the overall structure is qualitatively the same as if
one of the perturbations is present. As the flow is Stokes, the
system is linear and the resulting flow is a superposition of
the two perturbations. The fast system is essentially the same.
In the slow system the value of adiabatic invariant due to two
perturbations acting together is defined in the same way as
for individual perturbations: as the total flux of the combined
perturbation through a surface spanned on a closed curve of
the fast system. The presence of the separatrix is independent
of the particular type of perturbation. As the (combined)
perturbation brings the trajectory to the separatrix, the value of
the adiabatic invariant undergoes a jump, once again defined
by the combined action of the perturbations. However, as the
periodicity of the perturbations may differ, the dynamics on
the slow plane becomes aperiodic. But on the long time, the
PDF-based evolution equation approach remains valid for two
perturbations.

VI. CONCLUSION

Here the problem of a drop translating in the presence of
an electric field was studied in order to determine efficient
stirring. Two stirring protocols were developed. The first
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consists of perturbing a combined Hadamard-Rybczynski and
Taylor circulations by misaligning the electric field with the
translational motion. This results in a steady three-dimensional
flow. The second protocol consists of modulating the electric
field through the addition of a harmonic AC component with
small frequency ε. The flow is still axisymmetric and the
instantaneous streamlines are equal every 2π/ε period.

In order to analyze the two systems a technique first
introduced by Neishtadt was employed. The method involves
describing the perturbations to the base flow by averaging.
Two slow variables (a stream function and a polar angle) and
a fast variable (motion around a streamline) are chosen as
the new variables in the averaged domain. The fast variable
dependence is removed by simple scaling with a period
around a closed streamline of the unperturbed flow. In the
slow variable domain it is possible to study the specific
mechanism that leads to efficient stirring. In both systems
this is caused by multiple crossing of the separatrix of the
unperturbed flow which is characterized by the stagnation

plane of the Taylor circulation that is offset from the equator
by the Hadamard-Rybczynski circulation. Comparisons are
made between the average system and the full set of equations
of motion when possible. The agreement between the two are
good for the range of parameter values studied.

Future studies should include parametric spaces where
averaging may not work. Also it would be useful to see
if averaging can predict the behavior of an unsteady three-
dimensional flow. In particular it would be useful to determine
if the unsteady three-dimensional flow possess KAM regions
similar to the steady three-dimensional or unsteady flow and if
strategies to reduce the size of these regions can be developed
with the averaging method.
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