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Self-similar rupture of thin free films of power-law fluids
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The rupture of a thin free film of a power-law fluid under the competing influences of destabilizing van der
Waals pressure and stabilizing surface tension pressure is analyzed. In such a fluid, viscosity decreases with the
deformation rate raised to the n − 1 power where 0 < n � 1 (n = 1 for a Newtonian fluid). When 6/7 < n � 1,
film rupture occurs under a balance between van der Waals pressure, inertial stress, and viscous stress. When
n < 6/7, however, the dominant balance changes: Viscous stress becomes negligible and the film ruptures under
the competition between van der Waals pressure, inertial stress, and surface tension pressure.
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I. INTRODUCTION

The dynamics of thin films is important in technology and
nature [1,2]. Both free films, or sheets, where the film has two
free surfaces (Fig. 1) [3–7], and supported films, where the
film lies on a solid substrate and has a single free surface [8,9],
are of interest. In the former, the intermolecular van der Waals
attraction between the molecules in the film and, in the latter,
the van der Waals attraction between the molecules in the film
and the solid can cause the film to rupture despite the stabilizing
influence of surface tension. The van der Waals attraction in
free films is the key effect by which foams collapse and two
drops coalesce [10–12]. Similarly, van der Waals attraction in
supported films is central to film rupture and the formation of
dry spots in coating and heat transfer applications [13–17].

The study of the dynamics of free films has been of
interest since at least the publication of Ref. [18]. Recent
work has focused on the self-similar dynamics and finite time
singularities that arise during film rupture [6]. In this paper, the
nonlinear dynamics leading to the rupture of a thin free film of
a power-law fluid is analyzed. If the two flat surfaces of a thin
liquid film, of constant thickness 2h0, are subjected to static
shape deformations that are symmetric about the midplane
of the unperturbed sheet that lies in the xz plane, and the
perturbations are translationally symmetric in the x direction
so that the shape of one of the two interfaces between the liquid
film and the surrounding gas can be represented as y = h(z),
the pressure in a nearly flat static film is given by

p = A

6π (2h)3
− σ

∂2h

∂z2
, (1)

where A is the Hamaker constant, σ is the surface tension, the
pressure in the gas is taken as the pressure datum, and the effect
of gravity is neglected on account of the film’s thinness. Thus,
as is well known, the van der Waals pressure (the first term) is
destabilizing because it would cause flow from the neck toward
the swell, whereas surface tension or capillary pressure (the
second term) is stabilizing because it would cause flow from
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the swell toward the neck. If the perturbation is a sinusoidal
deformation of wavelength λ and small amplitude ε � 1,

h = h0

[
1 − ε cos

(
2πz

λ

)]
, (2)

it is readily shown from a simple pressure driving force
argument or a more sophisticated linear stability analysis
[6] that disturbances of wavelengths exceeding a criti-
cal value λc = 8π3/2σ 1/2h2

0/A
1/2 = 8π3/2h2

0/d are unstable,
where d ≡ (A/σ )1/2 is the molecular length scale. For a
continuum approach to be valid, h0 � d. Thus, λc � h0 and
the instability is a long-wavelength one. Vaynblat et al. [6]
used the long-wavelength approximation to derive a set of
one-dimensional (1D) equations to analyze the thinning and
rupture of thin films of Newtonian fluids, and showed that
the dominant physical balance is between inertial, viscous,
and van der Waals stresses, while surface tension stress is
negligible. These authors further showed that the film thickness
h, lateral scale z′ ≡ z − zR , where z = zR is the lateral location
where the film ruptures, and lateral velocity v vary with time
remaining to rupture τ ≡ tR − t , where tR is the time t at
which the film ruptures, as h ∼ τ 1/3, z′ ∼ τ 1/2, and v ∼ τ−1/2.
If, however, the film is supported on a substrate, both the
dominant balance and the scaling exponents differ from the
situation just discussed, as shown in Ref. [9].

Many fluids in emerging applications involving free surface
flows of films, jets, and drops are non-Newtonian [19–21].
One important type of non-Newtonian fluid is a so-called
power-law fluid. In contrast to a Newtonian fluid that has
a constant viscosity μ0, the viscosity μ of a power-law fluid
varies with deformation rate as μ = μ0|2mγ̇ |n−1. Here, μ0, the
zero-deformation-rate viscosity, and m−1, the characteristic
deformation rate, are constants, 0 < n � 1 is the power-law
exponent (n = 1 corresponds to a Newtonian fluid), and γ̇

is the second invariant of the rate-of-deformation tensor D:
γ̇ = [1/2(D : D)]1/2 and D = 1/2[∇v + (∇v)T ], where v is
the velocity. The goal of this work is to analyze the rupture of
thin films of power-law fluids. Of particular relevance to the
present paper are theoretical studies of pinch-off of cylindrical
liquid threads of power-law fluids [22–25] which exhibit even
richer behavior than their Newtonian counterparts [26–28].
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FIG. 1. (Color online) A liquid film: Perspective view (top) and
cross-sectional view showing the problem domain (bottom).

Some of the predicted behaviors have been confirmed by
recent experiments [20,21]. A noteworthy finding of these
studies is that when 1 � n > nc, where nc is a critical value
of n, liquid threads pinch off under a balance of inertial,
viscous, and surface tension forces, but when n < nc, a thread
pinches off as if it were an inviscid fluid of zero viscosity.
Motivated by this result, we investigate whether a similar
change of scaling behavior can occur during the rupture of thin
films of power-law fluids. Unfortunately, previous attempts
to study power-law film rupture have involved simplifying
assumptions, such as neglecting inertia in both film rupture
on a planar substrate [29] and that on a solid cylinder [30], or
entirely omitting nonlinear effects [31].

The rupture of a thin liquid film, as in pinch-off of a
liquid thread, gives rise to a finite time singularity in the
governing equations. The dynamics close in time and space
to the singularity is expected to be universal and hence
independent of the boundary and initial conditions. The goals
are to examine the self-similar evolution of the film toward the
space-time singularity, determine scaling exponents governing
the time evolution of film thickness and other relevant problem
variables, and construct similarity profiles for the interface
shapes.

The paper is organized as follows. In the next section, the
transient partial differential equations (PDEs) that govern the
film profile and the velocity within the film are presented. In
Sec. III, the forms of the similarity solutions are deduced by
dominant balance type arguments, and the transient PDEs are
solved numerically to obtain the time evolution of the film
profile and the velocity field within the film. The results from
time dependent simulations are also shown in Sec. III to agree
well with the similarity solutions. Concluding remarks are then
presented in Sec. IV.

II. PROBLEM STATEMENT

The system is a free film of a power-law fluid of initial
thickness 2h0 and constant density ρ, as shown in Fig. 1.
The film is disturbed by a laterally periodic perturbation of
wavelength λ � h0 (typically, λ/h0 ≈ 105). In this paper, only

line rupture of the film is analyzed so that the instantaneous
shape of the interface is described as y = h(z,t). The long-
wavelength nature of the problem can be taken advantage of
by reducing the governing Cauchy momentum and continuity
equations, subject to the traction and kinematic boundary
conditions at the film-ambient gas interface, to a set of 1D
evolution equations for the interface shape h and lateral
velocity v. It also proves convenient to render the problem
statement dimensionless by using as the characteristic film
thickness hc = h0, lateral length scale lc = (48πh3

0μ
2
0/ρA)

1/2
,

time scale tc = ρl2
c /μ0, velocity scale vc = lc/tc, and viscosity

scale μc = μ0 so that the dimensionless shape function,
lateral length, time, velocity, and viscosity are given by
h̃ ≡ h/hc, z̃ ≡ z/lc, t̃ ≡ t/tc, ṽ ≡ v/vc, and μ̃ ≡ μ/μc. The
dimensionless set of 1D evolution equations governing the
sheet half-thickness and lateral velocity are given by

∂h

∂t
+ ∂(hv)

∂z
= 0, (3)

∂v

∂t
+ v

∂v

∂z
= S

∂3h

∂z3
− ∂(h−3)

∂z
+ 4

h

∂

∂z

(
μh

∂v

∂z

)
, (4)

where the dimensionless viscosity μ = |2m ∂v/∂z|n−1. In
these equations and henceforward, the tildes over the di-
mensionless variables are omitted for clarity. Also in these
equations, S ≡ ρh0σ/μ2

0 is a dimensionless parameter that
equals the product of inertial and surface tension forces divided
by viscous force squared. The reciprocal of S equals the square
of the Ohnesorge number Oh.

III. DOMINANT BALANCES, SIMILARITY SOLUTIONS,
AND NUMERICAL SIMULATIONS

A. Power-law fluids of 6/7 < n � 1

As the singularity (zR,tR) is approached, the film profile
and lateral velocity are expected to be described by similarity
solutions of the form

h(z′,τ ) = ταH (ξ ), v(z′,τ ) = τ γ U (ξ ), ξ = z′/τβ, (5)

where τ = tR − t is the dimensionless time to rupture, z′ =
z − zR is the lateral extent of the rupture zone, and ξ is the
similarity variable. Here, α, γ , and β are scaling exponents
and H and U are scaling functions that are to be determined.
Substitution of the similarity solutions [Eq. (5)] into the 1D
mass balance [Eq. (3)] and enforcing that the resulting equation
is independent of time or carrying out a kinematic balance of
the terms in that equation gives γ − β = −1. Doing the same
with the 1D momentum balance [Eq. (4)] or carrying out a
dynamical balance of the terms in that equation reveals that the
dominant balance is between the van der Waals, viscous, and
inertial forces, with the surface tension force being negligible,
and that

α = n/3, γ = −n/2, β = 1 − n/2. (6)

With these exponents, it is readily seen that the van der Waals,
viscous, and inertial terms in the 1D momentum equation all
blow up as τ−n/2−1, whereas the surface tension term blows
up as τ 11n/6−3. From the viscosity relation, it follows that
μ ∼ τ 1−n ∼ h3(1−n)/n. In the Newtonian limit (n = 1), the
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FIG. 2. (Color online) Scaling behaviors when n = 0.94 of (a)
minimum film thickness hmin, (b) lateral length scale z′, (c) lateral
velocity v′, and (d) viscosity μ′. The straight lines are the theoretical
predictions and data points show simulation results. In this figure and
the next, S = 3/(2π 2) and m = 1.

scaling exponents take on the values α = 1/3, γ = −1/2, and
β = 1/2, in accord with prior work [6], and the dominant
terms all blow up as τ−3/2, whereas the slower growing surface
tension term blows up as τ−7/6.

The 1D evolution equations were next solved numerically
[22,24]. Figure 2 shows the results of such simulations when
n = 0.94. The simulation results show that the variation with
τ of the computed value of the minimum film thickness hmin ≡
h(z = 0,t) is in excellent agreement with the theoretically
predicted variation hmin ∼ τn/3 ≡ τ 0.3133... [Fig. 1(a)]. To
evaluate the lateral scale from simulation data, the variation
with τ of the z coordinate of a point located on the interface
for which the film thickness equals a multiple of hmin is
monitored. Once again, the computed variation of z′ with τ

is seen to be in excellent accord with the theoretical prediction
of z′ ∼ τ 0.53 [Fig. 1(b)]. The simulations further show that
the variation with τ of the lateral velocity v′ calculated at z′
is in excellent agreement with the theoretical prediction of
v′ ∼ τ−0.47 [Fig. 1(c)]. Finally, evaluating the variation with τ

of the viscosity μ′ at z′ but then recasting this variation as μ′ vs
hmin demonstrates that the computed prediction accords well
with the theoretical prediction of μ′ ∼ h

3(1−n)/n
min ≡ h0.1914...

min
[Fig. 1(d)].

The scaling exponents in Eq. (6) can be used to collapse
transient film profiles obtained from simulations. Since h =
τn/3H (ξ ) and ξ = (z − zR)/τ 1−n/2 (with zR = 0), Fig. 3
shows the variation of the scaled interface profile h/hmin

with the scaled lateral coordinate z/h
3(1/n−1/2)
min . Figure 3

demonstrates that the computed scaled shapes tend to a
similarity profile as hmin → 0.

Examining the variation with τ of the four forces as a
function of the power-law exponent n reveals that when

z/hmin
3(1/n - 1/2)
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FIG. 3. (Color online) Transient film profiles scaled by minimum
film thickness as a function of the scaled lateral coordinate show
the approach to the similarity profile as hmin → 0. For each profile
depicted at successively smaller values of hmin, hmin is roughly half
that of the previously shown profile. Here, n = 0.94.

n = 6/7, all the terms in the 1D momentum equation blow
up as τ−10/7. Therefore, the surface tension force is negligible
and the scaling exponents have the values given in Eq. (6) only
when 6/7 < n � 1.

B. Power-law fluids of n < 6/7

Because the rate at which viscosity falls with decreasing
film thickness rises as n decreases, it is anticipated that viscous
force may become less important compared to the other three
forces when n < 6/7. In anticipation of the different balance of
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FIG. 4. (Color online) Scaling behaviors when n = 0.60 of (a)
minimum film thickness hmin, (b) lateral length scale z′, (c) lateral
velocity v′, and (d) viscosity μ′. The straight lines are the theoretical
predictions and data points show simulation results. In this figure and
the next, Oh = √

(2/3)π and m = 1.
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FIG. 5. (Color online) Transient film profiles scaled by minimum
film thickness as a function of the scaled lateral coordinate show
the approach to the similarity profile as hmin → 0. For each profile
depicted at successively smaller values of hmin, hmin is roughly half
that of the previously shown profile. Here, n = 0.60.

forces, the governing equations are rescaled using as a charac-
teristic length scale lc = (48πh4

0σ/A)1/2 and as a characteristic
time tc = (ρl4

c /σh0)1/2. This nondimensionalization leaves the
1D mass balance and the viscosity relation unchanged, but
modifies the 1D momentum balance such that the surface
tension term is now multiplied by one but the viscous term
by Oh.

Carrying out the kinematical and the dynamical balance
arguments once again reveals that the scaling exponents when
n < 6/7 are given by

α = 2/7, γ = −3/7, β = 4/7. (7)

With these exponents, it is readily seen that the van der
Waals, surface tension, and inertial terms in the 1D momentum
equation all blow up as τ−10/7, whereas the viscous term blows
up as τ−n−4/7 = τ−10/7+(6/7−n). From the viscosity relation,
it follows that μ ∼ τ 1−n ∼ h7(1−n)/2, as when n > 6/7. The
1D evolution equations were then solved numerically once
again. Figure 4 shows the results of such simulations when
n = 0.6. The simulation results show that the variation with
τ of the computed value of the minimum film thickness
hmin, the lateral extent z′ of the rupture region, the lateral
velocity v′, and viscosity μ′ are in excellent agreement with
the theoretical predictions [Eq. (7)]. The scaling exponents
reported in Eq. (7) are also used to collapse transient film
profiles obtained from simulations. Since h = τ 2/7H (ξ ) and
ξ = (z − zR)/τ 4/7 (with zR = 0), Fig. 5 shows the variation
of the scaled interface profile h/hmin with the scaled lateral
coordinate z/h2

min. Figure 5 demonstrates that the computed
shapes tend to a similarity profile as hmin → 0.

IV. CONCLUSIONS

At the onset of the initial instability, the aspect ratio of
the film ε ≡ h0/l0 < d/h0 � 1, where h0 and l0 are the
initial film thickness and the initial lateral extent of the film,
and d is the molecular length scale. However, given the
exponents of the characteristic length scales obtained in this
paper, the local slope of the interface diverges as rupture is
approached. Therefore, the long-wavelength assumption on
which the governing equations (3) and (4) are based may
potentially be violated prior to film rupture. It will now
be demonstrated, however, that molecular length scales are
reached first before the long-wavelength assumption fails. In
terms of dimensional variables, the continuum approximation
fails when the dimensional value of half the minimum film
thickness hmin(t) ≈ d.

When n < 6/7, the film thickness varies as h ∼ τ 2/7 and
the lateral length scale as l ∼ τ 4/7. Therefore, the aspect
ratio of the film varies as ετ−2/7. The aspect ratio reaches
order unity when the film thickness and the lateral length
scale are of order εh0 < d. Thus, in this case, the contin-
uum approximation breaks down before the long-wavelength
approximation.

When 6/7 < n � 1, the film thickness varies as h ∼
τn/3 and the lateral length scale as l ∼ τ 1−n/2. Therefore,
the aspect ratio of the film varies as ετ 5n/6−1. The aspect
ratio reaches order unity when the film thickness and the
lateral length scale are of order h0ε

2n/(6−5n). When n = 1
(Newtonian fluid), the film aspect ratio becomes order one
when both length scales are of order d2/h0 � d. When
n = 6/7 + δ where δ � 1, the film aspect ratio becomes order
one when both length scales are of order d(d/h0)49δ/12 <

dε49δ/12 < d. Thus, regardless of the value of n, the contin-
uum approximation breaks down before the long-wavelength
approximation.

The results reported here can be extended to analyze the
case of so-called point rupture where the scaling exponents
turn out to be identical to the ones reported here [32].
Furthermore, in both cases, the similarity solutions H (ξ ) and
U (ξ ) can be determined directly by solving a set of ordinary
differential equations in similarity space [32]. Aside from
their intrinsic theoretical value, improved understanding of
thread pinch-off [22–25] and film rupture singularities (this
paper), and associated self-similar behavior during thinning,
also hold the potential for creating improved cutoff schemes
in large-scale simulations of drop breakup and coalescence
[11,19] involving power-law fluids.
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