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Distribution of particle displacements due to swimming microorganisms
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The experiments of Leptos et al. [Phys. Rev. Lett. 103, 198103 (2009)] show that the displacements of small
particles affected by swimming microorganisms achieve a non-Gaussian distribution, which nevertheless scales
diffusively—the “diffusive scaling.” We use a simple model where the particles undergo repeated “kicks” due
to the swimmers to explain the shape of the distribution as a function of the volume fraction of swimmers. The
net displacement is determined by the inverse Fourier transform of a single-swimmer characteristic function.
The only adjustable parameter is the strength of the stresslet term in our spherical squirmer model. We give a
criterion for convergence to a Gaussian distribution in terms of moments of the drift function and show that the
experimentally observed diffusive scaling is a transient related to the slow crossover of the fourth moment from
a ballistic to a linear regime with path length. We also present a simple model, with logarithmic drift function,
that can be solved analytically.
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I. INTRODUCTION

The study of microswimming has exploded in recent
years with the advent of precise, well-controlled experiments.
(See for instance the reviews of Pedley and Kessler [1] and
Lauga and Powers [2].) This has uncovered a plethora of
fascinating behavior, for example, the complex interaction
of microswimmers with boundaries [3–8], or the collective
suspension instability (swirls and jets) at high concentrations
of “pushers,” organisms whose propulsion mechanism is at the
rear [9–15].

Another fruitful research direction is biogenic mixing, or
biomixing for short. Does the motion of swimmers influence
the effective diffusivity of passive scalars advected by the fluid,
such as the nutrients the organisms depend on? This has been
proposed as a mixing mechanism in the ocean [16–24], though
its effectiveness is still very much open to debate [25–28].
Biomixing has also been studied in suspensions of small
organisms [29–32].

The main ingredient in formulating a theory for the
enhanced diffusion due to swimming organisms is the drift
caused by the swimmer [33–35]. Katija and Dabiri [19] and
Thiffeault and Childress [22] proposed that the enhanced
diffusivity is due to the repeated displacements induced by
a swimmer on a particle of fluid. Thiffeault and Childress [22]
and Lin et al. [36] formulated a probabilistic model where,
given the drift caused by one swimmer, an effective diffusivity
could be computed. This model has been tested in physical and
numerical experiments [37–39] and modified to include curved
trajectories [40] and confined environments [41]. Miño et
al. [31,42] observe that effective diffusivity is inversely related
to swimming efficiency, and find increased diffusivity near
solid surfaces, both theoretically and experimentally. The drift
caused by individual microswimmers has also been studied in
its own right [43,44]. Pushkin and Yeomans [40] also found an
analytical expression for stresslet displacements, valid in the
far field.

*jeanluc@math.wisc.edu

The studies mentioned above have typically been concerned
with the effective diffusivity induced by the swimmers, but one
can also ask more detailed questions about the distribution
of displacements of fluid particles. Wu and Libchaber [45]
studied the displacement of spheres larger than the swimming
organisms. More recently, Leptos et al. [46] studied the
microscopic algae Chlamydomonas reinhardtii. They used
spheres that are much smaller than the organisms, so their
distributions can be taken to be close to the displacements
of idealized fluid particles. The probability density function
(pdf) of tracer displacements was found to be strongly
non-Gaussian, though the distributions scaled “diffusively”:
they collapsed onto each other if rescaled by their standard
deviation.

Several papers have dealt with these non-Gaussian distribu-
tions. Zaid et al. [32] examine the velocity fluctuations due to
swimmers modeled as regularized point stresslets and obtain
strongly non-Gaussian tails. The non-Gaussianity in their case
is due to the divergence of the stresslet near the singularity,
which indicates large displacements. While the broad outline
of this mechanism is surely correct, examining this singular
limit is questionable: it is never valid to evaluate terms such
as the stresslet in the singular limit, since the swimmer’s
body necessarily regularizes the velocity. In addition, no direct
comparison to experiments is offered beyond a comment that
the data “resemble the measurements of Leptos et al. [46].”
Pushkin and Yeomans [41] extended this work to confined
environments, and we will contrast their results to ours.
As we will show here, the non-Gaussianity arises from the
rarity of interaction events—the system is very far from the
Gaussian limit. Note also that Eckhardt and Zammert [47]
have fitted the distributions of Leptos et al. [46] very well to a
continuous-time random walk model, but this does not suggest
a mechanism and requires fitting different parameters at each
concentration.

What causes the non-Gaussian form of the displacement
distribution? As was pointed out by Pushkin and Yeomans [41],
the experiments are run for a very short time. Let us quantify
what is meant by “short.” Leptos et al. [46] define a “sphere
of influence” of radius Reff around a particle: swimmers
outside that sphere do not significantly displace the particle. If
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swimmers with number density n moves a distance λ in random
directions, the expected number of “interactions” with a target
particle is roughly

nλ πR2
eff ∼ 0.4.

Here we took λ ∼ 30 μm and n ∼ 4 × 10−5 μm−3, which are
the largest values used in the experiments, and Reff ∼ 10 μm as
estimated in Leptos et al. [46]. Hence, a typical fluid particle
feels very few near-encounters with any swimmer. In order
for the central limit theorem to apply, the net displacement
must be the sum of many independent displacements, and
this is clearly not the case here for the larger values of the
displacement. We thus expect a Gaussian core (due to the
many small displacements a particle feels) but non-Gaussian
tails (due to the rarity of large displacements), which is exactly
what was observed in the experiments.

Here, we present a calculation that quantitatively predicts
essentially all the details of the distributions obtained by
Leptos et al. [46]. The underlying model is not new, being
based on the particle-displacement picture of Thiffeault and
Childress [22] and Lin et al. [36]. However, the analysis is new:
we show how to combine multiple displacements to obtain the
probability density function due to multiple swimmers and take
the appropriate infinite-volume limit. As we go, we discuss the
mathematical assumptions that are required. Upon comparing
with experiments, we find the agreement to be excellent, in
spite of the differences between our model swimmer and the
experiments. Only a single parameter needs to be fitted: the
dimensionless stresslet strength, β.

The paper is organized as follows. In Sec. II we derive
the probability density of displacements based on the drift
function of a single swimmer, in the infinite-volume limit.
We use numerical simulations of a model swimmer (of the
squirmer type [8,48–51]) in Sec. III to obtain a distribution of
displacements, which we match to the experiments of Leptos
et al. In Sec. IV we give a different interpretation of the
main formula of Sec. II in terms of “interactions” between
swimmers and a fluid particle. This alternative form can be
used to obtain some analytic results, in particular when the drift
function is logarithmic. We examine in Sec. V the long-time
(or long swimming path) asymptotics of the model and find
what features of the drift function affect the convergence
to Gaussian. In Sec. VI we address the “diffusive scaling”
observed in the experiments and show that it is a transient
phenomenon. Finally, we discuss our results as well as future
directions in Sec. VII.

II. DISTRIBUTION OF DISPLACEMENTS

The setting of our problem is a large volume V that contains
a number of swimmers N , also typically large. The swimmers
move independently of each other in random directions. In
the dilute limit that we consider, the velocity field of one
swimmer is not significantly affected by the others. A random
fluid particle (not too near the edges of the domain), will be
displaced by the cumulative action of the swimmers. If we
follow the displacements of a large number of well-separated
fluid particles, which we treat as independent, we can obtain
the full pdf of displacements. Our goal is to derive the
exact pdf of displacements from a simple probabilistic model.

Our starting point is the model described by Thiffeault and
Childress [22] and improved by Lin et al. [36], which captures
the important features observed in experiments.

For simplicity, we assume the swimmers move along
straight paths at a fixed speed U . The velocity field induced at
point x by a swimmer is u(x − U t), with the time dependence
reflecting the motion of the swimmer. The main ingredient in
the model is the finite-path drift function �λ(η) for a fluid
particle, initially at x = η, affected by a single swimmer:

�λ(η) =
∫ λ/U

0
u(x(s) − Us) ds,

(1)
ẋ = u(x − U t), x(0) = η.

Here Ut = λ is the swimming distance. To obtain �λ(η) we
must solve the differential equation ẋ = u for each initial
condition η. Assuming homogeneity and isotropy, we obtain
the probability density of displacements [41],

pR1
λ
(r) = 1

�rd−1

∫
V

δ(r − �λ(η))
dVη

V
, (2)

where � = �(d) is the area of the unit sphere in d dimensions:
�(2) = 2π , �(3) = 4π . Here R1

λ is a random variable that
gives the displacement of the particle from its initial position
after being affected by a single swimmer with path length
λ. We denote by pR1

λ
(r) the pdf of R1

λ. Because of the
isotropy assumption, only the magnitude �λ(η) = ‖�λ(η)‖
enters Eq. (2).

Before we continue with finding the pdf for multiple
swimmers, let us investigate how the variance of displacements
evolves. The second moment of R1

λ is〈(
R1

λ

)2〉 =
∫

V

r2 pR1
λ
(r) dVr =

∫
V

�2
λ(η)

dVη

V
. (3)

This typically goes to zero as V → ∞, since a single swimmer
in an infinite volume shouldn’t give any fluctuations on
average. We write RN

λ for the random particle displacement
due to N swimmers; the second moment of RN

λ is〈(
RN

λ

)2〉 = N
〈(
R1

λ

)2〉 = n

∫
V

�2
λ(η) dVη, (4)

with n = N/V the number density of swimmers. This is
nonzero (and might diverge) in the limit V → ∞, reflecting
the cumulative effect of multiple swimmers. Note that this
expression is exact, within the problem assumptions: it doesn’t
even require N to be large.

Equation (4) will lead to diffusive behavior if the integral
grows linearly in λ (or if the swimmers change direction [36],
which we shall not treat here). Surprisingly, it has been found
to do so in two distinct ways. In the first, exemplified by bodies
in inviscid flow [22,36], the support of �λ grows linearly with
λ, but the displacements themselves become independent of
λ when λ is large. The intuition is that the swimmer pushes
particles a finite distance as it encounters them. As we wait
longer, the volume of such displaced particles grows linearly
in λ, but once particles are displaced they are left behind and
suffer no further displacement. This diffusive behavior is thus
appropriate for very localized interactions, where the only
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FIG. 1. (Color online) The natural log of ρ2�2(ρ,z) [integrand of Eq. (4) with dVη = 2πρ2 d(ln ρ) dz] for (a) a sphere of radius 	 = 1 in
inviscid flow, moving a path length λ = 10 (top) and 100 (bottom), plotted on the same scale. The scale of the integrand doesn’t change, only
its support. Here η = (ρ,z) with z the swimming direction and ρ the distance from the z axis. (b) Same as (a) but for a stresslet velocity field.
The integral Eq. (4) grows linearly with λ for both (a) and (b).

displaced particles are very near the axis of swimming. This
tends to occur in inviscid flow, or for spherical “treadmillers”
in viscous flow. See Fig. 1(a) for an illustration.

The second situation in which Eq. (4) shows diffusive
behavior even for straight swimming paths is when the far-field
velocity has the form of a stresslet, as is the case for a
force-free swimmer in a viscous fluid. This diffusive behavior
was observed in Lin et al. [36], but it was Pushkin and
Yeomans [40] who provided a full explanation. For a stresslet
swimmer, the main contributions to Eq. (4) come from ‖η‖
of order λ, so it is appropriate to use a point singularity
model swimmer for large λ. In that case the drift function has
the scaling �λ(η) = �λ(λζ ) = λ−1D(ζ ), where ζ = η/λ is a
dimensionless variable and the function D(ζ ) is independent
of λ for large λ [40]. Inserting this form in Eq. (4), we
find ∫

�2
λ(η) dVη =

∫
(λ−2D2(ζ ))(λ3 dVζ ) ∼ λ. (5)

The integral of D2(ζ ) converges despite having singulari-
ties [40]. We thus see that the integral in Eq. (4) grows linearly
in λ for very different reasons than our first case: here the
volume of particles affected by the swimmer grows as λ3

(particles are affected further and further away), but they are
displaced less [since they are further away, see Fig. 1(b)]. Any
truncation of the integral in Eq. (5) (because of finite volume
effect) will lead to a decrease in the diffusivity, a possible origin
for the decrease in diffusivity with path length observed in
Jepson et al. [37]. Note also that the reorientation mechanism
discussed by Lin et al. [36] is not necessary in this case to
achieve the diffusive behavior, as pointed out by Pushkin and
Yeomans [41].

Having addressed the growth of the variance, we continue
with finding the pdf of displacements for multiple swimmers.
We write XN

λ for a single coordinate of RN
λ (which coordinate

is immaterial, because of isotropy). From Eq. (2) with d =
2 we can compute pX1

λ
(x), the marginal distribution for one

coordinate:

pX1
λ
(x) =

∫ ∞

−∞
pR1

λ
(r) dy

=
∫

V

∫ ∞

−∞

1

2πr
δ(r − �λ(η)) dy

dVη

V
. (6)

Since r2 = x2 + y2, the δ function will capture two values of
y, and with the Jacobian included we obtain

pX1
λ
(x) = 1

π

∫
V

1√
�2

λ(η) − x2
[�λ(η) > |x|] dVη

V
, (7)

where [A] is an indicator function: it is 1 if A is satisfied, 0
otherwise.

The marginal distribution in the three-dimensional case
proceeds the same way from Eq. (2) with d = 3:

pX1
λ
(x) =

∫ ∞

−∞
pR1

λ
(r) dy dz

=
∫

V

∫ ∞

−∞

∫ ∞

−∞

1

4πr2
δ(r − �λ(η)) dy dz

dVη

V
. (8)

Again with r2 = x2 + y2 + z2 the δ function captures two
values of z, and with the Jacobian included we obtain

pX1
λ
(x) = 1

2π

∫
V

∫ ∞

−∞

1

�λ(η)

1√
�2

λ(η) − x2 − y2

× [
�2

λ(η) > x2 + y2
]
dy

dVη

V
. (9)

Now we integrate over y to get

pX1
λ
(x) = 1

2

∫
V

1

�λ(η)
[�λ(η) > |x|] dVη

V
, (10)

which is the three-dimensional analog of Eq. (7). The integrand
of Eq. (10) has an intuitive interpretation. The indicator
function says that a displacement in a random direction must
at least be larger than |x| to project to a value x. The factor of
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�λ(η) in the denominator then tells us that large displacements
in a random direction are less likely to project to a value x.
(The two-dimensional form of Eq. (7) has essentially the same
interpretation, with a different weight.)

In order to sum the displacements due to multiple swim-
mers, we need the characteristic function of pX1

λ
(x), defined

by 〈
eikX1

λ

〉 =
∫ ∞

−∞
pX1

λ
(x) eikx dx. (11)

For the two-dimensional pdf Eq. (7), we have〈
eikX1

λ

〉 =
∫

V

J0(k�λ(η))
dVη

V
, (12)

where J0(x) is a Bessel function of the first kind. For the
three-dimensional pdf Eq. (10), the characteristic function is〈

eikX1
λ

〉 =
∫

V

sinc(k�λ(η))
dVη

V
, (13)

where sinc x := x−1 sin x for x �= 0, and sinc 0 := 1.1 Equa-
tion (13) appears in Ref. [41], except here we compute it
directly from a spatial integral rather than from the pdf of
�. The main difference will come in the way we take the
limit V → ∞ below, which will allow us to study the number
density dependence directly.

We define

γ (x) :=
{

1 − J0(x), d = 2
1 − sinc x, d = 3 . (14)

We have γ (0) = γ ′(0) = 0, γ ′′(0) = 1/d, so γ (ξ ) ∼
(1/2d) ξ 2 + O(ξ 4) as ξ → 0. For large argument, γ (ξ ) → 1.
We can then write the two cases, Eqs. (12) and (13), for the
characteristic function together as〈

eikX1
λ

〉 = 1 − (vλ/V ) �λ(k), (15)

where

�λ(k) := 1

vλ

∫
V

γ (k�λ(η)) dVη. (16)

Here vλ is the volume “carved out” by a swimmer moving a
distance λ:

vλ = λσ, (17)

with σ the cross-sectional area of the swimmer in the direction
of motion.

Since we are summing independent particle displacements,
the probability distribution of the sum is the convolution of N

one-swimmer distributions. Using the Fourier transform con-
volution property, the characteristic function for N swimmers
is thus 〈eikXN

λ 〉 = 〈eikX1
λ〉N . From Eq. (15),〈

eikX1
λ

〉N = (1 − vλ�λ(k)/V )nV , (18)

where we used N = nV , with n the number density of
swimmers. We will need the following simple result:

1Beware that this function is sometimes defined as (πx)−1 sin(πx),
most notably by Matlab.

Proposition 1. Let y(ε) ∼ o(ε−M/(M+1)) as ε → 0 for an
integer M � 1; then

(1 − εy(ε))1/ε = exp

(
−

M∑
m=1

εm−1ym(ε)

m

)
(1 + o(ε0)),

ε → 0. (19)

See Appendix A for a short proof.
Let’s examine the assumption of Proposition 1 for M = 1

applied to Eq. (18), with ε = 1/V and y = vλ�λ(k). For M =
1, the assumption of Proposition 1 requires

�λ(k) ∼ o(V 1/2), V → ∞. (20)

A stronger divergence with V means using a larger M in
Proposition 1, but we shall not need to consider this here. Note
that it is not possible for �λ(k) to diverge faster than O(V ),
since γ (x) is bounded. In order for �λ(k) to diverge as O(V ),
the displacement must be nonzero as V → ∞, an unlikely
situation that can be ruled out.

Assuming that Eq. (20) is satisfied, we use Proposition 1
with M = 1 to make the large-volume approximation〈

eikX1
λ

〉N = (1 − vλ�λ(k)/V )nV ∼ exp(−nvλ �λ(k)),

V → ∞. (21)

If the integral �λ(k) is convergent as V → ∞, we have
achieved a volume-independent form for the characteristic
function, and hence for the distribution of x for a fixed
swimmer density. We define the quantity

νλ := nvλ = λ/	mfp, (22)

where 	mfp = (nσ )−1 is the swimmer mean free path. Since
vλ is the volume carved out by a single swimmer moving a
distance λ [Eq. (17)], νλ is the expected number of swimmers
that will “hit” a given fluid particle.

A comment is in order about evaluating Eq. (16) nu-
merically: if we take |k| to ∞, then γ (k�) → 1, and thus
vλ� → V , which then leads to e−N in Eq. (21). This is
negligible as long as the number of swimmers N is moderately
large. In practice, this means that |k| only needs to be large
enough that the argument of the decaying exponential in
Eq. (21) is of order one, that is

νλ �λ(kmax) ∼ O(1). (23)

Wave numbers |k| > kmax do not contribute to Eq. (21). (We are
assuming monotonicity of �λ(k) for k > 0, which will hold for
our case.) Note that Eq. (23) implies that we need larger wave
numbers for smaller densities n: a typical fluid particle then
encounters very few swimmers, and the distribution should be
far from Gaussian.

Now that we’ve computed the characteristic function for
N swimmers, Eq. (21), we finally recover the pdf of x for
N = nV swimmers as the inverse Fourier transform

pXλ
(x) = 1

2π

∫ ∞

−∞
exp(−νλ �λ(k))e−ikx dk, (24)

where we dropped the superscript N from XN
λ since the number

of swimmers no longer enters the expression directly.
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III. COMPARING TO EXPERIMENTS

We now compare the theory discussed in the previous
sections to the experiments of Leptos et al., in particular, the
observed dependence of the distribution on the number density
φ. (Another aspect of their experiments, the “diffusive scaling”
of the distributions, will be discussed in Sec. VI.) In their
experiments they use the microorganism Chlamydomonas
reinhardtii, an alga of the “puller” type, since its two flagella
are frontal. This organism has a roughly spherical body with
radius 	 ≈ 5 μm. They observe a distribution of swimming
speeds with a strong peak around 100 μm/s. They place
fluorescent microspheres of about a micron in radius in the
fluid and optically measure their displacement as the organisms
move. The volume fraction of organisms varies from φ = 0%
(pure fluid) to 2.2%.

They measure the displacement of the microspheres along
a reference direction, arbitrarily called x (the system is
assumed isotropic). Observing many microspheres allows
them to compute the pdf of tracer displacements Xλ, which
we’ve denoted pXλ

(x). Thus, pXλ
(x) dx is the probability of

observing a particle displacement Xλ ∈ [x,x + dx] after a
path length λ. [They write their density P (�x,�t), where
(�x,�t) are the same as our (x,λ/U ).]

At zero volume fraction (φ = 0), the pdf pXλ
(x) is Gaus-

sian, due solely to thermal noise. For higher number densities,
Leptos et al. see exponential tails appear and the Gaussian
core broaden. The distribution is well-fitted by the sum of a
Gaussian and an exponential:

pXλ
(x) = 1 − f√

2πδ2
g

e−x2/2δ2
g + f

2δe
e−|x|/δe . (25)

They observe the scalings δg ≈ Agt
1/2 and δe ≈ Aet

1/2, where
Ag and Ae depend on φ. The dependence on t1/2 is referred
to as the “diffusive scaling” and will be discussed in Sec. VI.
Exploiting this scaling, Eckhardt and Zammert [47] have fitted
these distributions very well to a continuous-time random walk
model, but this does not suggest a mechanism.

We shall use a model swimmer of the squirmer type
[8,48–51], with axisymmetric streamfunction [36],

�sf(ρ,z) = 1

2
ρ2 U

{
−1 + 	3

(ρ2 + z2)3/2

+ 3

2

β	2z

(ρ2 + z2)3/2

(
	2

ρ2 + z2
− 1

)}
, (26)

in a frame moving at speed U . Here z is the swimming
direction and ρ is the distance from the z axis. To mimic
C. reinhardtii, we use 	 = 5 μm and U = 100 μm/s. (Leptos
et al. [46] observe a distribution of velocities but the peak is
near 100 μm/s.) We take β = 0.5 for the relative stresslet
strength, which gives a swimmer of the puller type, just
like C. reinhardtii. The contour lines of the axisymmetric
streamfunction Eq. (26) are depicted in Fig. 2. The parameter
β = 0.5 is the only one that was fitted (visually) to give good
agreement later.

First we compute the drift function �λ(η) for a single
swimmer moving along the z axis. The model swimmer is
axially symmetric, so η can be written in terms of z and ρ,

U

FIG. 2. (Color online) Contour lines for the axisymmetric
streamfunction of a squirmer of the form of Eq. (26), with β = 0.5.
This swimmer is of the puller type, as for C. reinhardtii.

the perpendicular distance to the swimming axis. We take
λ = 12 μm, since the time is t = 0.12 s in Fig. 2(a) of Leptos
et al., and our swimmer moves at speed U = 100 μm/s. We
compute �λ(ρ,z) for a large grid of ln ρ and z values, using the
analytic far-field stresslet form for the displacement [40,42,43]
when far away from the swimmer’s path.

From the drift function �λ(η) we now want to compute
�λ(k) defined by Eq. (16). To estimate how large a k value
we will need, we start from the smallest volume fraction in
the experiments, φ ∼ 0.4%. For spherical swimmers of radius
	 ∼ 5 μm (with cross-sectional area σ = π	2 ∼ 78.5 μm2),
this gives a number density of 7.6 × 10−6 μm−3. We thus get
νλ = nσλ ∼ 7.2 × 10−3. The criterion Eq. (23) then tells us
that we need kmax large enough that �λ(kmax) ∼ 1/νλ ∼ 139.
Figure 3 shows the numerically computed �λ(k) for several
values of λ, with λ = 12 μm the broadest curve. We can see
from the figure that choosing kmax ∼ 20 μm−1 will ensure that
νλ�λ(kmax) is large enough. As λ gets larger, kmax decreases,
reflecting the trend towards the central limit theorem (which
corresponds to the small-k expansion of �λ(k); see Sec. V).
Note also that �λ(k) tends to become independent of λ as λ

gets larger.
To obtain pXλ

(x) and compare to Leptos et al., we must
now take the inverse Fourier transform of exp[−νλ�λ(k)], as
dictated by Eq. (24). This is straightforward using Matlab’s
ifft routine. The “period” (domain in x) is controlled by the
spacing of the k grid, so we make sure the grid is fine enough
to give us the largest values of x required. We also convolve

−20 −10 0 10 20
0

50

100

150

200

250

300

k [μm−1]

Γ
λ
(k

)

FIG. 3. (Color online) The function �λ(k) defined by Eq. (16) for
(from broadest to narrowest) λ = 12 μm, 36 μm, 60 μm, and 96 μm.
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FIG. 4. (Color online) (a) The pdf of particle displacements after a path length λ = 12 μm, for several values of the volume fraction φ.
The data is from Leptos et al. [46], and the figure should be compared to their Fig. 2(a). The theoretical curves were obtained from Eq. (24)
for the model squirmer in Fig. 2, with some noise corresponding to thermal diffusivity as measured in Leptos et al. [46]. Inset: comparison of
(from broadest to narrowest) β = 2, 1, 0.5, and 0.1, for φ = 2.2%, showing the sensitivity of the fit β = 0.5. (b) Same as (a) but on a wider
scale, also showing the form suggested by Eckhardt and Zammert [47] (dashed lines).

with a Gaussian distribution of half-width
√

2D0t = 0.26 μm
to mimic thermal noise. This follows from the value D0 =
0.28 μm2/s measured by Leptos et al. for the diffusivity of the
microspheres. The value of D0 is consistent with the Stokes-
Einstein equation for the diffusivity of thermally agitated small
spheres in a fluid.

The results are plotted in Fig. 4(a) and compared to the data
of Fig. 2(a) of Leptos et al. [46]. The agreement is excellent:
we remind the reader that we adjusted only one parameter,
β = 0.5. This parameter was visually adjusted to the φ = 2.2%
data in Fig. 4(a), since the larger concentration is most sensitive
to β; a more careful fit is unnecessary given the uncertainties
in both model and data. (The inset shows the sensitivity of the
fit to β.) All the other physical quantities were gleaned from
Leptos et al. What is most remarkable about the agreement in
Fig. 4(a) is that it was obtained using a model swimmer, the
spherical squirmer, which is not expected to be such a good
model for C. reinhardtii. The real organisms are strongly time-
dependent, for instance, and do not move in a perfect straight
line. Nevertheless, the model captures very well the pdf of
displacements, in particular the volume fraction dependence.
The model swimmer slightly underpredicts the tails, but since
the tails are associated to large displacements they depend
on the near-field details of the swimmer, so it is not surpri-
sing that our model swimmer should deviate from the data.

In Fig. 4(b) we compare our results to the phenomenological
fit of Eckhardt and Zammert [47] based on continuous-time
random walks: their fit is better in the tails, but our models
disagree immediately after the data runs out. Our model has
the realistic feature that the distribution is cut off at the path
length λ = 12 μm, since it is extremely unlikely that a particle
had two close encounters with a swimmer at these low volume
fractions.

A possible explanation as to why the squirmer model does
so well was provided by Pushkin and Yeomans [41]. They
used numerical simulations of squirmers (with a larger value
β = 2 that leads to a trapped volume) to show that the tails
of distribution scale as x−4, which is the asymptotic form of

the stresslet displacement distribution. Figure 5 shows that our
computations have a similar tail, though we emphasize here
that our agreement with the experiments of Leptos et al. [46]
is quantitative and correctly reproduces the volume fraction
dependence. We also point out that though the trend in Fig. 5
follows x−4, the slope changes gradually and does not have
a clear power law (the log scale means the deviations are
quite large). The inset in Fig. 5 is a numerical simulation
that includes only the singularity in the stresslet displacement,
�(η) ∼ ‖η‖−1, as assumed in the analysis of Pushkin and
Yeomans [41]. Though the x−4 tails are eventually achieved,
they have far lower probability than needed to explain the
numerics. Pushkin and Yeomans’s use of the far-field stresslet
form to predict the tails is thus questionable, at least for short
path lengths.

For the effective diffusivity, Leptos et al. [46] give
the formula Deff  D0 + α φ, with D0 = 0.23 μm/s2 and
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p
X

λ
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)

FIG. 5. (Color online) The same distributions as in Fig. 4(a), but
on a log-log plot. The dashed line is the x−4 power law predicted by
Pushkin and Yeomans [41]. Inset: numerical simulation with only the
stresslet far-field displacement included.
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FIG. 6. (Color online) (a) For the squirmer model Eq. (26), dependence of the effective diffusivity Deff on the stresslet strength β. For
small β, we recover the value for spheres in inviscid flow [22]. An approximate formula is also shown as a solid curve. (b) Comparison of the
effective diffusivity data from Leptos et al. [46], showing their fit (solid line). The dashed line is the prediction for β = 0.5, used in this paper.

α = 81.3 μm/s2. Elsewhere in their paper they also give
D0 = 0.28 μm/s2 for the diffusivity of the microspheres in
the absence of swimmers, but their fitting procedure changes
the intercept slightly. (Here we used D0 = 0.28 μm/s2,
but the difference is minute.) Figure 6(a) shows the numerically
computed effective diffusivity for our squirmer model, as a
function of β. This curve is as in Ref. [36], Fig. 6(a), except
that we corrected the integrals in the far field using the analytic
expression of Pushkin and Yeomans [40], which gives a more
accurate result. The figure also shows the fit

Deff − D0

Un	4
 0.266 + 3

4
πβ2, (27)

which is fairly good over the whole range (keeping in mind that
this is a logarithmic plot, so the discrepancy at moderate β are
of the order of 20–30%). Here the value 0.266 is the diffusivity
due to spheres in inviscid flow (β = 0, see Ref. [22]), and 3

4πβ2

is the large-β analytic expression [40] for stresslets. From the
data in Fig. 6(a) we find α  113 μm/s2, significantly larger
than Leptos et al. [46], as can be seen in Fig. 6(b). The solid
line is their fit, the dashed is our model prediction for β = 0.5.
The overestimate is likely due to the method of fitting to the
squared displacement: their Fig. 3(a) clearly shows a change
in slope with time, and the early times tend to be steeper,
which would increase the effective diffusivity. Note also that
their Fig. 3(a) has a much longer temporal range than their
PDFs, going all the way to 2 s (compared to 0.3 s), raising the
possibility that particles were lost by moving out of the focal
plane.

IV. THE “INTERACTION” VIEWPOINT

Equation (24) gives the exact solution for the distribution
of uncorrelated displacements due to swimmers of number
density n. In this section we derive an alternative form, in
terms of an infinite series, which is often useful and provides
an elegant interpretation for Eq. (24).

The displacement �λ(η) typically decays rapidly away
from the swimmer, so that it may often be taken to vanish
outside a specified “interaction volume” Ṽλ. Then from

Eq. (16), since γ (0) = 0, we have

�λ(k) = 1

vλ

∫
Ṽλ

γ (k�λ(η)) dVη = Ṽλ

vλ

(1 − �̃λ(k)), (28)

where

�̃λ(k) = 1

Ṽλ

∫
Ṽλ

(1 − γ (k�λ(η))) dVη. (29)

Define ν̃λ := nṼλ; we insert Eq. (28) into Eq. (24) and Taylor
expand the exponential to obtain

pXλ
(x) =

∞∑
m=0

ν̃m
λ

m!
e−ν̃λ

1

2π

∫ ∞

−∞
�̃m

λ (k) e−ikx dk. (30)

The factor ν̃m
λ e−ν̃λ/m! is a Poisson distribution for the number

of “interactions” m between swimmers and a particle: it
measures the probability of finding m swimmers inside the
volume Ṽλ. The inverse transform in Eq. (30) gives the m-fold
convolution of the single-swimmer displacement pdf. This was
the basis for the model used in Refs. [22,36] and in an earlier
version of this paper [52]. We have thus shown that Eq. (24)
is the natural infinite-volume limit of the interaction picture.

Equation (30) is very useful in many instances, such as
when ν̃λ is small, in which case only a few terms are needed in
Eq. (30) for a very accurate representation. Note that the first
term of the sum in Eq. (30) is a δ function, which corresponds
to particles that are outside the interaction volume Ṽλ. This
singular behavior disappears after pXλ

(x) is convolved with a
Gaussian distribution associated with molecular noise.

Let us apply Eq. (30) to a specific example. A model for
cylinders and spheres of radius 	 traveling along the z axis in
an inviscid fluid [22,36] is the log model,

�λ(η) =
{
C ln+(	/ρ), if 0 � z � λ,
0, otherwise, (31)

where ρ is the perpendicular distance to the swimming
direction and ln+ x := ln max(x,1). The logarithmic form
comes from the stagnation points on the surface of the
swimmer, which dominate transport in this inviscid limit.
This model is also appropriate for a spherical “treadmiller”
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swimmer in viscous flow. The drift function Eq. (31) resembles
Fig. 1.

For the form of Eq. (31) the interaction volume Ṽλ is the
same as vλ, the volume carved out during the swimmer’s
motion [Eq. (17)]. By changing integration variable from ρ

to � in Eq. (16) we can carry out the integrals explicitly to
obtain (see Appendix B)

�̃λ(k) =
{

(1 + (Ck)2)−1/2, (cylinders);
(Ck/2)−1 arctan(Ck/2), (spheres).

(32)

This is independent of λ, even for short paths [but note that
Eq. (31) is not a good model for λ < 	].

Furthermore, for d = 2 we can also explicitly obtain the
convolutions that arise in Eq. (30) to find the full distribution,

pXλ
(x) = e−νλ

(
δ(x) +

∞∑
m=1

νm
λ

m!

1

C
√

π �(m/2)
(|x|/2C)(m−1)/2

× K(m−1)/2(|x|/C)

)
, (33)

where Kα(x) are modified Bessel functions of the second kind,
and �(x) is the Gamma function (not to be confused with
�λ(k) above). Equation (33) is a very good approximation
to the distribution of displacements due to inviscid cylinders.
Unfortunately no exact form is known for spheres: we must
numerically evaluate Eq. (24) with Eq. (32) or use asymptotic
methods (see Sec. V).

V. LONG PATHS: LARGE-DEVIATION THEORY

In Sec. IV we derived an alternative form of our master
Eq. (24) as an expansion in an “interaction” volume. Here we
look at another way to evaluate the inverse Fourier transform
in Eq. (24), using large-deviation theory [53–56]. In essence,
large-deviation theory is valid in the limit when a particle
encounters many swimmers, so that νλ is large (in practice,
“large” often means order one for a reasonable approximation).
This includes the central limit theorem (Gaussian form) as a
special case. In this section we provide a criterion for how
much time is needed before Gaussian behavior is observed,
which can help guide future experiments.

Earlier we used the characteristic function Eq. (21). Here
it is more convenient to work with the moment-generating
function, which in our case can be obtained simply by letting
s = ik. The moment-generating function of the distribution is
then

〈esXλ〉 = exp(−νλ �λ(−is)) = exp(νλ �(s)),

where νλ was defined by Eq. (22), and

�(s) := 1

νλ

ln〈esXλ〉 = −�λ(−is) (34)

is the scaled cumulant-generating function. As its name
implies, this function has the property that its derivatives at
s = 0 give the cumulants of Xλ scaled by νλ; for example,

�′′(0) = ν−1
λ

〈
X2

λ

〉
, �′′′′(0) = ν−1

λ

(〈
X4

λ

〉 − 3
〈
X2

λ

〉2)
, (35)

where we left out the vanishing odd moments. We left out the λ

subscript on �(s) since we assume that it becomes independent
of λ for large λ.

If �(s) is differentiable over some interval of interest,
pXλ

(x) satisfies a large-deviation principle [53–56],

pXλ
(x) ∼ e−νλ I (x/νλ)+o(νλ), νλ � 1, (36)

where I (X) is the rate function, which is the Legendre-Fenchel
transformation of �(s):

I (X) = sup
s∈R

{sX − �(s)}. (37)

The large-deviation principle is in essence an application of
the method of steepest descent for large νλ.

The scaled cumulant-generating function �(s) is always
convex, which guarantees a unique solution to Eq. (37). The
rate function I (X) is also convex, with a global minimum at
X = 0. This means that for small X = x/νλ we can use the
Taylor expansion

I (X) = 1

2
I ′′(0)X2 + 1

4!
I ′′′′(0)X4 + O(X6) (38)

to write

pXλ
(x) ∼ e

− 1
2 I ′′(0) x2/νλ , x � c νλ, νλ � 1, (39)

with c = |12I ′′(0)/I ′′′′(0)|1/2. This is a Gaussian approxima-
tion with variance νλ/I

′′(0), which can be shown to agree
with Eq. (4) after multiplying by d. To recover a Gaussian
distribution over an appreciable range of x (say, a standard
deviation) we insert x ∼ √

νλ/I ′′(0) in the condition x � c νλ

to find the Gaussian criterion

νλ � 1

12

|I ′′′′(0)|
(I ′′(0))2

= 1

12

|�′′′′(0)|
(�′′(0))2

. (40)

After using �(s) to find the cumulants, we can rewrite this as

�λ := (d + 3)

40

vsw
∫
V

�4
λ(η) dVη( ∫

V
�2

λ(η) dVη

)2 � φ, (41)

where vsw is the volume of one swimmer. When Eqs. (40)
or (41) is satisfied, we can expect that the distribution will be
Gaussian (except in the far tails). (The constant prefactor in
Eq. (41) is only valid for d = 2 or 3.) The criterion Eq. (41) can
be interpreted as the minimum volume fraction �λ required
to observe Gaussian behavior, roughly within a standard
deviation of the mean. We note that, at small swimmer volume
fraction, a long time (i.e., path length λ) is required to achieve
the Gaussian form. Figure 7 highlights this: the solid curve
is �λ from Eq. (41) for the squirmer model in Sec. III, with
parameter values appropriate for the experiments of Leptos
et al. [46]. Their experiments had λ � 30 μm, so they are in
the slowly decreasing region of Fig. 7, before more rapid λ−1

convergence sets in after λ � 50 μm. It is thus not surprising
that Gaussian tails were not observed in the experiments.

As an illustration of the large-deviation approach, we
consider again the inviscid cylinder and sphere results of
Eq. (32). We have then, respectively,

�(s) =
{

(1 − (Cs)2)−1/2 − 1, (cylinders);
(Cs/2)−1 arctanh(Cs/2) − 1, (spheres).

(42)
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FIG. 7. The minimum volume fraction �λ for the threshold of
Gaussian behavior [Eq. (41)]. The solid line is the the squirmer model
(Sec. III) with β = 0.5 and radius 	 = 5 μm. The dashed line is for
spherical treadmillers (inviscid spheres) of the same radius. The latter
require an order of magnitude longer to achieve Gaussianity, due to
the short range of their velocity field.

We can see from Eq. (37) that the singularities in Eq. (42)
(|s| = 1/C for cylinders, |s| = 2/C for spheres) immediately
lead to I (X) ∼ |X|/C and 2|X|/C as |X| → ∞, respectively,
corresponding to exponential tails in Eq. (36) independent
of νλ. These are the displacements of particles that come
near the stagnation points at the surface of the cylinder or
sphere [36]. We can also use Eq. (42) to compute the constant
on the right-hand side of Eq. (40): 3/4 (cylinders) and 9/10
(spheres), which are both of order unity. This reflects the fact
that the drift function �λ(η) is very localized, so convergence
to Gaussian is tied directly to the volume carved out by the
swimmers. For swimmers with a longer-range velocity field,
such as squirmers, the constant is much larger, as reflected
by the large difference between the solid (squirmers) and the
dashed (inviscid spheres) curves in Fig. 7.

For inviscid cylinders the Legendre-Fenchel transform
Eq. (37) can be done explicitly to find (with C = 1),

I (X) = 1 −
√

3πα(12 − α2X−2)−1/2

+ 1
2

√
πα

(
(πα − 4)α−2X2 + 1

3

)1/2
, (43)

where α(X) � 0 is defined by

α3(X) = 6(
√

(9πX4)2 + 48X6 − 9πX4). (44)

For spheres Eq. (37) must be solved numerically for each
X, which is straightforward since this is a one-dimensional
problem with a unique solution. The function I (X) for both
cylinders and spheres is plotted in Fig. 8.

VI. THE DIFFUSIVE SCALING

One of the most remarkable properties of the pdfs found
by Leptos et al. is the diffusive scaling. This is illustrated in
Fig. 9: the unrescaled displacement pdfs are shown in Fig. 9(a);
the same pdfs are shown again in Fig. 9(b), but rescaled by
their standard deviation. The pdfs collapse onto a single curve
(the shortest path length collapses more poorly). Figure 9 was
obtained in the same manner as Fig. 4, using our probabilistic
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FIG. 8. (Color online) The rate function I (X) for cylinders
(Eq. (43), dashed line) and spheres (solid line, numerical solution
of (36)). In both cases we used C = 1. The linear behavior for
large |X| indicates exponential tails in Eq. (36). When X is small,
expanding near the quadratic minimum recovers the Gaussian limit.

approach. Hence, the diffusive scaling is also present in our
model, as it was in the direct simulations of Lin et al. [36] for
a similar range of path lengths. In Fig. 9 we left out thermal
diffusion completely, which shows that it is not needed for the
diffusive scaling to emerge.

Here we have the luxury of going much further in time and
to examine the probability of larger displacements, since we
are simply carrying out integrals and not running a statistically
limited experiment or simulation. (The numerical integrals
are of course limited by resolution.) Figure 10 shows much
longer runs (maximum λ = 500 μm compared to 30 μm in
the experiments). We see that, though the diffusive scaling
holds in the core (as it must, since the core is Gaussian), the
tails are narrowing, consistent with convergence to a Gaussian
distribution but breaking the diffusive scaling. We now explain
why the diffusive scaling appears to hold for some time, but
eventually breaks down.

To understand the origin of the diffusive scaling, let us first
examine how the integrated moments of �λ change with λ.
Figure 11 shows the evolution of the spatial integrals of �2

λ

and �4
λ for our squirmer model. For short λ, the moment of

�
q

λ grows as λq . This is a typical “ballistic” regime: it occurs
because for short times the integrals are dominated by fluid
particles that are displaced proportionately to the swimmer’s
path length. These particles are typically very close to the
swimmer and get dragged along for a while. This regime is
visible for λ � 2 μm in Fig. 11.

As λ becomes larger, the particles initially near the
swimmer are left behind, and thus undergo only a finite
displacement even as λ increases. Eventually, for q = 2 the
scenario illustrated in Fig. 1(b) takes over and leads to
linear growth of the moment with λ. This can be seen in
Fig. 11 (triangles) for λ � 40 μm, though the scaling already
looks fairly linear at λ ∼ 10 μm. For q = 4 the moment
also eventually grows linearly with λ, but the mechanism is
different: the larger power downplays the far-field stresslet
effect, and the near-field dominates. The linear growth is thus
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FIG. 9. (Color online) (a) The pdfs of particle displacements for squirmers for different times, at a number density φ = 2.2%. (b) The same
pdfs rescaled by their standard deviation exhibit the “diffusive scaling” observed in the experiments of Leptos et al. [46], where the curves
collapse onto one despite not being Gaussian. As in the experiments, the scaling is worst for λ = 6 μm.

due to a corresponding linear growth of the support of �4
λ as in

Fig. 1(a). This can be seen in Fig. 11 (dots) for λ � 100 μm, as
indicated by a dashed line (see Appendix B for the computation
of this asymptotic form). The crucial fact is that for q = 4 the
crossover from λq to λ1 takes much longer than for q = 2. This
is because the larger power weighs the largest displacements
(with �

q

λ ∼ λq) more heavily, so they dominate for longer
before becoming too rare. This crossover is at the heart of the
diffusive scaling, as we now show.

Let us assume that the distribution pXt
(x) does satisfy

a diffusive scaling, such that
√

λ pXλ
(
√

λx̃) = p̃Xλ
(x̃) is

independent of λ. From Eq. (24), after changing integration
variable to k̃ = √

λk,

p̃Xλ
(x̃) =

√
λ pXλ

(
√

λx̃)

= 1

2π

∫ ∞

−∞
exp(−νλ �λ(k̃/

√
λ))e−ik̃x̃ dk̃. (45)

Hence, a diffusive scaling law requires that νλ�λ(k̃/
√

λ) be
independent of λ. Using this scaling in Eq. (16), we have

νλ�λ(k̃/
√

λ) = n

∫
V

γ (�λ(η)k̃/
√

λ) dVη . (46)

We Taylor expand γ (for d = 3):

νλ�λ(k̃/
√

λ)/n = 1

6
k̃2λ−1

∫
V

�2
λ(η) dVη + 1

120
k̃4λ−2

×
∫

V

�4
λ(η) dVη + O(k̃6). (47)

The first term recovers the Gaussian approximation; the
second is the first correction to Gaussian. Again this must
be independent of λ to obtain a diffusive scaling, so we need∫

V

�2
λ(η) dVη ∼ λ,

∫
V

�4
λ(η) dVη ∼ λ2, (48)
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FIG. 10. (Color online) Same as described in the caption of Fig. 9 but for longer times and with a wider scale. In (a) the distributions
broaden with time since their standard deviation is increasing; in (b), after rescaling by the standard deviation, the distributions’ tails narrow
with increasing λ as they converge to a Gaussian.
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FIG. 11. (Color online) The second and fourth integrated mo-
ments of �λ. These grow ballistically (λq ) for short times and
eventually grow linearly with λ. The slow crossover of �4

λ is the
origin of the “diffusive scaling” of Leptos et al. [46], since in their
narrow range of λ the curve is tangent to λ2.

and clearly in general we would need each even moment q to
scale as λq/2. However, we’ve already seen that all the moments
typically eventually scale linearly with λ, so there can be no
diffusive scaling. Because there is a transition from a power
larger than 2 (λ4) to one less that 2 (λ1), observe that in Fig. 11
there is a range of λ (roughly 10 μm � λ � 60 μm), where λ2

is tangent to the q = 4 curve, as indicated by the line segment.
In that range the distribution will appear to have a reasonably
good diffusive scaling, consistent with Fig. 9. But, as we saw
in Fig. 10, the diffusive scaling does not persist for larger λ. It
is a coincidence that the range of λ used in the experiments of
Leptos et al. [46] were exactly in that intermediate regime.

VII. DISCUSSION

In this paper, we showed how to use the single-swimmer
drift function to fully derive the probability distribution of
particle displacements. We took the limit of infinite volume
and discussed the underlying assumptions, such as the need for
the function �λ(k) in Eq. (20) to not diverge too quickly with
volume. In typical cases, the function becomes independent of
volume as we make V large, but it is possible for the integral
to diverge with V , as may occur for example in sedimentation
problems. If the divergence is rapid enough a larger value
of M would need to be used when applying Proposition 1,
potentially leading to interesting new distributions. Whether
this can happen in practice is a topic for future investigation.

An intriguing question is: why does the squirmer model do
so well? As was observed previously [36,41], it reproduces
the pdf very well in the core and part of the tails [Fig. 4(a)].
However, the high precision of our calculation reveals that the
experiments have slightly “fatter” tails. This means that the
specific details of the organisms only begin to matter when
considering rather large displacements. In future work, we

shall attempt to determine what is the dominant cause of large
displacements in the near-field for a more realistic model of C.
reinhardtii. The large displacements could arise, for instance,
from the strong time-dependence of the swimming organism,
or from particles “sticking” to the no-slip body of the organism
or to stagnation points.

We have not discussed at all the role of reorientation, that
is, running-and-tumbling or orientation diffusion. Pushkin and
Yeomans [40] showed that some curvature in the paths does
not influence the diffusivity very much, so it is likely not a
very important factor here. In experiments involving different
organisms it could matter, especially if the swimmer carries a
volume of trapped fluid.

One glaring absence from the present theory is any
asymmetry between pushers and pullers. This suggests that
correlations between swimmers must be taken into account
to see this asymmetry emerge. These correlations begin to
matter as swimmer densities are increased. However, how to
incorporate these correlations into a model similar to the one
presented here is a challenge.
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APPENDIX A: PROOF OF PROPOSITION 1

Proof. Observe that εy(ε) ∼ o(ε1/(M+1)) → 0 as ε → 0.
Writing (1 − εy)1/ε = eε−1 ln(1−εy), we expand the exponent
as a convergent Taylor series:

(1 − εy)1/ε = exp

(
−ε−1

∞∑
m=1

(εy)m

m

)
(converges)

= exp

(
−ε−1

(
M∑

m=1

(εy)m

m
+ O((εy)M+1)

))

= exp

(
−ε−1

M∑
m=1

(εy)m

m

)
exp(O(εMyM+1))

= exp

(
−ε−1

M∑
m=1

(εy)m

m

)
(1 + o(ε0)).

APPENDIX B: THE LOG MODEL

A reasonable model for objects in an inviscid fluid [22,36]
is the drift function

�λ(ρ,z) =
{
�̃(ρ), if 0 � x � λ,
0, otherwise,

(B1)
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where ρ is the perpendicular distance to the swimming
direction. The integral Eq. (16) then simplifies to

�λ(k) = 1

vλ

∫
V

γ (k�λ(η)) dVη

= (d − 1)

	d−1

∫ ∞

0
γ (k�̃(ρ)) ρd−2 dρ. (B2)

Assume a monotonic relationship between ρ and �̃(ρ); we
can then change the integration variable to �̃:

�λ(k) = (d − 1)

	d−1

∫ ∞

0
γ (k�̃) ρd−2(�̃)

d�̃

|�̃′(ρ(�̃))| . (B3)

To be more specific, let us use the log model:

�̃(ρ) = C ln+(	/ρ), (B4)

where ln+ x := ln max(x,1). Here �̃ ∈ [0,∞) for ρ ∈ (0,	].
The constant C is set by the linear structure of the stagnation
points around the swimmer [22,36,57], and usually scales
with the size of the organism (not the path length λ). For
example, C = 	 for a cylinder of radius 	 moving through
inviscid fluid [22,57]. For spheres in the same type of fluid,
C = 4

3	 [22].

We can write ρ = 	 e−�̃/C , with �̃′(ρ) = C/ρ =
(C/	) e�̃/C . The integral Eq. (B3) is then

�λ(k) = (d − 1)

C

∫ ∞

0
γ (k�̃) e−(d−1)�̃/C d�̃. (B5)

This is easily integrated to give Eq. (32), after using Eq. (29)
with Ṽλ = vλ.

The log model is also appropriate for squirmers when
computing moments

∫
V

�
q

λ dV for q > 2. The constant C of
Eq. (B4) is then C(β) = 4

3 (1 − β2)−1	, obtained by lineariza-
tion around the two stagnation points at the front and rear of the
squirmer (Fig. 2). For β2 � 1 the topology of the stagnation
points changes and this expression becomes invalid—the
squirmer develops a trapped “bubble” or wake [36]. To get a
reasonably accurate representation of �λ it is important to also
include the constant correction to the log approximation. This
constant can be absorbed in the choice of 	 in Eq. (B4), instead
of using the swimmer radius. This gives an “effective radius”
	 → b(β)	 in Eq. (B4), which for our squirmer is smaller
than the “true” swimmer radius 	. The explicit calculation
of this correction involves thorny integrals and is beyond
the scope of this paper. The relevant numerical values for
our purposes are b(0.5) = 0.5382 and b(0) = 0.6464 (inviscid
sphere limit [22]). The log model was used to compute the
asymptotic form (dashed line) in Fig. 11.
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