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Origin of nonlinearity and plausible turbulence by hydromagnetic transient growth in accretion
disks: Faster growth rate than magnetorotational instability
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We investigate the evolution of hydromagnetic perturbations in a small section of accretion disks. It is known
that molecular viscosity is negligible in accretion disks. Hence, it has been argued that a mechanism, known as
magnetorotational instability (MRI), is responsible for transporting matter in the presence of a weak magnetic
field. However, there are some shortcomings, which question the effectiveness of MRI. Now the question
arises, whether other hydromagnetic effects, e.g., transient growth (TG), can play an important role in bringing
nonlinearity into the system, even at weak magnetic fields. In addition, it should be determined whether MRI or TG
is primarily responsible for revealing nonlinearity in order to make the flow turbulent. Our results prove explicitly
that the flows with a high Reynolds number (Re), which is the case for realistic astrophysical accretion disks,
exhibit nonlinearity via TG of perturbation modes faster than that by modes producing MRI. For a fixed wave
vector, MRI dominates over transient effects only at low Re, lower than the value expected to be in astrophysical
accretion disks, and low magnetic fields. This calls into serious question the (overall) persuasiveness of MRI in
astrophysical accretion disks.
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I. INTRODUCTION

Accretion disks are found in active galactic nuclei (AGNs),
around compact stellar objects in a binary system, around
newly formed stars, etc. (see, e.g., [1]). However, the working
principle of accretion disks remains enigmatic. Due to its
inadequate molecular viscosity, turbulent viscosity has been
proposed to explain the transport of matter toward a central
object. This idea is particularly attractive because of its high
Reynolds number, Re � 1014 (see, e.g., [2]). However, the
Keplerian disks, which are relevant to many astrophysical
applications, are remarkably Rayleigh-stable. Therefore, lin-
ear perturbation cannot induce the onset of turbulence, and
consequently it cannot provide enough viscosity to transport
matter inward therein.

With the application of magnetorotational instability (MRI)
[3,4] to Keplerian disks, Balbus and Hawley [5] showed that
a weak magnetic field can lead to the exponential growth of
the velocity and magnetic-field perturbations. Within a few
rotation times, such exponential growth could reveal the onset
of turbulence. Since then, MRI has been a widely accepted
mechanism to explain the origin of instability and hence the
transport of matter in accretion disks. Note that for flows with
strong magnetic fields, where the magnetic field is tightly
coupled with the flow, MRI is not expected to work. Hence,
it is very clear that the MRI is bounded in a small regime of
parameter values when the field is weak.

It has been well established by several works that transient
growth (TG) can reveal nonlinearity and a transition to
turbulence at subcritical Re (e.g., [6–11]). Such a subcritical
transition to turbulence was invoked to explain colder purely
hydrodynamic accretion flows, e.g., quiescent cataclysmic
variables, in protoplanetary and star-forming disks, and in
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the outer region of disks in active galactic nuclei. Baroclinic
instability is another plausible source of vigorous turbulence
in colder accretion disks [12]. Note that while hotter flows
are expected to be ionized enough to produce weak magnetic
fields therein and subsequent MRI, colder flows may remain
practically neutral in charge, and hence any instability and
turbulence therein must be hydrodynamic. However, in the
absence of magnetic effects, the Coriolis force does not allow
any significant TG in accretion disks in three dimensions, in-
dependent of Re (see [6]), while in purely two dimensions, TG
could be large at large Re. However, a pure two-dimensional
flow is a very idealistic case. Nevertheless, in the presence
of a magnetic field, even in three dimensions, TG could be
very large (the Coriolis effect could not suppress the growth).
Hence, in a real three-dimensional flow, it is very important to
explore magnetic TG.

In the present paper, we explore the relative strengths of
MRI and TG in magnetized accretion flows in order to explain
the generic origin of nonlinearity and plausible turbulence
therein. By TG, we mean the short-time scale growth due to
shearing perturbation waves, producing a peak followed by
a dip. By MRI, we mean the exponential growth caused by
static perturbation waves. While TG may reveal nonlinearity
in the system, depending on Re, the amplitude of the initial
perturbation and its wave vector, and the background rotational
profile of the flow, the question is, can its growth rate be fast
enough to compete with that of MRI? On the other hand, is
there any limitation of MRI, apart from the fact that MRI does
not work at strong magnetic fields? Note that some limitations
of MRI were already discussed by previous authors [11,13–
16], which then question the origin of viscosity in accretion
disk.

We show below that three-dimensional TG dominates
over the growth due to MRI modes at large Re, bringing
nonlinearity in the flows. This is of immense interest, as the
larger Re is more plausible in accretion disks. By comparing
modes corresponding to static (original MRI) and shearing
(TG) waves, the growth estimates from static MRI waves
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have already been argued to be misleading [17]. Throughout
their work, previous authors [17] argued that shearing wave
structures always grow faster over short time scales than
static structures, which we also plan to elaborate on here.
Nevertheless, those authors [17] did not explore the length of
time over which the short-time growth can persist, which is
very important for revealing nonlinearity, which we plan to
explicitly explore here. We will show below that in a shorter
time scale, TG reveals nonlinearity in the system.

We explicitly calculate the magnetic-field strength above
which MRI does not work. Moreover, for a fixed perturbation
(which might not correspond to either the best MRI or the
best TG mode) with finite Re, we show that with an increase
of Re the TG tends to bring the nonlinearity in the systems
before MRI could do the same, producing a large growth of
perturbation. We notice that above a threshold Re, only TG is
sufficient to make the system nonlinear at low magnetic field,
and there is no growth at high magnetic fields. Hence, in the
regimes of high magnetic field or/and high Re, MRI is not
important at all. The working regime of MRI is actually much
narrower than is generally believed. As TG was argued to be a
plausible source of nonlinearity in cold disks, and the growth
due to MRI is subdominant compared to TG at high Re in hot
disks, TG could be argued to be the source of nonlinearity and
plausible turbulence and subsequent viscosity in any accretion
disk.

In the next section, we discuss the perturbation equations
describing flows. Subsequently, we explore the total-energy
growth of perturbations due to TG and MRI for different
parameter values, and we compare the respective parameter
spaces for different initial amplitudes of perturbations in
Secs. III and IV, respectively. Finally, we end with a discussion
in Sec. V.

II. GOVERNING EQUATIONS DESCRIBING
MAGNETIZED ROTATING SHEAR FLOWS IN

LAGRANGIAN COORDINATES

Within a local shearing box in Lagrangian coordinates, the
Navier-Stokes, continuity, and magnetic induction equations
and the solenoidal condition (for magnetic field) can be written
as

v̇ = − 1

ρ
c2
s ∇ρ + ν∇2v + 2v × � + 1

4πρ
B · ∇B, (1)

dρ

dt
= −ρ∇ · v, (2)

∂B
∂t

= ∇ × (v × B), ∇ · B = 0, (3)

when

ṙ = v(rL), ∇ ≡ ∂rL

∂r
·∇L, (4)

where v is the velocity vector, B is the magnetic field, ν is the
kinematic coefficient of viscosity, cs is the sound speed in the
shearing box, � is the angular velocity, ρ is the density, and r
and rL are the position vectors in Eulerian and Lagrangian
coordinates, respectively [7]. Note that the contribution of
magnetic pressure has been included in the total pressure in the

first term on the right-hand side of Eq. (1). For incompressible
flow, Eq. (2) becomes

∇ · v = 0. (5)

Let us define the tensor �q, which is the minus of the
gradient of the unperturbed (background) velocity field
v0 = (0, − q�x,0), as

�q ≡ −∇v0 = −(∇�) × R =
⎛
⎝0 q� 0

0 0 0
0 0 0

⎞
⎠,

q = −d ln �

d ln R
, (6)

where R = (R,0,0), R is the distance of the comoving shearing
box from the center of the disk, and |�| = � ∝ R−q (see [7]
for details). Now integrating Eq. (4), we obtain

rL = r + �tr · q ⇒ ∂rL

∂r
= 1 + �tq, (7)

and this gives rise to the relation

∇ ≡ (1 + �tq)·∇L. (8)

Since the unperturbed velocity v0 has a spatial dependence, it
has a nonvanishing time derivative in a perturbed Lagrangian
coordinate. Therefore, we obtain

δ̇v = v̇ − v̇0 = v̇ − v · ∇v0 = v̇ + �v · q. (9)

Perturbing and linearizing Eqs. (1), (2), and (3) and using
Eq. (9), we obtain the perturbed Navier-Stokes, continuity, and
induction equations and the solenoidal equation for a magnetic
field in Lagrangian coordinates as

δ̇v = − 1

ρ
c2
s ∇δρ + ν∇2δv + 2δv × �

+ 1

4πρ
B · ∇δB + �δv · q, (10)

δ̇ρ = −ρ∇ · δv, (11)

˙δB = ∇ × (v × δB + δv × B) + (v · ∇)δB, ∇ · δB = 0,

(12)

where δv, δB, and δρ are the velocity, magnetic-field vectors,
and density of perturbation, respectively.

We now work with the incompressible approximation,
i.e., δρ → 0 and c2

s → ∞, assuming c2
s δρ to be finite and

decomposing the general linear perturbations into a plane-
wave form as

δv,δB ∝ exp(ikL · rL), (13)

when

k = (kx,ky,kz) = (1 + �tq) · kL = (
kL
x + q�tkL

y ,kL
y ,kL

z

)
,

(14)

where k and kL are the wave vectors in the Eulerian and
Lagrangian coordinates, respectively. Now using a solenoidal
condition for the magnetic field, the incompressibility con-
dition, and the plane-wave solution (13), and if we write
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Eqs. (10) and (12) (i.e., Navier-Stokes and magnetic induction
equations) componentwise, we obtain

˙δvx = −i
1

ρ
c2
s δρ

(
kL
x + q�tkL

y

) − νk2δvx + 2�δvy

+ 1

4πρ
iδBx(B1kx + B2ky + B3kz), (15)

˙δvy = −i
1

ρ
c2
s δρkL

y − νk2δvy − 2�δvx + �qδvx

+ 1

4πρ
iδBy(B1kx + B2ky + B3kz), (16)

˙δvz = −i
1

ρ
c2
s δρkL

z − νk2δvz

+ 1

4πρ
iδBz(B1kx + B2ky + B3kz), (17)

˙δBx = iδvx(B1kx + B2ky + B3kz), (18)

˙δBy = iδvy(B1kx + B2ky + B3kz) − q�δBx, (19)

˙δBz = iδvz(B1kx + B2ky + B3kz). (20)

For convenience of the solutions, we further define

� = kxδvx + kyδvy, ζ = kxδvy − kyδvx,

�B = kxδBx + kyδBy, ζB = kxδBy − kyδBx,

and for the plane-wave solutions given by Eq. (13), Eqs. (15)–
(20) can be recast into⎛

⎜⎜⎝
�̇
ζ̇

�̇B

ζ̇B

⎞
⎟⎟⎠ =

⎛
⎜⎝

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

⎞
⎟⎠

⎛
⎜⎝

�
ζ

�B

ζB

⎞
⎟⎠, (21)

where

M11 = −νk4
(
k2
x + k2

y

) + 2q�kxkyk
2
z

k2
(
k2
x + k2

y

) ,

M12 = 2�k2
z

{
k2
x + (1 − q)k2

y

}
k2

(
k2
x + k2

y

) ,

M13 = i(B1kx + B2ky + B3kz)

4πρ
, M14 = 0,

M21 = �(q − 2), M22 = −νk2, M23 = 0,

M24 = i(B1kx + B2ky + B3kz)

4πρ
,

M31 = i(B1kx + B2ky + B3kz),

M32 = 0, M33 = 0, M34 = 0,

M41 = 0, M42 = i(B1kx + B2ky + B3kz),

M43 = q�
(
k2
y − k2

x

)
k2
x + k2

y

,

M44 = 2q�kxky

k2
x + k2

y

.

The assumption of incompressibility is justified as follows.
If the wavelength of the velocity perturbations is much shorter

than the sound horizon for the time of interest (which in the
present context is the infall time of matter), then the density
perturbations (which are basically the sound waves) reach
equilibrium early on, which renders effectively a uniform
density during the time scale of interest. For an astrophysical
accretion disk around a black hole, which is either geomet-
rically thin or can be approximated as a vertically averaged
flow, the half-thickness of the disk is comparable to the sound
horizon corresponding to one disk rotation time. Therefore,
as described in previous work (e.g., [7]), for processes taking
longer than one rotation time, wavelengths shorter than the disk
thickness can be approximately treated as incompressible.

Solving the set of differential equations (21), we can
calculate δv, δB, and the energy E of the perturbation given by

E ∝
(

δv2 + δB2

4πρ

)
=

(
4πρ(	2 + ζ 2) + 	2

B + ζ 2
B

(kx + kyqt�)2 + k2
y

+ 4π	2ρ + 	2
B

k2
z

)/
8πρ (22)

in terms of new variables. To solve the set of Eqs. (21), we
have to supply δB and δv at t = 0, i.e., the initial perturbation
amplitude (IPA). The structure (and evolution) of perturbations
is similar to (the same as) that found earlier [6,7,17]. A sample
is shown in Fig. 1, demonstrating how an initial leading wave,
with a highly stretched structure, evolves to a spherical wave
at the maximum of TG and furthermore evolves to a trailing
wave during the declining phase of TG. During this evolution
of perturbation, observing the associated total energy growth
of perturbation, we will now attempt to understand whether the
perturbation will sustain or not to give rise to nonlinearity and
plausible turbulence and essentially viscosity to help the infall
of matter in an accretion disk. With a detailed investigation, we
can also understand the relative weight between TG and growth
due to MRI (if it is working) in the time of interest. Moreover,
we plan to pinpoint the limit of magnetic-field strength above
which the MRI is suppressed (indeed MRI works only for
weak magnetic fields).

III. TOTAL-ENERGY GROWTH OF PERTURBATIONS
FOR DIFFERENT PARAMETER VALUES

The best possible mode for MRI giving rise to the
nonlinearity in the system corresponds to the condition
kzvAz/� = 1 (when v2

Az = B2
z /4πρ) [5]. The growth rate

for this fastest exponentially growing mode is 3�/4 = 3/4q

(since in dimensionless units � = 1/q) [5,6,18]. Is there any
mode for which TG brings in the nonlinearity into the flow
(the best possible mode for TG) at a time scale shorter than the
rotational time at which the best possible MRI mode brings
in the nonlinearity? Note that an approximate emergence of
nonlinearity is defined through the measurement

Linearity =
( |δv|

|v| + |δB|
|B|

)
. (23)

When the linearity is 1, the system will start becoming
nonlinear, which will plausibly lead to turbulence. For a
Keplerian disk (q = 3/2), the best MRI mode brings in the
nonlinearity at time scales ∼14 and 23, respectively, for
IPAs = 10−3 and 10−5 [when log(1/IPA) = 3t/4q]. Figure 2
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FIG. 1. Development of the perturbed velocity δvx(x,y) as a function of time, when Re = 106, ky = 1, z = 0, and tmax denotes the time at
which growth attains its maximum, at (a) t = 0, (b) tmax/2, (c) tmax, and (d) 3tmax/2. The gradual conversion of contour colors from white to
black corresponds to the gradual conversion from positive to negative values of δvx(x,y), respectively.

shows that indeed there are modes that reveal nonlinearity
via TG at around 3 and 13 rotational times for IPAs 10−3

and 10−5, respectively [where |δv(0)|/|v|,|δB(0)|/|B| = IPA].
Note from [6] that the maximum TG in two dimensions
scales as TGmax ∼ Re2/3 and the corresponding time as Re1/3

in pure hydrodynamical disks. This further corresponds to
kL
x ∼ −Re1/3 [19], which reveals that TGmax corresponds to

the minimum of kx , kx,min [6,7]. In the same spirit, kL
x ’s in Fig. 2

are chosen to be −Re1/3 when initial perturbations are highly
stretched and nonspherical. Note that although such a stretched
initial wave vector of perturbation is a special choice that is
important for the present purposes, nothing prevents them from
arising in nature. Since every perturbation mode is equally
probable when a system is perturbed (which is indeed the idea
behind the choice of the best MRI mode), we explore the mode
that is growing faster and leading the system to nonlinearity. In
Fig. 3, we relax this Re dependence of kL

x , but we still obtain
the nonlinearity arising at ∼3.5 and ∼6 rotational times for
IPAs 10−3 and 10−5, respectively. Hence, the full-scale general
hydromagnetic effects giving rise to TG reveal nonlinearity in
the system faster than that the MRI does, when MRI itself is

uncertain. Once the best TG reveals nonlinearity before the
best MRI would, the importance of MRI is sluggish in the
linear theory. Note that our current emphasis, in particular, is
the emergence of nonlinearity via either TG or MRI. However,
nonlinearity does not guarantee the transition to turbulence in
the physical time scale of accretion. One could argue that
MRI modes grow forever, and hence the system would have
been turbulent at some point, even if the best MRI modes
are not considered when TG would eventually decay. But the
important fact to notice here is that as soon as the system
becomes nonlinear, MRI (and also TG, if that prevails over
MRI) is no longer applicable, as the underlying solution itself
is based on linear theory. On the other hand, the effects due to
the best possible MRI mode should be compared with that of
the best possible TG. Such a comparison shows that TG is more
powerful and is actually responsible for bringing nonlinearity
into the systems.

Let us move on to the detailed behaviors of TG. In Fig. 4,
we show energy growths [E(t)/E(0)] for four sets of Re and
B2/ρ (plotted in dimensionless units, based on the dimensions
of various quantities of shearing box). We see that for a
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FIG. 2. (Color online) Nonlinearity via best possible TG and
MRI. Thick black line corresponds to the TG for IPA = 10−3,
Re = 1014, kL

x = −Re1/3, ky = 1, and kz = 90KL
x ; the dot-dashed

black line corresponds to the TG for IPA = 10−5, Re = 1025, kL
x =

−Re1/3, ky = 1, and kz = 90kL
x ; red long-dashed and dotted lines

correspond to the best possible MRI starting from IPA = 10−3 and
10−5, respectively. The dashed horizontal line indicates linearity
unity.

fixed Re, energy growth of perturbation decays over time if
the background magnetic field is large (thick and longdashed
lines compared to dotted and dot-dashed lines, respectively).
Figure 5 shows the linearity of the respective cases based on
Eq. (23). The most important point to be noted from Fig. 5
is that the case of high Re and low B (dotted line) exhibits
nonlinearity via TG itself for IPA ≈10−3. Note the clear
appearance of a TG peak in the linearity as well as growth
curves at time t ∼ 104. Later, at the trailing phase of TG,
growth starts to increase further due to MRI. However, by this
time the system would already become nonlinear, and hence
computations of energy growth and growth due to MRI based
on the linear theory lose their meaning. However, for a lower
Re for the same B, growth due to MRI overpowers TG and
nonlinearity arises via MRI-induced growth (dot-dashed line).

To understand the global picture and the relative powers
of TG and MRI, we perform several numerical experiments,

FIG. 3. (Color online) Same as Fig. 2, but the black thick and
dot-dashed lines correspond to the TG for kL

x = 1, ky = 1, kz = 100,
Re = 1012 and kL

x = 1, ky = 1, kz = 3000, Re = 1012, respectively.

FIG. 4. Total energy growth for different sets of Re and B =
(0,0,B3): Thick, long-dashed, dotted, and dot-dashed lines cor-
respond, respectively, to Re = 1012 and B2/ρ = 10−3, Re = 104

and B2/ρ = 10, Re = 1012 and B2/ρ = 10−20, and Re = 104 and
B2/ρ = 10−20. kL

x = −Re1/3, ky = kz = 1. The inset confirms that
the oscillatory zone of the thick line is continuous and smooth.

and in Fig. 6 we divide the entire parameter space into three
regions, namely MRI-active, TG-active, and stable (or linear)
zones for a given perturbation wave vector. Note that for a
given B, the difference of log(Re) between two successive
computations is chosen to be unity, and hence the curve
dividing the linearly stable (no energy growth of perturbations)
and unstable zones does not appear very smooth. The region
to the left of the solid vertical line exhibits nonlinearity via
MRI, while that on the right side corresponds to nonlinearity
via TG before MRI could kick in.

Hence, a very important message here is that the energy
growth rate due to MRI is faster than TG only at lower values
of Re, and it is further suppressed above a certain higher B
(when indeed MRI is a weak field effect). At larger Re, which
actually corresponds to astrophysical accretion disks, the
growth rate due to TG overpowers that due to MRI. Although
Fig. 6 represents cases corresponding to a vertical background
magnetic field, we obtain similar trends of results at other

FIG. 5. (Color online) Linearity of the cases in Fig. 4. The dashed
horizontal line indicates linearity unity. The inset confirms that the
oscillatory zone of the thick line is continuous and smooth.
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FIG. 6. (Color online) Parameter space describing stable and
unstable zones, based on the MRI and TG inactive and active regions,
when B = (0,0,B3) and IPA is 10−3. The dashed vertical line at
Re = 109 is the threshold Re above which MRI does not work.
kL

x = −Re1/3, ky = kz = 1.

background magnetic-field geometries and wave vectors, and
hence they are not shown here.

IV. COMPARISON OF PARAMETER SPACE FOR
DIFFERENT INITIAL AMPLITUDE OF PERTURBATIONS

Figure 7 compares the parameter spaces, as described in
Fig. 6, for two different IPAs: 10−3 and 10−5. As IPA decreases,
the value of Re dividing the MRI-active and TG-active zones,
namely Red , increases, which apparently implies that the
MRI-active region increases. It also appears that Red ∼ IPA−3.
Let us now recall the time scale leading to the system being
nonlinear by the respective growths due to MRI and TG, and
let us estimate if those agree with the observation and the
initial choice of our model. For this purpose, first we fix Re at
1012 and take the IPA to be 10−3, along with sufficiently low
B, so that the flow is assured to be nonlinear and unstable in
the parameter space described in Figs. 6 and 7. In this case,
nonlinearity arises in the TG-active zone at about 750 rotation

FIG. 7. (Color online) Same as Fig. 6 but comparing results with
different IPA, when solid and long-dashed lines are for IPA = 10−3

and 10−5, respectively. The dashed and dotted vertical lines at
Re = 109 and 1015 correspond to threshold Re (as in Fig. 6) when
IPA = 10−3 and 10−5, respectively.

time, and the corresponding TG is shown in Fig. 5 (dotted line).
If the shearing box is at 100Rg away from a 10M� black hole,
where Rg and M� are the Schwarzschild radius and the solar
mass, respectively, then this dimensionless time scale recasts
into 750L/(q�L) = 750

√
R3/GMq2 ∼ 750 s for q = 1.5

(Keplerian disk) when L is the radial width of the shearing box,
G is Newton’s gravitation constant, and M is the mass of the
black hole. Now if we decrease IPA to 10−5 keeping Re fixed,
TG cannot bring nonlinearity anymore (however, by increasing
Re, TG could again bring nonlinearity), as shown in Fig. 7.
Instead, the nonlinearity arises via MRI modes. However, the
time scale for the emergence of nonlinearity in this MRI-active
process, as shown in Fig. 5, is approximately 35 000 rotation
time, which is ∼35 000 s (following the same procedure as
used above for the TG-active case to convert the dimensionless
to dimensionful times). Now we can calculate the radial
velocity (vr ) of the Keplerian accretion disk at the location
of the shearing box for a given accretion rate Ṁ , say a 0.1
Eddington rate [20], which is supported by observation, given
by [20]

vr = 2 × 106α4/5

(
Ṁ

3 × 10−8M�/year

)2/5(
M

M�

)−1/5

×
(

R

3Rg

)−2/5
[

1 −
(

R

3Rg

)−1/2
]−3/5

, (24)

when α is the Shakura-Sunyaev viscosity parameter (whose
origin we are actually attempting to determine herein). It is
reasonable to assume that the time required to make the flow
nonlinear and hence turbulent, which subsequently reveals
viscosity, is of the same order as the time required by a fluid
parcel to cross the length of the shearing box radially (tL)
as a result of turbulent viscosity. Hence, the product of vr

and tL should be of the order of the width of the shearing
box L. For the above-mentioned case of IPA = 10−3, when
nonlinearity is due to TG, we obtain L = 0.1Rg from Eq. (24),
which is highly reasonable for our choice of a shearing box
approximation (L � R). However, for the case of IPA = 10−5,
when nonlinearity is due to MRI, we obtain L = 10Rg , which
marginally satisfies (or even violates) the initial choice of a
narrow shearing box at 100Rg . Therefore, although smaller
IPAs increase MRI-active zones, the observed infall cannot be
explained by them. This problem with MRI would appear to
be more severe at progressively lower IPAs, and TG would
be more important for revealing nonlinearity at progressively
higher Re, which are forbidden for MRI.

V. DISCUSSION AND CONCLUSIONS

Let us estimate the maximum |B| in units of G supporting
nonlinearity, as shown by the solid curve(s) in Figs. 6 and 7.
We again set the shearing box at 100Rg away from a 10M�
black hole. Then we obtain the values of density (ρ100Rg

)
at that location to be ∼10−4 gm/cm3 [20]. The background
Keplerian velocity at that position for the size of the shearing
box, 0.1Rg , which is consistent with that obtained for the TG
active zone, can be obtained as q�L = q

√
GM/R3L ∼ 106
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cm/s. We now consider Re = 1012, and, hence, from Fig. 6
the corresponding maximum (dimensionless) magnetic field
supporting nonlinearity is given by B2/ρ = 10−5. There-
fore, the corresponding actual value of the magnetic field
is

√
10−5ρ100Rg

(q�L)2 ∼ 30 G. This means that for the
flow with Re = 1012 and |B| > 30 G, the energy growth of
perturbation will decay over time, but for |B| � 30 G, TG
will be sufficient to bring nonlinearity in the system, however
still not requiring any growth due to MRI. From Fig. 6, it is
clear that MRI is only important whenever Re < 109, whereas
for Re � 109, which is the favorable zone of Re for accretion
disks, magnetic TG is more important than MRI.

In short, we have calculated the magnetic-field strengths
for different Re’s above which the system will be stable under

linear perturbation and an upper bound of Re above which
either the system is stable under linear perturbation (for high-
magnetic-field strength) or reaches nonlinear regime (for low
magnetic field) through magnetic TG. In summary, MRI is not
the sole mechanism to make accretion disks unstable, there is a
large area in which TG rules, and the explanation of accretion
solely via MRI is misleading.

ACKNOWLEDGMENTS

The authors would like to thank Prateek Sharma for
illuminating discussion. B.M. acknowledges partial support
through the research grant provided by Indian Space Research
Organization of Ref. No. ISRO/RES/2/367/10-11.

[1] J. E. Pringle, Annu. Rev. Astron. Astrophys. 19, 137 (1981).
[2] B. Mukhopadhyay, Phys. Lett. B 721, 151 (2013).
[3] E. Velikhov, J. Exp. Theor. Phys. 36, 1398 (1959).
[4] S. Chandrasekhar, Proc. Natl. Acad. Sci. (USA) 46, 253 (1960).
[5] S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).
[6] B. Mukhopadhyay, N. Afshordi, and R. Narayan, Astrophys. J.

629, 383 (2005).
[7] N. Afshordi, B. Mukhopadhyay, and R. Narayan, Astrophys. J.

629, 373 (2005).
[8] G. D. Chagelishvili, J.-P. Zahn, A. G. Tevzadze, and J. G.

Lominadze, Astron. Astrophys. 402, 401 (2003).
[9] P. A. Yecko, Astron. Astrophys. 425, 385 (2004).

[10] O. M. Umurhan and O. Regev, Astron. Astrophys. 427, 855
(2004).

[11] M. Avila, Phys. Rev. Lett. 108, 124501 (2012).
[12] H. H. Klahr and P. Bodenheimer, Astrophys. J. 582, 869 (2003).
[13] S. M. Mahajan and V. Krishan, Astrophys. J. 682, 602 (2008).
[14] O. M. Umurhan, K. Menou, and O. Regev, Phys. Rev. Lett. 98,

034501 (2007).
[15] E. Liverts, Y. Shtemler, M. Mond, O. M. Umurhan, and D. V.

Bisikalo, Phys. Rev. Lett. 109, 224501 (2012).
[16] M. E. Pessah and C. Chan, Astrophys. J. 751, 48 (2012).
[17] J. Squire and A. Bhattacharjee, Phys. Rev. Lett. 113, 025006

(2014).
[18] S. A. Balbus and J. F. Hawley, Rev. Mod. Phys. 70, 1 (1998).
[19] B. Mukhopadhyay, Astrophys. J. 653, 503 (2006).
[20] N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337

(1973).

023005-7

http://dx.doi.org/10.1146/annurev.aa.19.090181.001033
http://dx.doi.org/10.1146/annurev.aa.19.090181.001033
http://dx.doi.org/10.1146/annurev.aa.19.090181.001033
http://dx.doi.org/10.1146/annurev.aa.19.090181.001033
http://dx.doi.org/10.1016/j.physletb.2013.02.056
http://dx.doi.org/10.1016/j.physletb.2013.02.056
http://dx.doi.org/10.1016/j.physletb.2013.02.056
http://dx.doi.org/10.1016/j.physletb.2013.02.056
http://www.pnas.org/content/46/2/253
http://dx.doi.org/10.1086/170270
http://dx.doi.org/10.1086/170270
http://dx.doi.org/10.1086/170270
http://dx.doi.org/10.1086/170270
http://dx.doi.org/10.1086/431419
http://dx.doi.org/10.1086/431419
http://dx.doi.org/10.1086/431419
http://dx.doi.org/10.1086/431419
http://dx.doi.org/10.1086/431418
http://dx.doi.org/10.1086/431418
http://dx.doi.org/10.1086/431418
http://dx.doi.org/10.1086/431418
http://dx.doi.org/10.1051/0004-6361:20030269
http://dx.doi.org/10.1051/0004-6361:20030269
http://dx.doi.org/10.1051/0004-6361:20030269
http://dx.doi.org/10.1051/0004-6361:20030269
http://dx.doi.org/10.1051/0004-6361:20041273
http://dx.doi.org/10.1051/0004-6361:20041273
http://dx.doi.org/10.1051/0004-6361:20041273
http://dx.doi.org/10.1051/0004-6361:20041273
http://dx.doi.org/10.1051/0004-6361:20040573
http://dx.doi.org/10.1051/0004-6361:20040573
http://dx.doi.org/10.1051/0004-6361:20040573
http://dx.doi.org/10.1051/0004-6361:20040573
http://dx.doi.org/10.1103/PhysRevLett.108.124501
http://dx.doi.org/10.1103/PhysRevLett.108.124501
http://dx.doi.org/10.1103/PhysRevLett.108.124501
http://dx.doi.org/10.1103/PhysRevLett.108.124501
http://dx.doi.org/10.1086/344743
http://dx.doi.org/10.1086/344743
http://dx.doi.org/10.1086/344743
http://dx.doi.org/10.1086/344743
http://dx.doi.org/10.1086/589321
http://dx.doi.org/10.1086/589321
http://dx.doi.org/10.1086/589321
http://dx.doi.org/10.1086/589321
http://dx.doi.org/10.1103/PhysRevLett.98.034501
http://dx.doi.org/10.1103/PhysRevLett.98.034501
http://dx.doi.org/10.1103/PhysRevLett.98.034501
http://dx.doi.org/10.1103/PhysRevLett.98.034501
http://dx.doi.org/10.1103/PhysRevLett.109.224501
http://dx.doi.org/10.1103/PhysRevLett.109.224501
http://dx.doi.org/10.1103/PhysRevLett.109.224501
http://dx.doi.org/10.1103/PhysRevLett.109.224501
http://dx.doi.org/10.1088/0004-637X/751/1/48
http://dx.doi.org/10.1088/0004-637X/751/1/48
http://dx.doi.org/10.1088/0004-637X/751/1/48
http://dx.doi.org/10.1088/0004-637X/751/1/48
http://dx.doi.org/10.1103/PhysRevLett.113.025006
http://dx.doi.org/10.1103/PhysRevLett.113.025006
http://dx.doi.org/10.1103/PhysRevLett.113.025006
http://dx.doi.org/10.1103/PhysRevLett.113.025006
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1103/RevModPhys.70.1
http://dx.doi.org/10.1086/508528
http://dx.doi.org/10.1086/508528
http://dx.doi.org/10.1086/508528
http://dx.doi.org/10.1086/508528
http://adsabs.harvard.edu/abs/1973A%26A....24..337S



