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Stability of Poiseuille flow in a fluid overlying an anisotropic and inhomogeneous porous layer
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We present the linear stability analysis of horizontal Poiseuille flow in a fluid overlying a porous medium with
anisotropic and inhomogeneous permeability. The generalized Darcy model is used to describe the flow in the
porous medium with the Beavers-Joseph condition at the interface of the two layers and the eigenvalue problem
is solved numerically. The effect of major system parameters on the stability characteristics is addressed in detail.
It is shown that the anisotropic and inhomogeneous modulation of the permeability of the underlying porous
layer provides an effective means for passive control of the flow stability.
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I. INTRODUCTION

Flow through a porous-fluid double layer is encountered in
numerous geophysical and engineering systems such as deep
filtrations, separation processes, biological tissues, chemical
and nuclear reactors, oil recovery, electronics cooling, heat
pipes, and boiling, to name a few. While thermal convection
related instabilities in such systems have been extensively
studied [1,2], pure hydrodynamic instabilities in such flows
have received attention in the literature only in recent years.
In particular, we are interested in plane Poiseuille flow
in superposed fluid-porous layers in isothermal conditions.
Chang et al. [3] were the first to consider such a problem,
where the linear stability of Poiseuille flow in a Newtonian
fluid overlying a porous layer was studied. By numerically
solving the Navier-Stokes–Darcy model, they identified three
distinct modes of instability, each of which manifests itself
as a minimum in the neutral stability curve. The minimum
of the curve in the low wave number region corresponds to
the porous-layer mode (referred to hereafter as PM), where
the porous medium controls the system stability. In the
short-wave mode (or the right-hand lobe in the curve), most
of the flow perturbations are confined in the fluid layer and
the corresponding perturbed stream function is antisymmetric
about the center line of the fluid layer. Hence this mode is
termed as the odd-fluid layer mode (OFM). The instability
mode that appears in the moderate wave number region
exhibits even symmetry with respect to the center line of
the fluid and is essentially a pure fluid layer mode, referred
to as the even-fluid layer mode (EFM). EFM is not present in
the thermal convection problem of the superposed fluid-porous
layer [2], where the basic state is quiescent, and can be deemed
as the equivalent of even-shear mode in single-layer Poiseuille
flow. Depending upon the values of the different physical
parameters, any of these modes can dominate the stability
of the system. For example, at very high values of depth ratio
(ratio of thickness of the fluid layer to that of the porous layer),
the flow through the double-layer system behaves similarly to
a Poiseuille flow with a porous-slip bottom wall and hence
EFM is likely to dominate. On the other hand, at very low
depth ratios, most of the perturbed flow occurs in the porous
layer and hence PM is likely to dominate.

Liu et al. [4] investigated the same problem using the
Brinkman model and showed that OFM does not appear

for the same conditions as in Chang et al. [3], since the
continuity of velocity at the porous-fluid interface leads to
an even symmetry of the basic and perturbed states. Hence the
odd-fluid disturbances are precluded. More detailed models
for the problem have also been developed; for instance,
Hill and Straughan [5] employed a three-layered approach,
where a Brinkman porous layer is introduced between the
fluid and Darcian-porous layers. Silin et al. [6] examined
this problem experimentally to validate the results of linear
stability analysis. The inherent assumption in all these studies
is that the permeability of the porous medium is isotropic and
homogeneous. But in practical situations, the permeability of
a porous layer can have directional and/or spatial variations
[7–9]. Hence in this paper, we intend to address the effects
of anisotropy and inhomogeneity in the permeability of the
porous medium on the stability of plane Poiseuille flow of a
Newtonian fluid overlying and saturating the porous layer.

Recently, Deepu et al. [10] has investigated similar effects
on the stability of free surface flow in an inclined superposed
fluid-porous layer system. However, the stability characteris-
tics of the present system are starkly different, predominantly
due to the changes in the problem formulation and boundary
conditions. With the presence of a free interface, the two major
instability modes present in the gravity-driven problem are
the long-wave surface mode and the shear mode [11,12], as
opposed to the shear-driven modes of instability in the present
problem. The change in the problem definition reflects in the
parametric domain as well; for example, both the surface and
shear modes depend on the surface tension of the fluid and
angle of inclination [13], while these parameters do not appear
in the present problem of horizontal channel flow. In Deepu
et al. [10], we showed that the surface mode is a pure fluid mode
and hence is insensitive to the anisotropic and inhomogeneous
changes in the permeability of the underlying porous layer. In
contrast, for the present case of Poiseuille flow, the fluid modes
are also found to be very sensitive to such effects. In addition,
in the former problem, the surface mode is always observed to
be the critical instability mode, but here we report a fascinating
dominance switching phenomenon among the different modes
under certain conditions. Noting the fundamental differences
between the two problems, the present study aims to report
findings on the stability dynamics of internal flow in the
context of superposed fluid-porous layers and caters to benefit
applications that specifically employ similar flows (such as
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oil recovery, deep filtration, and thermocline-based energy
storages). The question as to which model describes the flow
in a porous medium most accurately is still open [4]. In
the present study, to keep the analysis simple, we elect to
use Darcy’s law and derive the perturbation equations for
the current problem and solve the eigenvalue problem using
the Chebyshev collocation method. In the parametric range
considered, our results show that the stability of the system
drastically changes when the anisotropic and inhomogeneous
effects are included.

II. FORMULATION OF THE PROBLEM

Let us consider a superposed horizontal porous layer of
thickness dm underlying a fluid layer of thickness d. A
Cartesian coordinate system with x in the mean flow direction
and z in the vertical direction measured from the fluid-porous
interface is chosen. The continuity and momentum equations
for the fluid layer are [3]
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+ u
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where u and w are the x and z components of the fluid velocity,
p is the pressure, ν denotes the kinematic viscosity, and � is
the two-dimensional Laplace operator.

The corresponding equations for the porous medium are
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where the subscript m denotes the pore-averaged quantities, φ
is the porosity, and Kx and Kz are the permeabilities in the x

and z directions, respectively. ηx and ηz denote the respective
inhomogeneity functions. Let us define the anisotropy param-
eter, ξ = Kx/Kz. The above governing equations are the same
as that of Chang et al. [3], except that the flow model for
the porous medium considered here allows the permeability
to be anisotropic and inhomogeneous. Note, however, that the
inhomogeneity variations could occur both in both the x and
z directions. But such a general formulation would lead to a
base state that is two dimensional in nature, thus rendering
the problem very complicated. Hence, to keep in line with the
fully developed base solution considered for the fluid layer (as
shown below), the inhomogeneity functions are assumed to be
functions of z only.

The boundary conditions are specified as follows. At the
bottom of the porous layer, z = −dm, wm = 0. The upper
boundary is assumed to be a rigid wall; hence at z = d,
u = w = 0. At the fluid-porous interface (z = 0), we employ

the Beavers-Joseph condition [14]:

∂u

∂z
= αBJ√

Kxηx(0)
(u − um), (2.7)

where αBJ is the Beavers-Joseph coefficient. Note that the
streamwise component of permeability at the interface is used
in the above condition [15]. The other two conditions at the
interface are the continuity of normal velocity and pressure:
w = wm and p = pm.

Assuming a constant pressure gradient in the x direction,
the steady fully developed solution of the base state is given
by

u(z) = A1

2
z2 + A2z + A3, w = 0, 0 � z � d,

(2.8)
um(z) = −A1Kxηx(z), wm = 0, − dm � z � 0,

where,
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,

with μ denoting the dynamic viscosity of the fluid. Normaliz-
ing the length scale in the fluid layer by d, that of the porous
layer by dm, and the velocities in both the layers by V , the
maximum of ū(z), we obtain the following nondimensional
velocity profile:

Ū (z) = C1z
2 + C2z + C3, 0 � z � 1,

(2.10)
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(2.11)

Here δ is the Darcy number defined as
√

Kx/dm and d̂ is the
depth ratio d/dm.

By superposing infinitesimal disturbances to the basic state,
we now obtain the equations governing the linear stability of
the system. The variables are nondimensionalized using d, V ,
d/V , and μV/d as the respective scales of length, velocity,
time, and pressure in the fluid layer and dm, Vm, dm/Vm,
and μVm/dm, where Vm ≡ ūm(0) as the corresponding scales
in the porous layer (the scales used are the as same as in
Ref. [3]). In this study, we consider only two-dimensional
perturbations and define the stream function ψ as (ũ,w̃) =
(∂ψ/∂z,−∂ψ/∂x), where the tilde indicates perturbations.
We further apply normal-mode expansion of the form ψ =
�(z) exp(σ t + ikx), where � denotes the amplitude of the
stream function, the real part of the complex eigenvalue σ
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represents the time growth rate, and k is the streamwise wave
number. Similarly, ψm = �m(zm) exp(σmtm + ikmxm). Note
that σ = σm

d̂2Rem

Re and k = kmd̂ , where the Reynolds numbers
in the fluid and porous layers are given by Re = V d/ν and
Rem = Vmdm/ν. Also note that Rem = 8δ2ηx (0)

F d̂
Re.

Thus, letting D = d
dz

and Dm = d
dzm

, the linearized pertur-
bation equations are given by
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subjected to the following boundary conditions.
At the base of the porous layer zm = −1,

�m = 0. (2.14)

At the interface z = zm = 0,

Re� = Rem�m, (2.15)
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At z = 1,

� = D� = 0. (2.18)

III. RESULTS

Equations (2.12) and (2.13), along with the boundary con-
ditions, are solved using the Chebyshev spectral collocation
method (for details, see [4]). Unless otherwise stated, the
parameters assume the nominal values δ = 0.001, A = 0,
ξ = 1, φ = 0.3, and αBJ = 0.1. Wherever a comparison is
possible, the neutral stability curves corresponding to the
isotropic and homogeneous case presented in the figures (to
be shown later) agree with those reported by Chang et al. [3],
except for the multivaluedness, which as Liu et al. [4] point
out was overlooked in that paper. This serves as a validation
of our numerical code.

A. Effect of anisotropy

To examine the effect of anisotropy alone, we assume the
permeability to be homogeneous, i.e., ηx = ηz = 1. Figure 1
shows the neutral stability curves for different values of
the anisotropy parameter, ξ and δ for d̂ = 0.1. The critical
Reynolds number, Rec, along with the dominant mode for all
the cases presented in this section is listed in Table I.

At δ = 0.002 [Fig. 1(a)], the relatively high permeability
allows the flow perturbations to permeate through the thick
porous layer, thereby leading to the strong dominance of PM
over other modes, irrespective of the value of ξ . However, a
reduction in ξ is found to destabilize PM (neutral curves shift
to lower Reynolds numbers). This is logically understood by
observing that for a fixed d̂ and δ, a reduction in ξ translates to
an increase in permeability in the z direction and a subsequent
reduction in the flow resistance, thus destabilizing the flow.

FIG. 1. (Color online) Neutral curves for different values of ξ (as given in the legend) with d̂ = 0.1 and (a) δ = 0.002, (b) δ = 0.001,
(c) δ = 0.0008, (d) δ = 0.0005. Legends are the same in all the plots.
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TABLE I. Variation of Rec with the anisotropy parameter (ξ ) for different values of depth ratio (d̂) and Darcy number (δ). The most unstable
mode in each case is indicated in brackets.

d̂

�����������ξ

δ
0.002 0.001 0.0008 0.0005

0.1 0.001 2047 (PM) 3275 (PM) 3099 (EFM) 3626 (EFM)
0.01 1988 (PM) 3333 (PM) 3099 (EFM) 3626 (EFM)
0.1 2164 (PM) 3743 (PM) 3216 (EFM) 3743 (EFM)
1 3099 (PM) 6261 (PM) 6764 (EFM) 6667 (EFM)
2 3977 (PM) 8655 (PM) 9649 (OFM) 8363 (EFM)
3 4795 (PM) 10760 (PM) 11637 (OFM) 9474 (EFM)

0.12 0.001 3041 (EFM)
0.01 3099 (EFM)
0.1 3216 (EFM)
0.4 4269 (EFM)
0.8 6667 (EFM)
1 7341 (OFM)
2 9474 (OFM)
3 11521 (OFM)

0.13 0.001 3099 (EFM)
0.01 3041 (EFM)
0.1 3099 (EFM)
0.4 4152 (EFM)
0.8 5556 (EFM)
1 6297 (EFM)
2 9532 (EFM)
3 11988 (OFM)

0.2 0.001 3450 (PM) 3626 (EFM) 4094 (EFM) 5497 (EFM)
0.01 3509 (PM) 3567 (EFM) 4152 (EFM) 5322 (EFM)
0.1 3918 (PM) 3743 (EFM) 4269 (EFM) 5789 (EFM)
1 6327 (PM) 6667 (EFM) 7602 (EFM) 9854 (EFM)
2 8713 (PM) 8363 (EFM) 9357 (EFM) 11462 (EFM)
3 10760 (PM) 9532 (EFM) 10468 (EFM) 12398 (EFM)

0.3 0.001 3041 (EFM) 4211 (EFM) 4678 (EFM)
0.01 3099 (EFM) 4269 (EFM) 4678 (EFM)
0.1 3275 (EFM) 4737 (EFM) 5556 (EFM)
1 5965 (EFM) 8585 (EFM) 9591 (EFM)
2 7895 (EFM) 10292 (EFM) 11228 (EFM)
3 9123 (EFM) 11287 (EFM) 12222 (EFM)

Rec is more sensitive to an increase in ξ than it is to a decrease
in ξ . Further, the effect of decrease in ξ is weakened for ξ >

0.1 where the marginal curves almost coincide. At δ = 0.001
[Fig. 1(b)], due to the reduction in permeability, OFM also
becomes significant leading to bimodal neutral stability curves.
As with the case of δ = 0.002, the dominant mode continues
to be PM regardless of the value of ξ and the destabilization
effect of a decrease in ξ is also observed for the reasons already
stated. Also, note the higher sensitivity of Rec to an increase
in ξ ; a mere doubling of ξ from 1 to 2 has resulted in an almost
twofold increase in Rec, whereas to effect a twofold decrease
in Rec, an order of magnitude reduction in ξ is required. Here,
however, we also observe the appearance of a looplike mode
in the medium-wave range when ξ < 0.1 [Fig. 1(b)]. This
new mode is found to occur at extremely low values of ξ

in cases where bimodal instability (constituted by PM and
OFM) prevails [see also Fig. 2(a)]. But, even in these rare
cases where it appears, this mode never dominates the system
stability. Hence, we do not wish to address this mode in detail,
except to point out that though it appears in the medium-wave

region, it has no connection with EFM. EFM indeed exists
in those cases in the very high Re region and is completely
dominated by the bimodal instability (hence not shown in the
graphs).

At δ = 0.0008 [Fig. 1(c)] for the isotropic case (ξ = 1;
the solid curve), the neutral curve is trimodal, with EFM
now being the most unstable mode. For other values of ξ ,
the neutral curves are observed to be bimodal in nature. As
expected, the general destabilizing trend due to a decrease in
ξ is seen; however, unlike the previous two cases, a shift in
dominance between the two fluid modes also occurs with a
change in ξ . A lower ξ favors EFM, but a higher ξ favors
OFM (also see Table I). Since both of these modes are shear
generated [3], it is to be understood that the variation of Kz

affect the shear stress distribution in a rather complicated way.
The consequence is that a change in ξ has different degrees
of influence on the two modes; at lower ξ , the destabilization
effect is greater for EFM causing its dominance over OFM
and at higher ξ , the stabilization effect is lesser for OFM
causing its dominance over EFM. At even lower permeability
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FIG. 2. (Color online) Neutral curves for different values of ξ with d̂ = 0.2 and (a) δ = 0.002, (b) δ = 0.001, (c) δ = 0.0008, (d) δ = 0.0005.
Legends are the same in all the plots.

of δ = 0.0005 [Fig. 1(d)], EFM is always the most unstable
mode (with the expected destabilizing effect of a decrease in ξ ).
Note that mode switching is absent in this case. Along with the
data to be presented subsequently for higher depth ratios, this
indicates that the switching of mode dominance with change in
ξ is observed only for low values of d̂ and intermediate values
of δ. In other words, switching of mode dominance appears to
occur as a result of anisotropic variations in permeability, only
under conditions (set by other system parameters) that are
borderline between regions where OFM and EFM are most
likely to dominate.

Figure 2 presents the marginal curves for the same condi-
tions as in Fig. 1, but at a higher depth ratio of d̂ = 0.2. In all
cases, the general trend of the destabilizing effect of decrease
in ξ may be noted. At δ = 0.002 [Fig. 2(a)], as opposed to the
corresponding case with lower depth ratio [Fig. 1(a), where
the only mode present is PM], due to a relatively thicker
fluid layer, the neutral curves are bimodal with the additional
presence of OFM; nonetheless PM is the dominant mode of
instability. Additionally, Rec is higher for a particular ξ (also
refer Table I); i.e., PM becomes more stable with an increase
in the depth ratio. A similar observation was also made by Liu
et al. [4] with Brinkman’s model for the low-porosity case. At a
lower permeability of δ = 0.001 [Fig. 2(b)], EFM becomes the
dominant mode with PM appearing in the low-wave-number
space for lower ξ (or higher relative permeability in the
z direction) and OFM appearing in the high-wave-number
region for higher ξ (or lower relative permeability in the z

direction). The neutral curves at δ = 0.0008 [Fig. 2(c)] also
follow qualitatively similar trends but quantitatively they are
shifted slightly upwards. The stabilizing effect, as already
stated, can be attributed to the higher resistance offered by

a less-permeable porous layer. At δ = 0.0005 [Fig. 2(d)],
the system is completely dominated by EFM. Comparison
with the corresponding curves at a higher permeability of
δ = 0.0008 [Fig. 2(c)] suggests that the stabilizing effect due
to the reduction in permeability is more pronounced at higher
values of ξ . Also note that in Fig. 2(d), Rec increases by more
than a factor of 2 within the range of ξ considered. This shows
that even though EFM is a pure fluid mode, it is significantly
affected by the anisotropic change in the permeability of the
porous medium.

At d̂ = 0.3 (see Fig. 3), flow instability is completely
contained in the thick fluid layer. As a result EFM is the
most unstable mode regardless of the values of δ and ξ .
Figure 3 also shows that a lower ξ or a higher δ destabilizes the
system; trends that are consistent with the above reasoning. A
comparison with the results for d̂ = 0.2 reveals that, similar
to PM, EFM also becomes more stable with a higher depth
ratio (see also Table I), possibly due to less shear intensity
in the flow due to a thicker fluid layer. Before moving
on to the inhomogeneity effects, in Fig. 4 we present the
marginal stability curves for two important depth ratios,
namely, d̂ = 0.12 [where OFM dominates the system in the
nominal (isotropic) case] and 0.13 (the threshold that marks the
shift in dominance between the porous mode and fluid mode in
the thermal convection problem in a superposed fluid-porous
system) at the nominal value of δ = 0.001. Note that two
additional curves are plotted, corresponding to ξ = 0.4 and
0.8, to reveal the transition better. As already explained, in
both these cases, OFM and EFM compete with each other for
dominance with change in ξ similar to Fig. 1(c). For a smaller
ξ , EFM is more unstable, whereas for a larger ξ , OFM is more
critical.
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FIG. 3. (Color online) Neutral curves for different values of ξ with d̂ = 0.3 and (a) δ = 0.002, (b) δ = 0.001, (c) δ = 0.0008. Legends are
the same in all the plots.

B. Effect of inhomogeneity

Here we exclude the anisotropic effects by setting ξ = 1 and
using the same homogeneous variations of permeability [15]
in the principal directions, namely, ηx = ηz = eA(1+zm). At the
bottom (zm = –1), ηx = ηz = 1 and the permeabilities in the
x and z directions increase (decrease, respectively) vertically
with a positive (negative, respectively) value of A. Green
and Freehill [16] used linear inhomogeneity functions, but
we choose to use the exponential inhomogeneity functions
as they model a practical scenario [15]. Moreover, since our
aim here is to illustrate the effect of inhomogeneity per se,
we do not attach much importance to the actual functional

forms of ηx and ηz. By retaining the same exponential form
for these functions, we change the value of the parameter A to
understand the effect of the degree of inhomogeneity on the
system stability.

From the discussion that follows, it may appear that the
effect of changing the parameter A is equivalent to that of
changing the average permeability of the porous medium. But
one should keep in mind that its effects are far more dramatic
in that the velocity profile in the porous medium as well as
that in the fluid layer (through the interfacial slip velocity)
are affected by a change in the parameter A [see Eqs. (2.8)
and (2.9)]. The inhomogeneous modulation of permeability

FIG. 4. (Color online) Neutral curves for different values of ξ with δ = 0.001 and (a) d̂ = 0.12, (b) d̂ = 0.13. Legends are the same in
both the plots.
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allows more control on the stability dynamics of the system
than a variation in the mean permeability. The latter effect is
incidentally captured by the variation in the Darcy number as
discussed in the previous section or in Chang et al. [3]. In
this section, the sole effect of varying degrees of homogeneity
along the depth of the porous layer is addressed.

One would anticipate the effects of inhomogeneity to be less
predictable than that of anisotropy, because the inhomogeneity
functions appear in the perturbation equations in a more
complex way [see Eq. (2.13)]. In our previous paper [10],
we have shown that the effect of inhomogeneous permeability
on instability characteristics of a similar two-layer system is
indeed rather complicated and (as will be shown by the data
presented subsequently) this is true in the present problem
as well. In contrast to the effects of anisotropic variations of
permeability, the following features are commonly observed
with inhomogeneity variation for a given case: a change in
the range of unstable wave numbers and switching of mode
dominance which results in a subsequent nonmonotonic trend
of global minimum of the marginal curve, Rec. Even so, a
pattern that is consistent with physical expectations can be
recognized in the trend of Rec corresponding to a particular
mode. As A increases, Rec of a given mode is observed to
decrease monotonically in nearly all the cases considered, a
behavior attributable to the lower flow resistance offered by the
porous medium. The progression pattern of the most dominant
mode itself is consistent with the physical picture discussed in
Sec. III A and Chang et al. [3]. A parametric change that leads
to a very high net permeability of the porous layer causes
PM to be the dominant instability. On the other extreme,
for very low overall permeability, EFM becomes the most
unstable mode as the effect of the porous layer is insignificant.
Under intermediate conditions, where the effect of the porous

layer is strong enough, OFM is the most critical mode of
instability.

Marginal curves for different values of A and δ for d̂ = 0.1
are shown in Fig. 5. At δ = 0.002 for the homogeneous
case (solid curve), PM is the dominant mode. As A is
decreased to –1 (a vertically decreasing permeability), PM
becomes more stable (also see Table II) in terms of Rec,
which can be explained based on the increased flow resistance.
We notice, however, that the area of unstable zone expands
out to the higher-wave-number region, i.e., lower-wavelength
disturbances become relatively more unstable compared to
the homogeneous case. As mentioned earlier, such a change
in the range of unstable wave numbers is not observed in
PM as a result of anisotropic variations [e.g., cf. Fig. 1(a)],
again emphasizing the drastic influence of inhomogeneous
variations. At A = –2, the net permeability of the porous
medium is so low that all the instability is now confined to
the fluid layer, leading to the dominance of EFM. On the other
hand, at A = 1, due to the increase in the net permeability,
we observe a slight destabilization of PM compared to the
homogeneous case in terms of Rec, but the mode shrinks in
the k-Re plane.

At A = 2, both Rec and the area of unstable zone show
a stabilizing effect. The mode becomes very narrow in the
k-Re plane. In the parameter space considered, this is the only
case where Rec of a given mode (PM in this case) shows a
stabilizing effect with increase in A, which thus far cannot
be explained in simple physical terms. But we reemphasize
that given the complexity of the problem, occurrence of
such counterintuitive behavior is plausible, if not inevitable.
Figure 5(a) illustrates that as far as PM is concerned, increasing
A has the effect of filtering out short-wave flow perturbations.
It is physically acceptable that a more-permeable porous layer

FIG. 5. (Color online) Neutral curves for different values of A with d̂ = 0.1 and (a) δ = 0.002, (b) δ = 0.001, (c) δ = 0.0005.
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TABLE II. Variation of Rec with the inhomogeneity factor (A)
for different values of depth ratio (d̂) and Darcy number (δ). The most
unstable mode in each case is indicated in brackets.

d̂

�����A

δ
0.002 0.001 0.0005

0.1 –2 5731 (EFM) 7836 (EFM) 10700 (EFM)
–1 4678 (PM) 5965 (EFM) 8889 (EFM)
0 3100 (PM) 6261 (PM) 6670 (EFM)
1 2866 (PM) 3977 (PM) 7661 (OFM)
2 5570 (PM) 3626 (PM) 5263 (PM)

0.12 –2 8713 (EFM)
–1 6491 (EFM)
0 7340 (OFM)
1 4678 (PM)
2 3860 (PM)

0.13 –2 9064 (EFM)
–1 6784 (EFM)
0 6297 (EFM)
1 5175 (PM)
2 3977 (PM)

0.2 –2 7544(EFM) 10760 (EFM) >20000
–1 5848 (EFM) 8830 (EFM) 14152 (EFM)
0 6330 (PM) 6670 (EFM) 9850 (EFM)
1 4187 (PM) 7778 (OFM) 7778 (EFM)
2 4269 (PM) 5789 (PM) 6667 (EFM)

will favor the evolution of high-wavelength disturbances.
At δ = 0.001 [Fig. 5(b)], all the modes are more stable
due to the lower Darcy number. For the same reason, at
A = –2, EFM almost completely suppresses all the other
modes, whereas the neutral curve for the same value of A

at δ = 0.002 is trimodal [Fig. 5(a)]. Note that Rec of a given

mode does exhibit a monotonic increase with decrease in A.
At δ = 0.0005, a competition among all three modes can
be observed. At A = 1, OFM is dominant; higher A favors
PM and lower A favors EFM. As seen in the previous case,
the local minimum corresponding to a given mode shows
the stabilizing (destabilizing) effect with a decreasing (an
increasing) A.

Figure 6 shows the inhomogeneity effects at a higher
d̂ of 0.2. Compared to Fig. 5, the stabilization effect of a
higher depth ratio is observed (for a quantitative comparison,
refer to Table II), as was seen in the anisotropy case. The
qualitative behavior of the results follows the expected pattern.
Interestingly, the graph shown in Fig. 6(a) resembles that in
Fig. 5(b) quantitatively as well as qualitatively. This means
that for a given A, the stabilizing effect of doubling the depth
ratio and the destabilizing effect of doubling the Darcy number
almost cancel each other. The same holds for Figs. 6(b) and 5(c)
(also see Table II). It is to be mentioned that a similar pattern
can be observed in the results of anisotropic effect presented
in Sec. III A. At δ = 0.0005 [Fig. 6(c)], the flow stability is
completely dominated by EFM and for A = –2, the flow is
so stable that the marginal curve goes out of the range of
Re considered here. Finally, for completeness, we present the
neutral curves for d̂ = 0.12 and 0.13 in Fig. 7. At d̂ = 0.12, for
the homogeneous case, OFM is dominant, a negative A causes
EFM to dominate, and a positive A causes PM to dominate. At
d̂ = 0.13, for the homogeneous and negative A cases, EFM is
dominant, otherwise PM prevails.

IV. CONCLUDING REMARKS

Linear stability of Poiseuille flow in a fluid-porous sys-
tem with anisotropic and inhomogeneous permeability has
been analyzed. In the range of parameters considered, both

FIG. 6. (Color online) Neutral curves for different values of A with d̂ = 0.2 and (a) δ = 0.002, (b) δ = 0.001, (c) δ = 0.0005.
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FIG. 7. (Color online) Neutral curves for different values of A with δ = 0.001 and (a) d̂ = 0.12, (b) d̂ = 0.13. Legends are the same in all
the plots.

directional and spatial variations in permeability are found
to have an immense effect on the stability characteristics for
all depth ratios and Darcy numbers. For example, referring
to the nominal case [cf. Fig. 1(b)], doubling the permeability
of the porous medium in the basic flow direction relative to
that in the cross-stream direction (quantitatively expressed by
the parameter ξ ) increases Rec by 38%. On the other hand, a
reduction in ξ destabilizes the flow, albeit the effect is lesser
compared to that of an increase in ξ . It is conceivable that
the former finding can be exploited in applications where
instability is not desirable (e.g., manufacture of composite
materials). On the other hand, in applications where the
instability is a desired phenomenon (e.g., packed-bed heat
exchangers), the latter information can be used; however,
our results show that the destabilizing effect plateaus out
below ξ = 0.1. Likewise, an inhomogeneous variation that
increases the overall permeability of the porous medium has
destabilizing effects on the modes.

In addressing the question of which instability mode is most
unstable when the permeability is allowed to be anisotropic or
inhomogeneous, one sees a striking difference between the two
effects: while switching of mode dominance is observed only
under rare transitional conditions for anisotropic variations
in permeability, it is a common result for inhomogeneous
variations. In addition, competition for dominance is observed
only between the fluid modes as a result of anisotropic effects,

a case in point being at low depth ratio and intermediate
permeability [Fig. 1(c)]. A lower ξ is found to favor the
dominance of EFM and a higher ξ favors OFM. As for
the inhomogeneous effects, a low (negative) value of A is
found to favor EFM, a high (positive) value favors PM, and
intermediate values favor OFM. These qualitative trends are all
physically consistent. The drastic influence of inhomogeneous
effects is also evident in the fact that for a given mode, the
range of unstable wave numbers changes considerably with A.
Further, only local minima of the neutral curves (or the critical
Reynolds number of a particular mode) are observed to exhibit
a monotonic response with A. On the other hand, in the case of
anisotropic variations, the global minimum (Rec) of the curves
itself displays a monotonic behavior.

To summarize the main outcomes of the present work, the
following are the factors that stabilize the system:

(a) decrease in Darcy number (or loosely, the permeability
of the porous medium),

(b) increase in depth ratio,
(c) increase in the anisotropy parameter ξ , and
(d) decrease in the inhomogeneity factor, A.
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