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Natural convection in a horizontal fluid layer periodically heated from above and below
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Natural convection in a horizontal slot heated from above and from below has been considered. Each heating
has a certain spatial distribution. It has been demonstrated that a wide variety of convection patterns can be
generated by changing the relative position of both heating patterns. A significant intensification of convection,
compared to convection resulting from heating applied at one wall only, results if there is no phase shift between
both patterns, while a significant reduction of convection results from the phase shift corresponding to half of
the heating wavelength. The system generates a nonzero mean shear stress at each wall for all phase shifts
except shifts corresponding to half of and one full heating wavelength. This effect, which is generated within
one convection cell, gives rise to a global force which may lead to a thermally induced drift of the walls if such
a drift was allowed.
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I. INTRODUCTION

The natural convection in a horizontal slot is typically
associated with spatially homogeneous heating applied at
the lower surface and is referred to as the Rayleigh-Bénard
(RB) convection [1,2]. It results from transition from a
conductive state of equilibrium when the critical conditions
are met [3–6]. The onset of the RB convection can be affected
by inhomogeneities in the boundary temperatures resulting in
various forms of symmetry breaking [7].

Inhomogeneous heating creates horizontal density varia-
tions which lead to motions frequently referred to as horizontal
convection [8–11]. These gradients create different vertical
pressure distributions at various horizontal locations which, in
turn, create horizontal pressure gradients. The resulting config-
urations are statically unstable resulting in the fluid movement
regardless of the intensity of the heating. Identical motions can
be generated by the same heating applied either from below or
from above if one accounts for the up-down symmetry [12].
The spatial pattern is locked in with the heating pattern but
only for small convection intensity. Higher intensities result
in secondary states which might have different patterns. There
are an uncountable number of possible heating patterns but a
systematic study and categorization of their effects are not yet
available. A complete analysis of the simplest pattern consist-
ing of sinusoidal heating with an arbitrary wavelength has been
given only recently [13] and has led to the concept of structured
convection. Such convection affects contaminant transport in
urban environments as local heating rates are determined by
the dissimilar thermal properties of roofs, streets, and parks.
It affects rural environments where local circulation is driven
by variations in the heating rates of forests, fields, and lakes.
The insulating effect of continents on the mantle convection
within the Earth represents a spatially structured convection
with heating from above [14]. Similar problems are found in
geological applications where a system of fractures, leads, and
polynyas in sea ice leads to convection in both the ocean and
atmosphere [15]. Spatial variability can also result from the
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use of mixed insulating and conducting boundary conditions;
see [16] for a good review. The heat island effect [17] provides
another example. One can further look at systems of localized
fires and prediction of their propagation [18], systems of
computer chips, thermal patterning in microfluidic devices and
so on, where combinations of the upper and lower heating are
likely to occur.

In the laminar case, one could assume that the observable
structure of convection should be the same as the pattern of
the imposed heating. This so-called primary convection may,
however, undergo transition to secondary states resulting in the
convection pattern different from the imposed heating. The
onset conditions are dictated by the interplay between two
instability mechanisms, the RB mechanism, and the spatial
parametric resonance. A detailed description of the system
response for the simplest sinusoidal heating demonstrates that
the secondary state may have either the form of longitudinal
rolls (rolls parallel to the primary rolls), or the form of trans-
verse rolls (rolls orthogonal to the primary rolls), or the form
of oblique rolls depending on the heating wave number [19]. It
has been shown that the wave number locking between primary
and secondary convection occurs under certain conditions and
that noncommensurate flow structures are possible. The same
structures are observed when the sinusoidal heating is applied
to the upper wall [12]. It is also known that a combination of pe-
riodic heating and horizontal forced convection leads to a drag
reduction through an effect similar to the superhydrophobic
effect [20]; this is referred to as the superthermohydrophobic
effect [21,22]. Combination of periodic and uniform heating
amplifies this effect [23] but its usefulness is limited by
the system instabilities, regardless of whether the heating is
applied to the lower or to the upper wall [24].

The main objective of this analysis is to study the properties
of natural convection driven by two heating patterns, one
applied at the upper wall and one at the lower wall. We focus
our attention on the simplest patterns characterized by a single
wave number, two amplitudes, and a phase shift between them.
A model problem and the relevant formulation are discussed
in Sec. II. The solution method is described in Sec. III. Results
are discussed in Sec. IV. Section V provides a short summary
of the main conclusions.
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FIG. 1. Sketch of the system configuration.

II. PROBLEM FORMULATION

Consider fluid confined between two parallel walls ex-
tending to ±∞ in the x direction and placed at a distance
2h apart from each other with the gravitational acceleration
g acting in the negative y direction, as shown in Fig. 1.
The fluid is incompressible and Newtonian with thermal
conductivity k, specific heat c, thermal diffusivity κ = k/ρc,
kinematic viscosity ν, dynamic viscosity μ, thermal expansion
coefficient � and variations of the density ρ that follow
the Boussinesq approximation. All material properties are
evaluated at the mean wall temperature TR which is used as the
reference temperature. The lower and upper walls are subject
to periodic heating with phase difference � between them,
resulting in the walls’ temperatures of the form

θL(x) = cos(αx)/2, (2.1)

θU (x) = cos(αx + �)/2, (2.2)

where subscripts L and U refer to the lower and upper
walls, respectively; θL denotes the relative temperature of
the lower wall scaled with the amplitude of its peak-to-peak
variations Tp,L, i.e., θL = (T − TR)/Tp,L; θU denotes the
similarly defined relative temperature of the upper wall; T

denotes the absolute temperature; λ = 2π/α is the wavelength
of the heating; and the half channel height h has been used as
the length scale. The horizontal temperature gradients lead to
natural convection and the resulting temperature field can be
represented as

θ (x,y) = Rap,L θ0,L(x,y) + Rap,U θ0,U (x,y) + θ1(x,y),

(2.3)

where θ0,L stands for the conductive temperature field as-
sociated with the lower wall heating, θ0,U stands for the
conductive temperature field associated with the upper wall
heating, θ1 denotes the temperature modifications associated
with convection, and θ stands for the complete temperature
field scaled with νk/(g�h3) as the temperature scale. Rap,L =
g�h3Tp,L/(νk) and Rap,U = g�h3Tp,U/(νk) are the lower and
upper periodic Rayleigh numbers expressing the intensity of
the heating applied at these walls. The present temperature
scaling is preferential for systems exposed to multiple heating
sources as it permits independent variations of each source.
Use of scaling based on the amplitude of one heating source
is suitable for systems exposed to just one source [19]; it can
be used with multiple sources but results have to be expressed
in terms of ratios of amplitudes of these sources [23].

The solution for the conductive temperature field is of the
form

θ0,L(x,y) = θ
(1)
0,L(y) eiαx + θ

(−1)
0,L (y) e−iαx,

(2.4a)
θ0,U (x,y) = θ

(1)
0,U (y) eiαx + θ

(−1)
0,U (y) e−iαx,

where

θ
(1)
0,L(y) = [−sinh(αy)/ sinh(α) + cosh(αy)/ cosh(α)]/8,

θ
(1)
0,U (y) = ei�[sinh(αy)/ sinh(α) + cosh(αy)/ cosh(α)]/8.

(2.4b)

θ
(−1)
0,L = θ

(1)∗
0,L and θ

(−1)
0,U = θ

(1)∗
0,U are the reality conditions, and

stars denote the complex conjugate. The field equations for the
stationary flow field and the temperature modifications have
the form

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ ∇2u, (2.5a)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∇2v + Pr−1θ1 + Rap,LPr−1θ0,L

+Rap,U Pr−1θ0,U , (2.5b)

u

(
Rap,L

∂θ0,L

∂x
+ Rap,U

∂θ0,U

∂x
+ ∂θ1

∂x

)

+ v

(
Rap,L

∂θ0,L

∂y
+ Rap,U

∂θ0,U

∂y
+ ∂θ1

∂y

)
= Pr−1∇2θ1,

(2.5c)

∂u

∂x
+ ∂v

∂y
= 0, (2.5d)

where (u, v) are the components of the velocity vector in
the (x, y) directions scaled with the convective velocity
scale Uv = ν/h, p denotes pressure scaled using ρU 2

v , ∇2

denotes the Laplace operator, and Pr = ν/k denotes the Prandtl
number. The boundary conditions consist of the no-slip, the
no-penetration, and the thermal boundary conditions of the
form

u(±1) = 0, v(±1) = 0, θ1(±1) = 0. (2.6)

Problems (2.5) and (2.6) have been solved by expressing
the velocity component using the stream function defined in
the usual manner, i.e., u = ∂ψ/∂y, v = −∂ψ/∂x, eliminating
pressure and using spectrally accurate discretization based
on the Fourier expansions in the horizontal direction and the
Chebyshev expansions in the vertical direction. Details can be
found in Ref. [25] together with testing of numerical accuracy.
The reader may note that introduction of the stream function
does not imply existence of the net mean flow in the horizontal
direction [22,23].

The postprocessing involves evaluation of the wall shear
stresses acting on the fluid at the upper (τU ) and lower (τL)
walls, i.e.,

τU = ∂u

∂y

∣∣∣∣
y=1

, τL = − ∂u

∂y

∣∣∣∣
y=−1

. (2.7)
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FIG. 2. Flow and temperature patterns for Rap,L = Rap,U = 200, Pr = 0.71, α = 1.6 and � = 0, 3π/4, 3.7π/4, 3.9π/4, π , 5π/4 are
displayed in (a)–(f), respectively. The thick solid lines correspond to the streamlines, and the thin solid and dashed lines correspond to the
positive and negative isotherms, respectively. Arrows show direction of the mean stress acting on the fluid. Gray dashed lines illustrate
temperature of the wall.

Their average values can be expressed as

τav,L = 1

λ

∫ λ

0

(
− ∂u

∂y

∣∣∣∣
y=−1

)
dx, (2.8a)

τav,U = 1

λ

∫ λ

0

(
∂u

∂y

∣∣∣∣
y=1

)
dx. (2.8b)

The reader may note that the flow remains stationary even
for nonzero τav,L and τav,U as it is assumed that the walls are
not allowed to move. The heat fluxes leaving the walls are
expressed in terms of the Nusselt numbers NuL and NuU for
the lower and upper walls, respectively, defined as

NuU = Rap,L

∂θ0,L

∂y

∣∣∣∣
y=1

+ Rap,U

∂θ0,U

∂y

∣∣∣∣
y=1

+ ∂θ1

∂y

∣∣∣∣
y=1

,

(2.9a)

NuL = −Rap,L

∂θ0,L

∂y

∣∣∣∣
y=−1

− Rap,L

∂θ0,U

∂y

∣∣∣∣
y=−1

− ∂θ1

∂y

∣∣∣∣
y=−1

.

(2.9b)

The net heat flux between the walls is expressed in term of
the average Nusselt number of the form

Nuav = Nuav,L = Nuav,U = 1

λ

∫ λ

0

(
− ∂θ

∂y

∣∣∣∣
y=−1

)
dx.

(2.10)
The horizontal heat fluxes along each wall can be measured

in terms of the periodic part of the heat flux leaving the heated

segment of each wall. This heat flux can be expressed in terms
of the horizontal Nusselt numbers defined as

Nuh,U = 2

λ

∫ λ/4−�/α

−λ/4−�/α

∂θ

∂y

∣∣∣∣
y=1

dx − 1

2
Nuav,U ,

(2.11)

Nuh,L = −2

λ

∫ λ/4

−λ/4

∂θ

∂y

∣∣∣∣
y=−1

dx + 1

2
Nuav,L.

III. DISCUSSION OF RESULTS

Most of the presented results have been obtained for
Pr = 0.71 as it closely approximates properties of air. Flow and
isotherm patterns for different phase shifts between the upper
and lower heating patterns are displayed in Fig. 2. Convection
consists of counter-rotating rolls of equal strength when the
hot spots are above each other [� = 0; see Fig. 2(a)] with
columns of heated fluid centered around the hot spots and
moving upwards and columns of cooled fluid centered around
the cold spots and moving downwards. Fluid elements rotate
inside cells and periodically come closer to the upper or lower
walls, facilitating the net heat transfer between the walls. Use
of the phase difference of � = 3π/4 results in rolls of unequal
strength tilted in the negative x direction [Fig. 2(b)]. The
upward moving heated fluid concentrates in the tilted columns
connecting the upper and lower hot spots, and the cooled fluid
moving downwards concentrates in tilted columns connecting
the cold spots. Further increase of the phase shift leads to an
increase of the tilting and, eventually, to a division of rolls into
two layers. The start of this process is illustrated in Fig. 2(c) for
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FIG. 3. Distributions of the local shear stress (solid and dashed lines) and its average taken over one heating wavelength (dotted lines)
acting on the fluid at the lower (a) and upper (b) walls for conditions corresponding to Fig. 2. The dashed-dotted line corresponds to the local
shear stress for � = π .

� = 3.7π/4. Part of the fluid volume is permanently trapped
inside either the upper or lower sections of the slot and, thus,
contributes little to the heat transport. The vertical, highly
tilted columns of hotter fluid moving upwards and colder fluid
moving downwards can still be recognized. The formation of
two roll layers is nearly completed at � = 3.9π/4 [Fig. 2(d)]
with most of the fluid trapped inside the new roll centers. Two
distinct roll layers exist at � = π [Fig. 2(e)] with half of the
fluid permanently trapped in the lower section of the slot and
the remaining fluid trapped in the upper section. The upper
and lower rolls rotate in the opposite directions resulting in
the formation of two layers of heated and cooled fluid, with
the zones of heated fluid in the lower layers shifted by half of
a wavelength in the horizontal directions with respect to the
heated zones in the upper layer. The location of the warmer
fluid corresponds to the upward fluid motion in both layers.
Further increase of � results in reversed changes to what
has been described above; the form of these changes can be
deduced from the horizontal periodicity conditions. The case
of � = 5π/4 is shown in Fig. 2(f) for illustration purposes.

Figure 3 illustrates distributions of the wall shear acting on
the fluid for conditions taken from Fig. 2. These distributions
have interesting features depending on how the averages are
taken. When � = 0, equal and opposite stresses act at the upper
and lower walls resulting in zero net stress at each vertical

slot section as well as zero mean stress at each wall when
averaged over the complete heating wavelength or zero mean
stress for both walls when averaged over half of the heating
wavelength. This symmetry is lost when � increases, resulting
in the appearance of a nonzero net stress at each vertical section
as well as in a nonzero mean stress at each wall when averaged
over one heating period. The latter stress acts in the negative
direction at the lower wall and in the positive direction at the
upper wall. Distributions of both stresses become identical for
� = π resulting in a nonzero net stress acting at each vertical
slot section and a nonzero mean stress at each wall when
averaged over half of the heating wavelength. Since each half
gives an opposite direction of the mean shear, their sum gives
zero average shear over the full heating wavelength. Further
increase of the phase shift until � = 2π results in similar
variations of shear but with the directions of shear reversed
when compared with their directions for 0 < � < π ; details
of these changes can be deduced from Fig. 3 with the help of
the periodicity condition. Results for � = 5π/4 are shown for
illustration purposes.

Variations of the average shear (over one heating period)
acting at each wall as a function of � are illustrated in Fig. 4(a)
for Rap,L = Rap,U = 200, 400, 1000. At the lower wall the
mean shear increases slowly from τav,L = 0 at � = 0, reaches
a maximum for π/2 < � < π , drops down to zero at � = π ,
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FIG. 4. Variations of the average shear stress acting on the fluid at the lower and the upper walls as functions of the phase shift � are
displayed in (a) with the solid lines used in the former case and the dash-dotted lines in the latter case. The maximum of the absolute value of
the stream function |ψmax| and the average Nusselt number Nuav as functions of the phase shift � are displayed in (b) with the solid lines used
in the former case and the dash-dotted lines in the latter. Variations of the horizontal Nusselt number Nuh = Nuh,U = Nuh,L as a function of
the phase shift � for Rap,L = Rap,U = 200, 400, 1000 and Pr = 0.71, α = 1.6, are shown in (c).
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TABLE I. Variations of the intensity of convection as measured by the maximum of the stream function |ψmax| as a function of the phase
shift �.

Rap,L(=Rap,U ) |ψmax(� = 0)| |ψmax(� = π )| |ψmax(� = 0)|/|ψmax(� = π )|
200 2.26 0.33 6.92
400 3.86 0.65 5.90
1000 6.81 2.59 2.68

|ψmax(Ra = 400)|/|ψmax(Ra = 200)| 1.71 2.01
|ψmax(Ra = 1000)|/|ψmax(Ra = 400)| 1.76 3.96

changes sign and follows a similar pattern for π < � < 2π

dropping again down to zero at � = 2π . The distribution of
τav,L is antisymmetric with respect to � = π as dictated by
the periodicity condition. The mean shear at the upper wall has
exactly the same magnitude and distribution but the opposite
direction. Increase of the heating intensity results in much
larger magnitudes of τav,L and τav,U with the maxima moving
closer to � = π and the appearance of very large gradients of
d(τav,L)/d� and d(τav,U )/d� in the vicinity of � = π . Use
of spatially variable heating implies heat flow along the walls.
Figure 4(c) illustrates distributions of the horizontal Nusselt
numbers Nuh,U and Nuh,L, which are the same along both
walls and exhibit minor variations as functions of �.

Existence of a nonzero mean shear leads to the generation
of a net force acting on each wall. This is an interesting
effect as convection within one cell is able to generate a
global effect reaching beyond this cell. This force, summed
over several convection cells, could add up to a sizable
magnitude and could lead to a change in the relative positions
of both walls assuming that the walls are allowed to move and
assuming that the heating patterns are fixed with respect to
each wall during such movement. We shall refer to this effect
as thermally induced drift. The directions of the forces acting
on the walls are such that the phase shift � = π corresponds
to an unstable equilibrium and the phase shifts � = 0,2π

correspond to stable equilibria. Assuming that drift is allowed,
the system will eventually end up in a position where the hot
spots are located above each other, i.e., � = 0,2π , with the
final flow topology illustrated in Fig. 2(a). Further interesting
system properties can be identified by allowing stretching
of the boundaries, e.g., boundaries formed by stretchable
membranes. For example, when � = π , membranes on both
walls are pulled in the same direction within each half heating
wavelength (τU and τL act in the same direction) while for
� = 0 they are pulled in the opposite directions (τU and τL act
in the opposite directions) (see Fig. 3).

Changes in the flow topology and the temperature field
discussed above suggest significant variations of the intensity
of convection as well as the net heat flow between the walls

as functions of �. The former can be measured using the
absolute value of the maximum of the stream function |ψmax|.
Its distributions presented in Fig. 4(b) demonstrate that the
intensity is always largest for � = 0 and smallest for � = π .
Detailed comparisons presented in Table I demonstrate a rapid
increase in the intensity of convection as Rayleigh numbers
increase, as well as its progressive equilibration between � =
0 and � = π . The resulting changes of the heat flow are also
illustrated in Fig. 4(b) using the average Nusselt number Nuav .
Detailed comparisons presented in Table II demonstrate that
an increase of the Rayleigh numbers causes a rapid increase
of Nuav as well as its equilibration between � = 0 and � = π

which underline the close connection between the net heat flow
and the intensity of convection. If the wall drift were allowed,
the system would eventually end up in a position corresponding
to � = 0 which produces the maximum net heat flow.

The above discussion is based on the results for a single
heating wavelength, i.e., α = 1.6. The effect of changing the
heating wavelength on the average shear can be deduced
from data presented in Fig. 5 for Rap,L = Rap,U = 200. The
average shear acting at the lower wall [Fig. 5(a)] has two
extrema at α ≈ 1.6, one for � = �max ,τ ≈ π/2 and another
for �max ,τ ≈ 3π/2. These extrema have the same magnitude
but opposite signs which account for the change in the
direction of rotation of the convective roll. The magnitude
of τav,L decreases to zero for both α → 0 and α → ∞; its
variations are antisymmetric with respect to � = π for all
α’s and values are negative when 0 < � < π and positive
when π < � < 2π . The average shear acting at the upper
wall has the same distribution but the opposite direction [see
Fig. 5(b)]. Variations of the maximum of the absolute value of
the stream function displayed in Fig. 6(a) demonstrate that
|ψmax| has two global maxima occurring at α ≈ 0.9, one
corresponding to �max ,ψ ≈ π/4 and one for �max ,ψ ≈ 7π/4.
An increase or decrease of α away from α ≈ 0.9 moves the
local maxima either to �max ,ψ = 0 or to �max ,ψ = 2π . The
minimum always occurs for �max ,ψ = π regardless of α and
the distribution is always symmetric with respect to � = π .
The above discussion shows that the qualitative features of

TABLE II. Variations of the average Nusselt number Nuav as a function of the phase shift �.

Rap,L(=Rap,U ) Nuav(� = 0) Nuav(� = π ) Nuav(� = 0)/Nuav(� = π )

200 30.74 3.93 7.81
400 93.71 15.81 5.88
1000 320.68 118.41 2.71

Nuav(Rap,L = 400)/Nuav(Rap,L = 200) 3.05 4.02
Nuav(Rap,L = 1000)/Nuav(Rap,L = 400) 3.42 7.49

023015-5



M. Z. HOSSAIN AND J. M. FLORYAN PHYSICAL REVIEW E 92, 023015 (2015)

(a) (b)

0.10.3 0.050.38

-0.38 -0.3 -0.1 -0.05

-0.01

0.01

0 1 2 3 4

0.2

-0.2/2

3 /2

2

0

0

-0.1-0.3 -0.05-0.38

0.38 0.3 0.1 0.05

0.01

-0.01

0 1 2 3 4

-0.2

0.2/2

3 /2

2

0

0

FIG. 5. Variations of the average wall shear stress acting on the fluid at the lower (a) and upper (b) walls as functions of the heating wave
number α and the phase shift � for Rap,L = Rap,U = 200, Pr = 0.71.

distributions of τav and |ψmax| are different as the global
maxima do not overlap. Figure 6(b) displays distribution of
Nuav . The global maxima occur for α ≈ 1.2 and correspond
to �max ,Nu = 0,2π . The heat transfer decreases to zero for
both α → 0 and α → ∞.The lowest heat flow corresponds to
� = π with distribution of Nuav being symmetric with respect
to � = π . Again, the distribution of Nuav does not correlate
well with the distributions of τav,L and |ψmax|. Variations of
Nuh(=Nuh,U = Nuh,L) illustrated in Fig. 6(c) demonstrate that
the horizontal heat flow does not change appreciably as a
function of � for all α’s except α < 1. The largest Nuh always
corresponds to �max ,Nuh

= π .
The effect of increasing the heating intensity can be

deduced by comparing distributions of τav,L, |ψmax|, and Nuav

for Rap,L = Rap,U = 200 displayed in Figs. 5 and 6 with
distributions for Rap,L = Rap,U = 400 displayed in Fig. 7
and with distributions for Rap,L = Rap,U = 1000 displayed
in Fig. 8. The maximum average wall shear moves towards
larger α’s as Ra increases with the corresponding �max ,τ

coming closer to �max ,τ = π [compare Figs. 5(a), 7(a),
and 8(a)]. At the same time, the maxima of |ψmax| move
towards smaller α’s and also come closer to �max ,ψ = π

[compare Figs. 6(a), 7(b), and 8(b)]. The maxima of Nuav

likewise move towards smaller α’s but always correspond
to �max ,Nu = 0,2π [compare Figs. 6(b), 7(c), and 8(c)].
Conditions resulting in the largest average shear, the most
intense convection, and the largest heat flow do not correlate

well with each other in the (α, �) plane for all Ra’s
considered.

Figure 9 illustrates the properties of the system for different
heating intensities applied at each wall. The lower wall has
a constant heating corresponding to (i) Rap,L = 500 and
(ii) Rap,L = 1000 while heating of the upper wall gradually
increases. The average wall shear stress is zero at each wall
when only one wall is heated [see Figs. 9(a) and 9(c)].
The magnitude of τav increases with an increase of Rap,U ,
the increase is the same at both walls, and τav reaches the
maximum when Rap,U reaches the largest value considered.
The phase shift, which produces the highest τav , changes from
� ≈ π/2 for small Rap,U to � ≈ 2π/3 at Rap,U = 1000 when
Rap,L = 500, and to � ≈ 9π/10 when Rap,L = 1000. The
phase shift which produces the maximum τav for π < � < 2π

can be determined from the antisymmetry conditions. The
evolution of |ψmax| as a function of Rap,U is illustrated in
Figs. 9(b) and 9(d). |ψmax| for heating applied at one wall
provides the reference point. When Rap,L = 1000, an increase
of Rap,U results in a decrease of the convection intensity for a
range of � centered around � ≈ π and an increase everywhere
else with the largest increase taking place for � = 5π/18.
When Rap,L = 500, an increase of Rap,U results in an increase
of convection intensity for all � with the largest one taking
place when � = 2π/9. Detailed data are given in Table III.The
same figures illustrate changes of Nuav as a function of Rap,U

with the reference point given by Nuav for one wall being
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TABLE III. Variations of the intensity of convection as measured by the maximum of the stream functions |ψmax| and the average Nusselt
number Nuav as functions of the phase shift � and the upper periodic Rayleigh number Rap,U for the fixed lower periodic number Rap,L.

Rap,L Rap,U τav(� = 9π/10) |ψmax(� = π )| |ψmax(� = 5π/18)| Nuav(� = π ) Nuav(� = 0)

1000 0 0 4.91 4.91 156.11 156.11
1000 4.17 2.59 7.18 100.99 320.68
% change N/A −42.7 +46.1 −35.3 +105.7

Rap,L Rap,U τav(� = 2π/3) |ψmax(� = π )| |ψmax(� = 2π/9)| Nuav(� = π ) Nuav(� = 0)
500 0 0 2.92 2.92 53.51 53.51

1000 2.18 4.06 6.03 118.95 227.73
% change N/A +39.0 +106.5 +122.3 +325.6

heated. When Rap,L = 1000, the heat flow decreases for a
range of � centered around � ≈ π and increases everywhere
else with the largest increase taking place for � = 0 regardless
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stream function |ψmax| (b), and the average Nusselt number Nuav (c)
as functions of the Prandtl number Pr and the phase shift � for the
heating wave number α = 1.6 and Rap,L = Rap,U = 200.

of the value of Rap,L. When Rap,L = 500, an increase of
Rap,U results in an increase of Nuav for all � with the largest
one taking place when � = 0. Detailed data are presented
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in Table III. These results demonstrate that changes of all
quantities become more extreme with an increase of Rap,L.

The results discussed above deal with fluids with Pr = 0.71.
The effect of changes of the fluid thermophysical properties
can be deduced from data presented in Figs. 10 and 11.
The basic features of the convection remain the same at
any value of the Prandtl number. The magnitude of the
average stress increases as Pr decreases as documented in
Fig. 10(a). This is the result of an increase of the intensity of
convection with reduction of Pr as documented in Fig. 10(b).
The net heat transfer decreases with a decrease of Pr as
changes in the temperature field induced by convection are less
important when compared with the conductive component of
the temperature field, as documented in Fig. 10(c). All these
processes are approximately similar in the range of Rayleigh
numbers considered in this study, with the more extreme values
found for higher Ra’s, as documented in Fig. 11.

IV. SUMMARY

Natural convection in a horizontal slot subject to periodic
heating applied at the upper and lower walls has been analyzed.
The upper heating has been shifted with respect to the lower
heating by a phase shift �. The fluid properties have been
represented using the Boussinesq approximation. The system
dynamics are parametrized by the amplitudes of the upper
and lower heatings expressed in terms of the lower and

upper Rayleigh numbers, i.e., Rap,L and Rap,U , the heating
wavelength λ = 2π/α, and the phase shift �. A significant
change in the convection pattern has been observed as �

varies from 0 to 2π . This pattern generally consists of one
layer of pairs of counter-rotating rolls but morphs into two
layers for � ≈ π . Changes of � result in significant variations
in the intensity of convection, with the weakest convection
corresponding to � = π and the strongest convection taking
place for � closest to 0 and 2π . This convection creates a
wall shear stress with a nonzero mean for all phase shifts
except � = 0, π , 2π . The mean shear, when summed over
several heating wavelengths, may lead to the generation of
a sizable force which could lead to a drift in the relative
position of both walls. This effect, which is referred to as
the thermally induced drift, demonstrates the ability of a
single convection cell to create a global force. Changes of
� also lead to changes in the net heat flow between the
walls, with the smallest heat flow occurring for � = π and
the largest for � = 0, 2π . The properties of the convective
system remain qualitatively similar for all values of the Prandtl
number, with the mean shear and the convection intensity
increasing and the net heat flow decreasing with reduction
of Pr.
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