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Saturation of the turbulent dynamo
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The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via
turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This
process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical
Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth
rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to
turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a
scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover
time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the
Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger
spatial scales. This process ends when the peak reaches a characteristic wave number k� which is determined by
the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence
and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation
levels between 43.8% and 1.3% for Pm � 1 and between 2.43% and 0.135% for Pm � 1, where the higher
values refer to incompressible turbulence and the lower ones to highly compressible turbulence.
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I. INTRODUCTION

Magnetic fields play an important role in shaping the
Universe. For understanding the formation of stars and
galaxies it is thus crucial to know the strength of magnetic
fields, their distribution in space, and their evolution in time.
Observations in the local Universe indicate that magnetic fields
are strong. In fact, the energy density of magnetic fields is
often comparable to the thermal one and the one of cosmic
rays, at least on spatial scales above 1 kpc [1]—a phenomenon
known as energy equipartition. Moreover, magnetic fields are
observed over a huge range of scales from planets [2] and
stars [3] to interstellar clouds [4], galaxies [5], and potentially
the intergalactic medium [6].

Generation of magnetic fields is possible already in the early
Universe [7]. During inflation tiny magnetic fluctuations could
expand into large-scale magnetic fields. However, with flux
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freezing in the cosmic expansion the field strength decreases
rapidly leading to very weak seed fields [8]. Likewise other
generation mechanisms produce extremely weak magnetic
fields, as for example field generation in cosmological phase
transitions [9,10]. Opposed to the cosmological origin of seed
fields, they can also be generated in plasma processes like
batteries. For instance the Biermann battery [11] can produce
fields of the order of 10−25–10−24 G on a comoving scale
of 10 kpc [12] which is roughly 20 orders of magnitude
below the 10−5 G fields observed in present-day galaxies [13].
A recent study by Schlickeiser [14] suggests that aperiodic
plasma fluctuations can result in magnetic fields of the order
of 10−16 G in the intergalactic medium and 10−10 G in a
protogalaxy. Thus, magnetic seed fields need to be amplified
very efficiently during the evolution of the Universe.

Let us assume that the intergalactic medium has a field
strength of B1 = 10−20 G and a number density of n1 =
10−6 cm−3. Under the condition of flux freezing, the field
strength increases only to a value of B2 = (n1/n2)−2/3B1 =
10−16 G in spherical gravitational collapse during the
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formation of a galaxy with a number density of n2 = 1 cm−3.
Pure compression of the field lines during the collapse of a
halo is thus insufficient to amplify these weak seed fields.
Another possible amplification mechanism is a large-scale
galactic dynamo that converts the kinetic energy from the
galactic rotation into magnetic energy and simultaneously
orders the fields [15]. However, this process operates on long
time scales comparable to the one of galactic rotation. In
order to explain the observed magnetic fields in galaxies, the
large-scale dynamo would require stronger seed fields than
predicted by the generation mechanisms discussed above.

There is probably only one universal mechanism by which
the tiny seed fields can be amplified to the observed present-day
galactic values: the small-scale or turbulent dynamo. This type
of dynamo converts kinetic energy from turbulent motions into
magnetic energy by randomly stretching, twisting, and folding
the field lines. As the turbulent dynamo operates initially on
very small spatial scales, in fact on the diffusive scales, it
is associated with very short time scales. In the kinematic
dynamo phase the magnetic energy grows exponentially at
large growth rates �k, increasing the magnetic energy on small
spatial scales by many orders of magnitude. Subramanian [16]
is one of the first authors who discusses the turbulent dynamo
as a crucial ingredient for generating strong magnetic fields
in galaxies. He argues that the latter needs to operate to
provide a sufficiently strong seed field for a large-scale
galactic dynamo which in turn provides an explanation for
the origin of the observed fields correlated over kpc length
scales. Recent semianalytical calculations [17] as well as
numerical simulations [18] suggest indeed that the turbulent
dynamo operates efficiently already in young galaxies leading
to unordered fields with a strength of the order of 10−5 G.

It has been shown that the turbulent dynamo operates under
a large range of different physical conditions as long as the
magnetic Reynolds number

Rm = V L

η
(1)

exceeds a critical value Rmcrit. Here V is the velocity on the
forcing scale L of turbulence and η is the magnetic diffusivity.
Dynamo amplification is possible from very small [19–23] to
very large [24–26]1 magnetic Prandtl numbers

Pm = ν

η
= Rm

Re
, (2)

where ν is the viscosity and

Re = V L

ν
(3)

is the hydrodynamic Reynolds number. Pm describes the
separation between the viscous and the resistive scale,

�ν = Re−1/(1+ϑ)L (4)

and

�η = Rm−1/(1+ϑ)L, (5)

1We refer here to Ref. [24] as it includes a derivation of the
Kazantsev theory for the turbulent dynamo as well as technical details
on the calculation of the kinematic growth rate.

and can be written as Pm = (�ν/�η)1+ϑ with ϑ being the
slope of the turbulence spectrum in the inertial range. The
amplification process is fundamentally different for the two
extreme cases of the Prandtl number. For Pm � 1 the
dynamo operates fastest on �ν leading to a growth rate
of �k ∝ Re(1−ϑ)/(1+ϑ) [26]. Amplification for the case of
Pm � 1 is most efficient on �η with a growth rate of �k ∝
Rm(1−ϑ)/(1+ϑ) [23]. Note that there is a strong dependence
on the turbulence spectrum via its slope ϑ which differs for
different types of turbulence. While small-scale dynamo action
is most efficient in incompressible Kolmogorov turbulence
with ϑ = 1/3 [27], it has been demonstrated that the dynamo
can also operate in supersonic turbulence [23,25,26,28,29],
i.e., in the regime of high Mach numbers, where the gas is
compressible and ϑ can reach values up to 1/2 for Burgers-
type turbulence [30].

As soon as the fields have significant back reactions on the
fluid via the Lorentz force, the peak of the magnetic energy
spectrum is shifted to larger spatial scales in the nonlinear
dynamo phase. This modification of the spectrum can be
explained by an increase of the magnetic diffusivity. Subra-
manian [31] models an effective diffusivity which depends
on the magnetic energy density and a response time scale.
With the assumption that the latter is the eddy turnover time
we can calculate the diffusion rate on a given spatial scale.
Dynamo amplification comes to an end when the diffusion
rate equals the growth rate. The magnetic energy continues
to increase on larger spatial scales via stretching, twisting,
and folding by larger turbulent eddies shifting the peak of
the spectrum [32]. Saturation of the dynamo occurs when the
spectral peak reaches a maximum spatial scale which is in our
model determined by an intrinsic property of dynamo action,
the critical magnetic Reynolds number Rmcrit. We note that an
alternative approach has been suggested in literature [33] that
models saturation as a result of the velocity statistics becoming
anisotropic with respect to the local magnetic field.

The fraction of kinetic energy that is converted into
magnetic energy by the turbulent dynamo, the saturation level,
has been estimated from magnetohydrodynamical (MHD)
numerical simulations. For incompressible Kolmogorov-like
turbulence, the saturation levels are typically 40% [34,35].
In the large Mach number regime, where the gas is highly
compressible, Federrath et al. [29] find considerably lower val-
ues between 6 × 10−2% and 1% depending on the numerical
parameters of the simulations. In this paper we aim to compare
these and other numerical results from the literature with a
phenomenological model for the saturation of the turbulent
dynamo.

The paper is organized as follows: After a brief review
on the dynamo in its different phases, the kinematic and the
nonlinear phase, in Sec. II, we introduce our phenomenological
model of the saturation process in Sec. III. We model the
behavior of the magnetic diffusivity η which changes to
an effective diffusivity ηeff in the presence of a strong
magnetic field and we discuss the consequences of this for the
resistive scale �η, and the effective magnetic Reynolds number
Rmeff = V L/ηeff . Dynamo amplification shows fundamental
differences for the regime of large and small magnetic Prandtl
numbers. Thus, we discuss the two extreme cases separately
in Secs. III B and III C. In Sec. III D we analyze the saturation
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FIG. 1. (Color online) An illustration of the amplification of
magnetic fields and the resulting transport of magnetic energy to
subviscous scales. Motions of the fluid on the viscous scale �ν

stretch and bend the magnetic field lines to scales � < �ν . This way
antiparallel field lines are brought closer together and the magnetic
energy eventually accumulates on the resistive scale �η.

of the turbulent dynamo for typical parameters of numerical
simulations in order to make a direct comparison. We draw
our conclusion in Sec. IV.

II. AMPLIFICATION OF RANDOM MAGNETIC FIELDS

The turbulent dynamo amplifies magnetic fields by ran-
domly stretching, twisting, and folding the field lines in
turbulent motions under the condition of flux freezing. This
mechanism is most efficient on the smallest spatial scales of
the system which have the shortest eddy turnover time scales.

For large magnetic Prandtl numbers Pm, amplification is
fastest on the viscous scale �ν given in (4), where turbulent
eddies are the smallest and the fastest. In fact, the magnetic
energy can even be transported below the viscous scale of
the system and accumulates on the resistive scale �η given
in (5). This mechanism is illustrated in Fig. 1: While the
turbulent eddies stretch, twist, and fold the magnetic field
on a scale �ν , the field lines are brought closer together on
spatial scales � < �ν within multiple stretching processes.
This way magnetic energy is transported down to the resistive
scale �η below which it dissipates. For the contrary extreme
of small magnetic Prandtl numbers, Pm � 1, the resistive
scale is above the viscous scale. In this case the dynamo
operates fastest on �η and is restricted by the turnover rate
of the turbulent eddies on that scale. With �η � �ν the typical
dynamo time scales are larger for small Prandtl numbers and
we expect the dynamo to be less efficient.

A. Kinematic dynamo phase

The time evolution of the magnetic field is governed by the
induction equation,

∂ Btot

∂t
= ∇ × (vtot × Btot) + η∇2 Btot, (6)

which relates the total field strength Btot to the velocity field
vtot and the magnetic diffusivity η. By separating the mean
from the turbulent components, i.e., vtot = 〈v〉 + v and Btot =
〈B〉 + B, one can derive evolution equations for the mean field
and the turbulent dynamo.

An analytical treatment of the turbulent dynamo is possi-
ble within the framework of the Kazantsev theory [15,36].
A central assumption of this model is that turbulence is

incompressible, where the velocity fluctuations v scale with
the eddy size � as v ∝ �1/3. However, in astrophysical envi-
ronments turbulence is usually driven by high Mach number
flows leading to a different scaling [37–44]. In this work
we use

v ∝ �ϑ ∝ k−ϑ (7)

with � ≡ 2π/k, where k is the wave number,2 and the
free parameter ϑ ranging from 1/3 [27] up to 1/2 for
highly compressible turbulence [30,45]. Being interested in
the statistical properties of the turbulent dynamo, we model
the two-point correlation function 〈vi(r1,t)vj (r2,s)〉 of the
fluctuating velocity field for a general type of turbulence
which enters via the variable ϑ . The spatial positions r1 and
r2 are related by � = |r2 − r1|. If the correlation function
of the magnetic field 〈Bi(r1,t)Bj (r2,t)〉 is rewritten with a
separation ansatz proportional to ψ(r)exp(2�t), the growth
rate � is governed by the Kazantsev equation [36],

−κdiff(�)
d2ψ(�)

d2r
+ U (�)ψ(�) = −�kψ(�). (8)

The functions κdiff(r) and U (r) depend on 〈vi(r1,t)vj (r2,s)〉
and η. With a model for the velocity correlation function
one finds generalized expressions for κdiff(r) and U (r). The
Kazantsev equation can be solved analytically in the limits of
large and small magnetic Prandtl numbers (2) with the result
of [23,26]

�k =
{

γk,Pm�1
V
L

Re(1−ϑ)/(1+ϑ), Pm � 1,

γk,Pm�1
V
L

Rm(1−ϑ)/(1+ϑ), Pm � 1,
(9)

with the proportionality constants

γk,Pm�1 = 304ϑ + 163

60
(10)

for large magnetic Prandtl numbers, and

γk,Pm�1 = g1ϑ

5
exp

(√
5

3g1ϑ
π (ϑ − 1) − 2

)

×
⎛
⎝

√
135g1ϑ + g2

2 − g2

g1ϑ

⎞
⎠

(ϑ−1)/(ϑ+1)

, (11)

with g1 = 56 − 103ϑ and g2 = (79 − 157ϑ)ϑ − 25 for small
Prandtl numbers. The numerical values of these propor-
tionality constants are γk,Pm�1 = 4.41 − 5.25 and γk,Pm�1 =
0.0268 − 0.00543 for the slopes of the turbulence spectrum
ϑ = 1/3 − 1/2. These solutions agree well with numerical
solutions of Eq. (8) [46].

We note that various assumptions are made in the Kazantsev
theory [36]. One simplification is that the turbulent velocity
field is δ-correlated in time. Bhat and Subramanian [47] drop
this assumption and derive a generalized Kazantsev equation
for a finite correlation time τcorr. The resulting growth rates

2We note that we will analyze the spectra in the following mainly
in Fourier space. Here we use the word “scale” as well for wave
numbers k as for spatial length scales �.
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are reduced by a factor 45/56τcorr. In the classical Kazantsev
model there is neither kinetic nor magnetic helicity included
which would appear as an additional term in the correlation
functions. Malyshkin and Boldyrev [48] study the influence of
kinetic helicity on small-scale dynamo amplification and find
that it does not affect the fastest growing bound eigenmodes
by much for incompressible turbulence.

B. Nonlinear dynamo evolution

With the exponential growth, the fluctuating magnetic field
quickly becomes strong enough to influence the velocity field
via the Lorentz force. Then amplification on the dissipative
scale comes to an end and the magnetic energy is shifted
to larger spatial scales, typically on the eddy time scale of
the current peak scale [32]. The growth rate in this so-called
nonlinear phase is given as

�nl = γnl
v(k)

2πk−1
, (12)

where we determine the free parameter γnl self-consistently in
the following. The evolution of the magnetic field strength on
the forcing scale is now independent of the Reynolds numbers,
but still depends on the slope of the turbulence spectrum ϑ .
Schleicher et al. [49] find that the field strength on the turbulent
forcing scale evolves proportional to tϑ/(1−ϑ).

III. FLOW OF ENERGY OVER SPATIAL SCALES AND
SATURATION OF TURBULENT DYNAMO

At some point the strength of the magnetic back reactions
on the velocity field via the Lorentz force is comparable to the
dynamo amplification. When this is the case on all scales of
the system, the magnetic field amplification comes to an end,
i.e., the dynamo is saturated.

After we present a model for the magnetic diffusivity when
the magnetic field approaches saturation on a given wave
number k, we discuss the evolution of the magnetic energy
during the different amplification stages and what determines
their end. In each phase we compare the amplification rate with
the dissipation rate, and finally derive the magnetic energy at
saturation.

A. Modification of the magnetic diffusivity for strong fields

Subramanian [31] suggests a model for calculating the
saturation energy density of the magnetic field based on
describing the change of the velocity field. In fact, he
introduces an effective magnetic diffusivity,

ηeff = η + 2a
8π

3
m, (13)

where η is the usual microscopic resistivity, i.e., for example
the Spitzer resistivity, and the parameter a = τ/(4πρ) with τ

being the response time of the system and ρ being the fluid
density. The second term in the effective diffusivity (13) is
proportional to the magnetic energy density m. When the
dynamo reaches saturation the additional drift component
dominates over the microscopic resistivity η and we obtain

from Eq. (13)

ηeff ≈ 4

3

τ

ρ
m. (14)

The time scale τ on which the fluid reacts to the magnetic
field generated by the dynamo should be comparable to the
time scale of the turbulent eddies. As the eddy turnover time is
different on different length scales, also the saturation process
should be scale dependent. We model here the response time
on a scale k as

τ (k) = 2π

kvk

= 2π

V kϑ
L

kϑ−1, (15)

where we used Eq. (7) to find the dependence on the forcing
scale and velocity, kL and V .

The rate at which the magnetic energy is dissipated can be
estimated via the dissipative term in the induction equation,

∂B
∂t

= ηeff(k)∇2B, (16)

where we approximate ∂/∂t ≈ �dis and ∇2 ≈ (2πk−1)−2. The
dissipation rate on a scale k is then given by

�dis(k) ≈ ηeff(k)

(2πk−1)2
. (17)

B. Limiting case of large magnetic Prandtl numbers

1. Kinematic phase for Pm � 1

In the kinematic dynamo phase the turbulent energy spec-
trum E(k) is, per definition, not affected by the magnetic field.
The total initial turbulent kinetic energy is thus determined by

ε0 =
∫ kν

kL

E(k)dk

= −1

2
ρv(k)2

∣∣kν

kL

= 1

2
ρV 2(1 − Re−2ϑ/(ϑ+1)), (18)

where we used v(kL) = V and v(kν) = V (kL/kν)ϑ [see
Eqs. (7) and (4)] to write this in terms of the Reynolds number.
The total magnetic energy density in the kinematic phase mk

can then be determined from the integral over the magnetic
energy spectrum in the kinematic phase Mk(k),

mk =
∫ kη

kL

Mk(k)dk. (19)

A Fourier analysis of the Kazantsev theory [50] leads to the
following form of the magnetic spectrum in the kinematic
phase:

Mk(k) = αkk
3/2K0(k/kη), (20)

where αk is a constant and K0(k/kη) is the modified Bessel
function of the second kind. The slope which characterizes
the spectrum at small wave numbers, k3/2, is known as the
Kazantsev slope. Numerical simulations have confirmed this
shape of the magnetic energy spectrum [34,51]. Bhat and
Subramanian [47] show that the 3/2 slope of the magnetic
spectrum remains even if the turbulence has a finite correlation
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time. In the kinematic phase the magnetic energy increases
exponentially in time with a peak on the resistive scale, until

�k = �dis(mk,kη). (21)

A comparison of the rates yields the total magnetic energy at
the end of the kinematic phase

mk = 3
4γk,Pm�1Pm−1Re−2ϑ/(ϑ+1)ρV 2. (22)

For deriving Eq. (22) we have employed the growth rate (9)
and the dissipation rate (17), where we inserted (14) at
mk and kη. Further we used the definition of the viscous
scale (4) and the relation Pm = (kη/kν)1+ϑ . With (22) we
determine the proportionality constant αk in the spectrum (20)
in the kinematic phase. The resulting spectrum Mk(k) is
illustrated in Fig. 2 by the curves (a) and (b) for a hydrodynamic
Reynolds number of Re = 106 and a magnetic Prandtl number
of Pm = 103. We present the two extreme cases of turbulence
with the Kolmogorov type (ϑ = 1/3) in the upper panel and
the Burgers type (ϑ = 1/2) in the lower panel. Curve (a)
represents a spectrum within the kinematic phase, while curve
(b) shows the spectrum at the end of the kinematic phase.
Integration of curve (b) over k yields the magnetic energy (22).

2. Nonlinear phase for Pm � 1

In the nonlinear dynamo phase the magnetic energy
continues to increase at rate (12), while the peak of the
spectrum moves to larger spatial scales, i.e., to smaller wave
numbers k. It is important to note that the amplification
rate is now a function of the scale k on which the dynamo
operates the fastest. This scale is initially the viscous scale kν ,
i.e., the scale on which the turbulent eddy time scale is the
shortest. With the growth of magnetic energy, the magnetic
diffusivity (13) increases, shifting the effective resistive scale
kη,eff on which the magnetic spectrum peaks from kη to smaller
wave numbers. Once the peak scale of the spectrum moves to
k < kν , amplification is fastest on the current resistive scale
kη,eff below which the magnetic energy dissipates.

We thus need to model the nonlinear phase in two steps.
In the first step the effective resistive wave number is larger
than the viscous wave number (kη,eff > kν) and the growth
rate is constant and largest on kν . Once the peak wave number
becomes smaller than the viscous wave number (kη,eff < kν)
amplification is fastest on kη,eff .

a. First nonlinear phase. In order to have a steady increase
of magnetic energy, we demand that the energy at the beginning
of the first nonlinear phase mnl,1 is equal to the one at the
end of the kinematic phase mk. With the field amplification
taking place at kν and dissipation taking place essentially on
kη we find

�nl(kν) = �dis(mk,kη) (23)

at the beginning of the first nonlinear phase. Condition (23)
fixes the free parameter in the nonlinear growth rate (12) to

γnl = γk,Pm�1. (24)

Now the peak wavelength kη,eff moves to smaller k, while the
current magnetic energy mnl,1(kη,eff) is determined by

�nl(kν) = �dis(mnl,1(kη,eff),kη,eff). (25)
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FIG. 2. (Color online) The spectra of turbulent kinetic and mag-
netic energy, E(k) and M(k). The input parameters for this plot are
the hydrodynamic Reynolds number Re = 106, the magnetic Prandtl
number Pm = 103, and the slopes of the turbulence spectrum ϑ = 1/3
and ϑ = 1/2 describing Kolmogorov and Burgers turbulence. The
green dashed line indicates the (initial) kinetic energy spectrum E(k).
The gray lines, (a) and (b), show the magnetic energy spectrum Mk(k)
at different times in the kinematic phase. The two light blue lines,
(c) and (d), give the spectrum in the first nonlinear phase Mnl,1(k),
while the two dark blue lines, (e) and (f), give the one in the second
nonlinear phase Mnl,2(k). The purple line, (g), represents the magnetic
spectrum at saturation Mnl,2(k�). Indicated as vertical dotted lines are
the forcing scale kL, the peak scale at saturation k�, the viscous scale
kν , and the initial resistive scale kη.

Solving (25) for the magnetic energy and inserting the
constant (24) results in

mnl,1(kη,eff) = 3

4
γk,Pm�1Re(1−ϑ)/(ϑ+1)

(
kL

kη,eff

)ϑ+1

ρV 2. (26)

Note that the magnetic energy increases with the peak scale
kη,eff moving to smaller wave numbers k. The first nonlinear
phase comes to an end when kη,eff reaches the viscous scale
kν . At this time the magnetic energy is

mnl,1(kν) = 3
4γk,Pm�1Re−2ϑ/(ϑ+1)ρV 2. (27)

We assume that the shape of the magnetic energy spectrum is
similar to the one in the kinematic phase (20). With the peak

023010-5



J. SCHOBER et al. PHYSICAL REVIEW E 92, 023010 (2015)

of the spectrum being at the current resistive scale kη,eff and
the normalization changing as a function of kη,eff , we model
the magnetic spectrum as follows:

Mnl,1(k,kη,effa) = αnl,1(kη,eff)k
3/2K0(k/kη,eff). (28)

The normalization constant αnl,1(kη,eff) can be found using (26)
and

mnl,1(kη,eff) =
∫ kη

kL

Mnl,1(k,kη,eff)dk. (29)

The resulting energy spectra are illustrated by the light blue
lines in Fig. 2. The curve (d) shows the spectrum in the first
nonlinear dynamo phase at a later point in time than curve (c).
One can clearly see how the peak of the spectrum moves to
smaller k in time and how the total magnetic energy increases
from (c) to (d).

b. Second nonlinear phase. Once the effective resistive
wave number kη,eff moves below the viscous scale kν , magnetic
field amplification becomes fastest on the current kη,eff . The
magnetic energy mnl,2 in this phase is then determined by the
condition

�nl(kη,eff) = �dis(mnl,2(kη,eff),kη,eff) (30)

which leads to

mnl,2(kη,eff) = 3

4
γk,Pm�1

(
kL

kη,eff

)2ϑ

ρV 2. (31)

The peak of the spectrum,

Mnl,2(k,kη,eff) = αnl,2(kη,eff)k
3/2K0(k/kη,eff), (32)

continues to move to smaller wave numbers with the normal-
ization constant αnl,2(kη,eff) being determined by

mnl,2(kη,eff) =
∫ kη

kL

Mnl,2(k,kη,eff)dk, (33)

when inserting the expression (31) on the left-hand side.
The dark blue lines, curves (e) and (f), in Fig. 2 show two
representative spectra in the second nonlinear dynamo phase.
While curve (e) shows a spectrum at the very beginning of the
second nonlinear phase, i.e., at a point in time when the peak
has just moved below kν , the spectrum (f) is already closer to
saturation.

3. Saturation for Pm � 1

Saturation occurs when the peak of the magnetic energy
reaches a certain scale k� which is determined by the critical
magnetic Reynolds number Rmcrit. It has been shown that a
minimum Rm is needed for a turbulent dynamo to operate
which can be interpreted as a minimum separation between
the turbulent forcing scale and the dissipative scales. This
critical magnetic Reynolds number can be found by solving
the Kazantsev equation (8) with � = 0. A typical value
for the critical magnetic Reynolds number is Rmcrit ≈ 100
for Kolmogorov turbulence and increases with increasing
compressibility. For Burgers turbulence Rmcrit ≈ 2700 which
we use for our modeling in this work. A fit formula for the
critical magnetic Reynolds number is [26]

Rmcrit(ϑ) = 88[tan(2.7ϑ + 0.2) − 1]. (34)

TABLE I. Listed are the slopes of the turbulence spectrum ϑ for
different types of turbulence (see the discussion in the text) and the
corresponding critical magnetic Reynolds numbers Rmcrit from [26].
For the different turbulence models we present our results for the peak
scale of the spectrum k� at saturation, and the energy ratios msat/ε0

and msat/(ε0 − msat). Here msat is the magnetic energy density at
saturation and ε0 the initial turbulent kinetic energy. For the values
of the kinetic energy, we assume that we are in the limit of large
hydrodynamical Reynolds numbers, where ε0 = 1/2ρV 2 is constant.

k� msat/ε0 msat/(ε0 − msat)

ϑ Rmcrit Pm � 1 Pm � 1 Pm � 1 Pm � 1 Pm � 1 Pm � 1

1/3 ≈107 101 kL 2.21 kL 0.304 0.0238 0.438 0.0243
0.35 ≈118 104 kL 2.34 kL 0.261 0.0221 0.352 0.0226
0.37 ≈137 110 kL 2.51 kL 0.212 0.0196 0.269 0.0199
0.38 ≈149 114 kL 2.60 kL 0.190 0.0182 0.235 0.0185
0.43 ≈227 135 kL 2.78 kL 0.108 0.0118 0.121 0.0120
0.47 ≈697 260 kL 4.15 kL 0.0410 0.00457 0.0433 0.00460
1/2 ≈2718 588 kL 6.02 kL 0.0134 0.00135 0.0136 0.00136

We note, however, that the values of Rmcrit we use here are
assumptions based on our previous work. There are additional
numerical calculations [46] that yield a larger value of Rmcrit ≈
32 000 for highly compressible turbulence.

With the additional drift as proposed by Subramanian [31],
an effective magnetic Reynolds number can be defined as

Rmeff = V L

η + 16/3πam
(35)

for a given magnetic energy m. Close to saturation Rmeff

becomes

Rmeff(kη,eff) ≈ V L

16/3πamnl,2(kη,eff)
, (36)

where we can insert the magnetic energy in the second nonlin-
ear phase (31). It is obvious from Eq. (36) that Rmeff decreases
with increasing magnetic energy mnl,2 or equivalently with
decreasing kη,eff . The decrease of Rmeff comes to an end as
soon as it reaches Rmcrit, which is the case when kη,eff reaches
a certain scale k�:

Rmeff(k�) = Rmcrit. (37)

With Eq. (36) and the magnetic energy in the second nonlinear
phase (31), we find the following value for k�:

k� = (γk,Pm�1Rmcrit)
1/(ϑ+1)kL. (38)

The numerical values of k� are listed in Table I for different
types of turbulence. We chose the following representative
turbulence slopes from literature: the two extreme cases, in-
compressible Kolomogorov turbulence with ϑ = 1/3 [27] and
highly compressible Burgers turbulence with ϑ = 1/2 [30]. If
intermittency of Kolmogorov turbulence is taken into account
the slope of the spectrum is ϑ = 0.35 [52]. In observations
of molecular clouds typically higher values of the order
of ϑ = 0.38 [37] and ϑ = 0.47 [38] are found. Further
we list the slopes resulting from numerical simulations in
driven supersonic MHD turbulence (ϑ = 0.37) [53] and from
solenoidally (ϑ = 0.43) and compressively (ϑ = 0.47) driven
supersonic turbulence [54].
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Using Eq. (31) the magnetic energy at saturation can be
calculated as

msat = mnl,2(k�)

= 3
4γk,Pm�1(γk,Pm�1Rmcrit)

−2ϑ/(ϑ+1)ρV 2. (39)

The spectral distribution of magnetic energy at saturation is
given as

Msat(k) = Mnl,2(k,k�)

= αnl,2(k�)k3/2K0(k/k�), (40)

where again K0 denotes the Bessel function of second kind.
We plot the magnetic energy spectra at saturation for the two
extreme cases of turbulence, ϑ = 1/3 and ϑ = 1/2, in Fig. 2.
One major difference between the saturation spectra (g) for
the different types of turbulence is the value of k�, which is
with a value of 588kL much larger for ϑ = 1/2 than it is for
ϑ = 1/3, where k� = 101kL. Also clearly visible from Fig. 2
is that the total magnetic energy at saturation is much larger
for Kolmogorov turbulence than for Burgers turbulence.

We define the saturation level of the turbulent dynamo as the
ratio of magnetic energy at saturation msat to the kinetic energy
at saturation. As the turbulent kinetic energy is concentrated
on large spatial scales, i.e., within the motions of the largest
turbulent eddies, the kinetic energy spectrum and thus the
total kinetic energy is not affected much by the growth of the
magnetic field. We expect the kinetic energy at saturation to
be between the two extremes of ε0 and ε0 − msat, leading to
the following limiting expressions for the saturation level:

msat

ε0
= 3

2
γk,Pm�1(γk,Pm�1Rmcrit)

−2ϑ/(ϑ+1) (41)

and

msat

ε0 − msat
= 3/2γk,Pm�1(γk,Pm�1Rmcrit)−2ϑ/(ϑ+1)

1 − 3/2γk,Pm�1(γk,Pm�1Rmcrit)−2ϑ/(ϑ+1)
. (42)

The saturation level given in Eq. (41) is the ratio of the
magnetic energy at saturation msat to the initial turbulent
kinetic energy ε0. As seen in MHD simulations [29], the
kinetic energy spectrum does not change significantly in
presence of a turbulent dynamo, leaving the total kinetic
energy approximately constant. This can be achieved when the
dissipation process in MHD turbulence differs from the pure
hydrodynamical case and the kinetic energy is only partially
converted into heat, while the remainder is transformed into
magnetic energy. If the viscous dissipation is similar to the one
in hydrodynamical turbulence, energy conservation requires
the kinetic energy at dynamo saturation to be ε0 − msat, which
leads to the saturation level given in Eq. (42).

The two energy ratios at saturation gained from our model
are listed in Table I for different types of turbulence. Moreover,
we illustrate the dependence of the saturation level on the
slope of the turbulence spectrum ϑ in Fig. 3. Therefore we
insert the fit for the critical magnetic Reynolds number (34)
and shade the area between the functions (41) and (42). The
upper purple curve yields the resulting dynamo saturation
level for large magnetic Prandtl numbers which decreases
from approximately 30–44% at ϑ = 1/3 to roughly 1.3% at
ϑ = 1/2. Due to the small values of msat compared to ε0 at very
compressive turbulence, i.e., for ϑ → 1/2, the ratios msat/ε0
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FIG. 3. (Color online) The saturation level of the turbulent dy-
namo as a function of the slope of the turbulence spectrum ϑ . The
upper boundaries of the bands are given by msat/(ε0 − msat), while the
lower boundaries are determined by msat/ε0. The upper purple band
represents the limit of large magnetic Prandtl numbers Pm with the
saturation levels given in Eqs. (41) and (42). The small Pm limit is
illustrated by the lower gray band, where the boundaries are Eqs. (51)
and (52).

and msat/(ε0 − msat) become comparable and the band in Fig. 3
gets very narrow.

C. Limiting case of small magnetic Prandtl numbers

For small magnetic Prandtl numbers the resistive wave
number kη is smaller than the viscous one kν . Magnetic field
amplification thus initially proceeds fastest on kη as for wave
numbers k > kη magnetic energy is dissipated. When the field
becomes strong enough the effective resistive scale kη,eff moves
from kη to smaller k until it reaches k� and the dynamo is
saturated. We discuss the evolution of the magnetic energy and
its spectral distribution in the following. While the calculation
is in principle similar to the case of Pm � 1 we point out the
main differences which occur mostly in the nonlinear phase.
For Pm � 1 the latter is not split into two different stages as
kν > kη,eff during the entire dynamo amplification.

1. Kinematic phase for Pm � 1

The magnetic energy on the resistive scale kη increases
exponentially at rate (9) until

�k = �dis(mk,kη). (43)

Note that the growth rate (9) scales with the magnetic Reynolds
number Rm for Pm � 1, while for the opposite case of Pm �
1 it scales with Re. The condition (43) is fulfilled when the
magnetic energy reaches

mk = 3
4γk,Pm�1Rm−2ϑ/(ϑ+1)ρV 2. (44)

The spectral energy distribution can be determined in the same
way as described in Sec. III B.
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2. Nonlinear phase for Pm � 1

The nonlinear phase for the case Pm � 1 differs from
the case of Pm � 1. For small magnetic Prandtl numbers
the amplification proceeds initially on the resistive scale.
In the transition to the nonlinear phase the effective resistive
scale shifts to smaller wave numbers k, with amplification
being always fastest on kη,eff . There is no separation into two
different nonlinear phases.

With the condition that the magnetic energy at the end of the
kinematic phase is equal to the initial energy in the nonlinear
phase, we determine the proportionality constant γnl in the
growth rate (12). With

�nl(kη) = �dis(mk,kη) (45)

we find

γnl = γk,Pm�1. (46)

We note that in Eq. (45) we are comparing the growth rate �nl

on kη with the dissipation rate �dis on kη, while for large Pm
we were comparing the growth rate on kν with the dissipation
rate on kη [see Eq. (23)].

For an arbitrary resistive scale kη,eff the magnetic energy in
the nonlinear dynamo phase is determined by the condition

�nl(kη,eff) = �dis(mnl(kη,eff),kη,eff). (47)

Solution of Eq. (47) yields the magnetic energy

mnl(kη,eff) = 3

4
γk,Pm�1

(
kL

kη,eff

)2ϑ

ρV 2. (48)

This result for the magnetic energy is similar to the one for
Pm � 1 given in (31) except for the different proportionality
constant γk,Pm�1.

3. Saturation for Pm � 1

Saturation sets in when the effective resistive scale kη,eff

reaches the saturation scale k�. The latter is determined via the
critical magnetic Reynolds number as described in Sec. III B
and is given in Eq. (38), where one needs to replace the constant
γk,Pm�1 by γk,Pm�1:

k� = (γk,Pm�1Rmcrit)
1/(ϑ+1)kL. (49)

The magnetic energy at saturation is then determined by

mnl(k�) = 3

4
γk,Pm�1

(
kL

k�

)2ϑ

ρV 2. (50)

Again the only difference between the saturation energy here
and the case of Pm � 1 (39) is the proportionality constant
in the growth rate (9) which is different for small and large
Prandtl numbers; see Eqs. (11) and (10). For completeness we
also give the saturation levels for the case of Pm � 1:

msat

ε0
= 3

2
γk,Pm�1(γk,Pm�1Rmcrit)

−2ϑ/(ϑ+1), (51)

which is the ratio of magnetic energy at saturation msat to initial
kinetic energy ε0 and

msat

ε0 − msat
= 3/2γk,Pm�1(γk,Pm�1Rmcrit)−2ϑ/(ϑ+1)

1 − 3/2γk,Pm�1(γk,Pm�1Rmcrit)−2ϑ/(ϑ+1)
. (52)
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FIG. 4. (Color online) The spectra of turbulent kinetic and mag-
netic energy, E(k) and M(k). The input parameters for this plot are a
hydrodynamic Reynolds number of Re = 106 and a magnetic Prandtl
number of Pm = 10−3. This figure is conceptually similar to Fig. 2.

We expect the dynamo to saturate at a value between (51)
and (52). The evolution of the magnetic energy spectra for the
case of Pm � 1 is presented in Fig. 4. The exemplary values
chosen here are Re = 106 and Pm = 10−3 and we show the
two extreme cases ϑ = 1/3 (upper panel) and ϑ = 1/2 (lower
panel). Curves (a) and (b) show the spectra in the kinematic
phase, while (b) represents the end of the kinematic phase.
Curves (c) and (d) are spectra in the nonlinear phase and (e) is
the spectrum at saturation. In comparison to the case of large
magnetic Prandtl numbers, one clearly sees that the magnetic
energy spectra are, also at saturation, much smaller. In fact, the
magnetic spectra are always below the initial kinetic energy
spectrum for Pm � 1.

D. Comparison with numerical simulations

The turbulent dynamo has been studied intensively in nu-
merical simulations [20,29,34,35,55,56]. In these simulations
the full set of MHD equations is solved while turbulence is
initiated by a forcing term in the Navier-Stokes equation.
Different types of turbulence can be simulated by applying
different types of forcing, i.e., solenoidal forcing, compressive
forcing or a mixture of both, and by using different Mach
numbers M which are defined as the ratio of the velocity
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FIG. 5. (Color online) The saturation level of the turbulent dy-
namo as a function of the Mach number M. The crosses are the
results of the numerical simulations from Federrath et al. [35]
for solenoidally driven (purple crosses) and compressively driven
turbulence (gray crosses). The hydrodynamical Reynolds number of
these simulations is Re ≈ 1500 and the magnetic Prandtl number
is Pm ≈ 2. The black dashed-dotted line at low Mach numbers
indicates the saturation level in simulations of Haugen et al. [34].
For comparison we include the predictions from our model by the
blue shaded regions within the two limiting cases msat/(ε0 − msat) and
msat/ε0 [see Eqs. (41) and (42)] for different slopes of the turbulence
spectrum ϑ = 1/3 and ϑ = 1/2.

dispersion to the sound speed. This way a broad range of
different slopes of the turbulence spectrum ϑ can be studied.

The dynamo saturation levels found in the high-resolution
simulations of Federrath et al. [35] are presented in Fig. 5. The
characteristic numbers of these simulations are Re ≈ 1500 and
Pm ≈ 2. The ratio of magnetic energy to kinetic energy at
saturation is plotted as a function of the Mach number M for
solenoidal and compressive forcing. The subsonic regime of
solenoidally driven turbulence is comparable to the divergence
free Kolmogorov turbulence (ϑ = 1/3), while the supersonic
regime is dominated by shocks and is better described by
Burgers turbulence (ϑ = 1/2).3 We include in Fig. 5 our
predictions for the saturation levels using Eqs. (41) and (42)
as upper and lower boundaries. Note that for ϑ = 1/2 the
two extremes cannot be distinguished by eye in Fig. 5. The
agreement between the predictions of our analytical model
and the numerical simulations is very good for the case of
Kolmogorov turbulence, where the saturation level is of the
order of 40%. In the supersonic regime our prediction lies
with a value of roughly 0.64% in between the saturation
levels of solenoidally and compressively driven turbulence.

3We note that for the case of ϑ = 1/2 and a Reynolds number of
Re = 1500 the saturation scale k� lies actually above kν . This means
that, despite being in the large Prandtl number regime, we do only
have one nonlinear phase. Here saturation takes place when the peak
of the magnetic spectrum is still at k > kν . This complication does
not occur for ϑ = 1/3 and a Reynolds number of Re = 1500.

lo
g 1

0
(s

at
ur

at
io

n
le

ve
l)

log10 (Pm)

Pm 1

Pm 1

ϑ = 0.4

ϑ = 0.45

ϑ = 0.5
−3

−2

−1

−1 0 1

FIG. 6. (Color online) The saturation level of the turbulent dy-
namo as a function of the magnetic Prandtl number Pm. The purple
crosses are the results of the numerical simulations from Federrath
et al. [29]. In the analytical model the saturation level is independent
of Pm in the limits Pm � 1 and Pm � 1. We shade the region
between the two limiting cases msat/(ε0 − msat) and msat/ε0 for
different slopes of the turbulence spectrum ϑ = 0.4 (dark blue dotted
lines), ϑ = 0.45 (light blue dashed lines), and ϑ = 0.5 (gray solid
lines).

Further numerical simulations based on a different code have
been performed by Haugen et al. [34] who study nonhelical
turbulence without imposed large-scale fields. They use low
Mach numbers to analyze the dynamo in incompressible
turbulence and find a saturation level of roughly 40% which is
in agreement with the numerical results for the saturation levels
from Federrath et al. [35] and our analytical model for the case
of incompressible turbulence. We indicate the saturation level
found by Haugen et al. [34] by the black dashed-dotted line in
Fig. 5.

A common limitation of simulations is a relatively low
separation of the dissipative scales, i.e., kν and kη, which is
reflected in the magnetic Prandtl number being of the order
of Pm ≈ 1. In recent high-resolution simulations, Federrath
et al. [29] were able to analyze MHD turbulence for a larger
range of magnetic Prandtl numbers from Pm ≈ 0.1 up to Pm ≈
10. With Mach numbers up to 11, these calculations cover
supersonic, highly compressible turbulence. We present the
numerically found saturation levels as a function of Pm in
Fig. 6. The simulations predict an increase of the saturation
magnetic energy with the Prandtl number.

We aim to compare these results with the analytical model
for the saturation of the turbulent dynamo developed in the
previous section. Therefore we determine the saturation levels
msat/(ε0) and msat/(ε0 − msat) for the two extreme cases of
Pm � 1 and Pm � 1. We apply a hydrodynamic Reynolds
number of Re = 1600 as given in Federrath et al. [29] and test
three different slopes of the turbulence spectrum: ϑ = 0.4,
ϑ = 0.45, and ϑ = 0.5. We expect this range of slopes for
supersonic turbulence from numerical simulations with high
Mach numbers [29,45,54]. The resulting saturation levels are
indicated in Fig. 6. For large magnetic Prandtl numbers we
find the best agreement between the numerical results and our
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analytical model for a spectral slope of ϑ = 0.45 typical for
compressive turbulence.

In the contrary limit, Pm � 1 and even for the regime
Pm ≈ 1, Federrath et al. [29] find a decrease of the saturation
level with decreasing Pm. In our analytical study, on the other
hand, we obtain the limiting case of very small and very large
Pm, without explicitly determining the behavior in between
the two regimes. It is, however, clear that the saturation has to
drop towards lower values of Pm in order to fulfill these limits.
The discrepancy from the simulations at Pm < 1 may arise
from the fact that for small Pm in simulations the magnetic
Reynolds number of the system Rm = PmRe is in the vicinity
of the critical magnetic Reynolds number Rmcrit. Notice, that
Rmcrit ≈ 441 for ϑ = 0.45. At Pm = 0.2 and for Re = 1600,
the magnetic Reynolds number would be Rm = 320 and
already be below Rmcrit. A direct comparison of our analytical
model with the numerical simulations is thus difficult in the
regime of small Pm.

IV. CONCLUSIONS

We present a detailed scale-dependent model for the satura-
tion of the turbulent dynamo. While it was known before that
this mechanism can efficiently convert turbulent kinetic energy
into magnetic energy during a phase of exponential growth, the
final amplification stages and in particular the saturation levels
were less clear. In this paper we present a phenomenological
model for the dynamo saturation which generalizes a single-
scale ansatz suggested by Subramanian [31] that includes the
back reaction of the Lorentz force on the magnetic diffusivity.
We assume that the term describing this back reaction is
inverse proportional to the turnover time of the turbulent
eddies and proportional to the magnetic energy density. By
comparing the dynamo growth rate on the scale of fastest field
amplification with the dissipation rate on the resistive scale we
find an expression for the magnetic energy density. The latter
peaks on the effective resistive spatial scale which increases
in the nonlinear dynamo phase shifting the magnetic energy to
smaller wave numbers.

In our semianalytical model we distinguish the cases of
large and small magnetic Prandtl numbers Pm which are
fundamentally different due to the different spectral positions
of the resistive and the viscous scale, �η and �ν . The two cases
are discussed separately in Secs. III B and III C. We find a
strong dependence of the saturation levels on the slope of the
initial turbulence spectrum ϑ . The ratio of magnetic energy
msat over kinetic energy at saturation lies between the extreme
cases of msat/ε0 and msat/(ε0 − msat), where ε0 is the initial
kinetic energy. We expect that the dynamo does not effect the
kinetic turbulence energy drastically and that ε0 is maximally
reduced by the saturation magnetic energy. Our main results
are listed below:

(i) The saturation energy levels are summarized in Table I.
For the case of Pm � 1 we find values between 43.8% and
1.3%, while the values for Pm � 1 are with 2.43–0.135%
considerably lower. The saturation level as a function of the
turbulence spectrum ϑ is plotted in Fig. 3.

(ii) The evolution of the magnetic spectra is shown in
Fig. 2 for Pm � 1 and in Fig. 4 for Pm � 1. By different
representative spectra we illustrate how the magnetic energy

is shifted towards smaller wave numbers during the nonlinear
dynamo phase until saturation is reached.

(iii) For Kolmogorov turbulence (ϑ = 1/3) the peak of the
magnetic spectrum k� lies at 101kL for Pm � 1 and at 2kL for
Pm � 1. If the turbulence is a highly compressible Burgers
type (ϑ = 1/2) the peak scale is at 588kL for Pm � 1 and at
6kL for Pm � 1.

Our model has some caveats concerning the exact shape
of the energy spectra. The spectral distribution of magnetic
energy (20) has explicitly been derived for the kinematic
dynamo phase, when there is no back reaction from the
magnetic field on the velocity field. With the Lorentz force
acting on the gas, the spectral shape could in principle
change. Here we make the simplest possible ansatz that the
magnetic spectrum remains similar also in the nonlinear
dynamo phase. Another assumption is that the slope of the
spectrum towards small wave numbers is k3/2 regardless of the
slope of the turbulence spectrum. As the spectrum has been
derived under the assumption of divergence-free turbulence,
i.e., Kolmogorov turbulence, it is not clear if this so-called
Kazantsev slope remains for compressive turbulence. While
there is numerical evidence that the Kazantsev slope may
also hold in the compressive turbulence [29], the detailed
derivation of the magnetic energy spectrum for a dynamo in
this turbulence regime remains an interesting study for the
future.

The results from this work can be compared to the saturation
model suggested by Schekochihin et al. [33]. These authors
explain the saturation mechanism of the small-scale dynamo
in incompressible and nonhelical turbulence as a result of
anisotropization of the velocity field with respect to the
magnetic field. While they can reproduce the spectra from
numerical low-Re simulations very well, they predict a scaling
of the magnetic energy at saturation with Re−1/2 leading
to tiny values for the extremely large Reynolds numbers in
astrophysical environments. The saturation levels found with
our model do not scale with the hydrodynamical Reynolds
number and are moreover independent of the magnetic Prandtl
number in the regimes Pm � 1 and Pm � 1. The expected
field strength from these saturation levels therefore need to
be considered in models of the nonlinear closures of MHD
turbulence, and require one to consider MHD effects even in
an initially weakly magnetized gas [57].

An interesting alternative approach for studying the tur-
bulent dynamo are so-called shell models. With an origin
in hydrodynamic turbulence theory these models have been
extended to MHD [58]. Here the Navier-Stokes equation and
the induction equation are approximated by dividing them into
a finite number of shells in Fourier space [59]. This allows for
solving the MHD equations for realistic Reynolds numbers
and in particular also in the regimes Pm � 1 and Pm � 1. The
exponential growth in the kinematic dynamo phase as well as
the shift of the peak of the magnetic energy spectrum in the
nonlinear phase are well reproduced by shell models [60]. The
magnetic energy spectra in the nonlinear phase, however, seem
to deviate from the kinematic shape given in Eq. (20) at high
wave numbers. We also stress that Stepanov and Plunian [60]
report an excess of magnetic energy over kinetic energy not
only for high Pm which is in agreement to our findings, but
within a certain part of the inertial range also for low Pm.
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Section III D of this paper is dedicated to a comparison
of the predictions from our theoretical model with the results
found in high-resolution numerical MHD simulations. The
values found in simulations by Federrath et al. [35] are roughly
40% for Kolmogorov-type turbulence and roughly 1% for
Burgers-type turbulence. These results are very similar to the
predictions of our model which are indicated by the blue
bands in Fig. 5. The saturation levels as a function of the
magnetic Prandtl number reported in Federrath et al. [29]
are presented in Fig. 6. We find good agreement with our
model in the large Prandtl number regime for an initial
turbulence spectrum with a slope of ϑ = 0.45. A quantitative
comparison with the simulations at Pm � 1 is not possible as
the magnetic Reynolds number approaches Rmcrit leading to a
rapid decrease of the saturation levels with decreasing Pm.

With our phenomenological model we are able to describe
the saturation of the turbulent dynamo and predict the fraction
of kinetic energy that is converted into magnetic energy. In
addition, we can model the magnetic spectrum to analyze
how the energy is distributed over spatial scales. While
numerical simulations are restricted to a regime of relatively

small Reynolds and Prandtl numbers, our analytical saturation
model provides estimates for MHD parameters typical for
astrophysical environments.
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