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Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures
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Despite their practical and academic relevance, studies of interfacial pattern formation in confined
magnetorheological (MR) fluids have been largely overlooked in the literature. In this work, we present a
contribution to this soft matter research topic and investigate the emergence of interfacial instabilities when an
inviscid, initially circular bubble of a Newtonian fluid is surrounded by a MR fluid in a Hele-Shaw cell apparatus.
An externally applied, in-plane azimuthal magnetic field produced by a current-carrying wire induces interfacial
disturbances at the two-fluid interface, and pattern-forming structures arise. Linear stability analysis, weakly
nonlinear theory, and a vortex sheet approach are used to access early linear and intermediate nonlinear time
regimes, as well as to determine stationary interfacial shapes at fully nonlinear stages.
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I. INTRODUCTION

Magnetorheological (MR) fluids [1–5] are suspensions
of micrometersized magnetic particles in a nonmagnetic
carrier fluid. The particles are multidomain and only produce
a net magnetization when an external magnetic field is
applied. Under the influence of an external magnetic field
the suspension undergoes a structural transition in such a
way that the randomly dispersed particles tend to aggregate
and arrange themselves to form long chains, columns, and
even intricate networks. This responsive behavior leads to a
rheological change of MR fluids from a liquid to a solidlike
state, which occurs quite rapidly and is of reversible nature.
Therefore, MR fluids are markedly non-Newtonian, presenting
a distinguishing magnetic field-dependent yield stress. Yield-
stress fluids are characterized by the fact that they can sustain
finite stress without flow [6–9].

Although research on MR fluids was originally initiated in
1948 [1], it was only in the early 1990s they were rediscovered
when the “smart fluids” started to be used to produce a
massive number of technological devices [10]. Because of
their peculiar properties, MR fluids provide an efficient way
to design simple and fast electromechanical systems [11,12].
A number of important technological applications range
from the development of smart suspension damping in the
automotive industry, vibration control in washing machines,
and earthquake vibration control in buildings, through grinding
and polishing applications [13,14]. Another relevant topic, of
both scholarly and practical interest, addresses the possibility
of using MR fluids to produce magnetic field-controllable
adhesion to nonmagnetic surfaces [15–17]. This novel MR
fluid-based form of controllable adhesion can potentially be
applied to motion control in robotics [18,19].

At this point we briefly comment on a different kind of
magnetic fluid, named ferrofluid [20,21], that has also attracted
much attention from physicists, chemists, and engineers since
the early 1960s. Ferrofluids present constitutive and flow
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properties that are very distinct from those disclosed by MR
fluids [22,23]. For instance, instead of being composed by
multidomain, micronsized magnetic grains, the particles in
ferrofluids consist of monodomain, nanometersized structures.
In ferrofluids Brownian motion (thermal fluctuations) prevents
particles from settling under gravity, while in MR fluids
particles are too heavy for Brownian motion to keep them
suspended and thus can eventually settle over time. Another
key difference between ferrofluids and MR fluids is related to
chaining phenomena: While MR fluids chain easily under the
action of an external magnetic field, ferrofluids normally show
no tendency toward chain formation. These differing features
make ferrofluids typically Newtonian, while MR fluids are
notably non-Newtonian, yield stress fluids.

Despite the fact that MR fluids have been extensively
studied (both experimentally and theoretically) since the
mid-1990s [1–5,10–19], relatively limited attention has been
given to the study of interfacial pattern formation in these soft
matter materials. This stands in contrast to what happens in
the research of ferrofluids, where interfacial pattern formation
has been vastly investigated [24]. This is particularly true for
the case of confined ferrofluids, where a viscous ferrofluid
droplet is surrounded by a nonmagnetic fluid and placed in
the narrow (effectively two-dimensional) space between two
parallel glass plates of a Hele-Shaw cell [25–35]. Depending
on the nature and symmetry properties of the applied magnetic
field a variety of interfacial patterned morphologies can
be obtained: If the applied magnetic field is uniform and
perpendicular to the Hele-Shaw cell plates, then it destabilizes
the ferrofluid interface and one observes the formation of
highly convoluted, multiply branched, labyrinthine patterns
[25–29]. If the applied field increases radially and is applied
in the plane of the Hele-Shaw cell, it is also destabilizing, and
the development of interesting polygon-shaped and starfishlike
ferrofluid patterns is verified [30,31]. Likewise, if the applied
field is an in-plane ac rotating magnetic field, then it deforms
the ferrofluid droplet, and the formation of amazing spiral
shapes is unveiled [32]. However, if one uses the in-plane
azimuthal magnetic field generated by a current-carrying wire,
it tends to stabilize the ferrofluid interface. This azimuthal
field stabilizing scheme has been proven effective to con-
trol interfacial instabilities in ferrofluids under centrifugally
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induced fingering in rotating Hele-Shaw cells [33–35], re-
sulting in the emergence of interesting diamond-ring-shaped
patterns.

As indicated earlier, pattern formation studies of confined
MR fluids are quite scarce in the literature. There are only
a few isolated examples: The experimental investigation
performed in Ref. [36] used a MR fluid to control both the
amplitude and wavelength of the initial perturbations arising
in the Rayleigh-Taylor instability problem. A couple of other
theoretical studies examined the growth of interfacial patterns
when an initially circular drop of MR fluid is encircled
by a nonmagnetic inviscid fluid: (i) first, when the system
is subjected to a stabilizing azimuthal magnetic field in a
rotating Hele-Shaw cell [35], and then (ii) when a destabilizing
radial field acts in the usual motionless Hele-Shaw cell
arrangement [37]. These last two investigations [35,37] have
demonstrated that the resulting MR fluid interfacial patterns
significantly differ from the equivalent structures generated
when a ferrofluid is utilized [30,34]. This reinforces the idea
that there is plenty of room to study still unexplored pattern
morphologies and novel dynamical behaviors of magnetic
field-induced MR fluid structures in the Hele-Shaw setup.

In this work we consider an additional field-induced,
pattern-forming system recently proposed in the ferrofluid
literature [38] and extend it to the realm of the MR fluid
research. Reference [38] reported a theoretical treatment of
the interfacial instabilities in a Hele-Shaw cell containing an
initially circular bubble of an inviscid nonmagnetic fluid sur-
rounded by a ferrofluid. Under such circumstances (magnetic
fluid is the outer fluid), the interface becomes unstable due to
the action of an in-plane azimuthal magnetic field produced by
a current-carrying wire placed normal to the cell plates. This
situation contrasts to previous azimuthal field studies [33–35]
in which the ferrofluid was the inner fluid, so the azimuthal
field acted to stabilize the interface. As a result of such study
[38] innovative nonlinear interface responses and uncommon
pattern-forming shapes have been identified.

Here we revisit the destabilizing azimuthal magnetic field
setup proposed in Ref. [38] but now consider that the outer
fluid is a MR fluid. Motivated by the fact that MR fluids
(non-Newtonian suspensions of micrometersized magnetic
particles) are quite distinct from ferrofluids (Newtonian colloid
of nanometersized magnetic particles), and by knowing that
these two types of magnetic fluids respond very differently
to external applied fields, we try to access new aspects of
the pattern forming dynamics. Additionally, we search for
still-unexploited MR fluid interfacial pattern conformations.
Linear stability analysis, weakly nonlinear theory, and a
fully nonlinear vortex sheet formalism are employed to gain
analytical and numerical insight into the fluid-fluid interface
time evolution and into the establishment of stationary MR
fluid patterns.

II. LINEAR AND WEAKLY NONLINEAR ANALYSES

A. Dynamics of interfacial perturbations

In this section, our main goal is to describe analytically and
perturbatively the time evolution of the interface separating
a nonmagnetic, inviscid inner fluid, and an outer MR fluid,

FIG. 1. (Color online) Representative sketch of a Hele-Shaw cell
setup containing an inviscid nonmagnetic fluid bubble surrounded by
a viscous MR fluid of magnetic field-dependent yield stress σy(H ).
The in-plane azimuthal magnetic field H is produced by a long wire
carrying an electric current I .

considering that they are confined in a Hele-Shaw cell of thick-
ness b (Fig. 1). The MR fluid obeys a Bingham rheological
law with yield stress [see Eq. (2)], presenting a constant plastic
viscosity η. The surface tension at the fluid-fluid interface
is denoted by γ . The interface destabilization is induced by
the action of an azimuthal magnetic field H produced by a
current-carrying wire,

H = I

2πr
êθ , (1)

that is perpendicular to (coaxial with) the plates of the Hele-
Shaw cell. A magnetic body force ∼∇H , where H = |H| is the
local magnetic field intensity, acts on the MR fluid pointing in
the inward radial direction [20,38]. Since the applied magnetic
field presents a natural nonzero gradient, we take it as the
main local field contribution to the magnetic body force. In
our analysis we have not considered the influence of the
demagnetizing (or induction) field [20,21]. In the Appendix we
present a discussion about the role played by demagnetizing
effects and show that within the scope of our problem they can
be safely neglected. Stabilization of the system is provided by
surface tension and yield stress effects. The electric current is
represented by I , r is the radial distance from the origin of the
coordinate system (located at the center of the cell), and êθ is
a unit vector in the azimuthal direction.

In this framing, we examine the early time (purely linear)
stage of the flow, as well as the intermediate time (weakly
nonlinear) regime, during which important nonlinear effects
start to become relevant. In order to do that, we employ
a perturbative mode-coupling approach that enables one to
derive a differential equation describing the time evolution
of the interfacial perturbation amplitudes. Within the scope
of our second-order mode-coupling theory [39] the perturbed
shape of the interface can be written as R(θ,t) = R + ζ (θ,t),
where R is the radius of the initially circular two-fluid
interface and θ is the azimuthal angle (see Fig. 1). Here
ζ (θ,t) = ∑+∞

n=−∞ ζn(t) exp (inθ ) represents the net interface
perturbation with complex Fourier amplitudes ζn(t) and
discrete azimuthal wave numbers n.

One of the most relevant rheological properties of a MR
fluid is the existence of a magnetic field-dependent yield
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stress. We follow Refs. [3–5,16,17,35] and write a constitutive
equation relating shear yield stress to external magnetic field
strength as

σy(H ) = σy0 + αH 2, (2)

where σy0 represents a small yield stress present even in the
absence of the magnetic field, and α is a constant that depends
on the material properties of the MR fluid, being proportional
to the particle volume fraction [5].

Since we are interested in examining an interface desta-
bilization process, in deriving the governing equation (3)
we consider the regime of high viscosity compared to yield
effects, where flow is facilitated. This is known as the small
Bingham number limit (Bi < 0.2) [40], where Bi measures
the ratio between yield stress and viscous effects. In addition,
as the magnetic body force induced by the azimuthal field
points radially inward [20,33], we take the prevalent yielding
occurring along the radial direction. Under such conditions,
the effectively two-dimensional dynamics of the system can
be described by a modified Darcy’s law for the gap-averaged
velocity [16,17,40,41],

v = − b2

12η

[
∇	 − 3σy(H )

b
êr

]
, (3)

where êr denotes the unit vector along the radial direction.
In Eq. (3) the gap-averaged generalized pressure is defined
as [26]

	 = 1

b

∫ +b/2

−b/2
[P − 
]dz, (4)

where P is the three-dimensional pressure,


 = μ0

∫ H

0
MdH = μ0χH 2

2
(5)

represents a magnetic pressure [20,33], and μ0 denotes the
magnetic permeability of free space. In Eq. (5) we used the
linear relationship M = χH, with M = |M| being the magne-
tization of the MR fluid and χ its magnetic susceptibility.

Before we continue, we call the readers’ attention to the
fact that MR fluids are indeed complex anisotropic media,
possessing anisotropic magnetic and rheological properties
[1–5]. With this in mind, we stress that our current analysis
applies to homogeneous isotropic media. In this context,
our simplified theoretical approach allows us to capture the
qualitative features of the interfacial instability occurring in
real MR fluids. To support our homogeneity assumption for the
MR fluid, at the end of this section we provide a comparative
estimation of the characteristic times of particle migration (τm)
and instability development (τi).

Since the yield term [second term in brackets of Eq. (3)]
can be expressed as a gradient of some scalar function, the
velocity field is irrotational in the bulk, and we can state our
problem in terms of a velocity potential φ, where v = −∇φ.
Moreover, from the incompressibility condition ∇ · v = 0 it
can be seen that the velocity potential is indeed Laplacian,
so we have that ∇2φ = 0. At first glance, it may seem very
simple to solve this Laplace equation. The basic equations for
this system are actually simple. However, their solutions are
definitely not so simple. The difficulty of solving the Laplace’s

equation lies in the existence of moving boundary conditions,
which involve a functional of the unknown interface shape.
This is what is called a free boundary problem, which is in
general not possible to be solved analytically in a close form.
However, as we will verify throughout this work, tackling
the problem via an analytical perturbative approach is quite
feasible and reveals valuable insights regarding the linear and
weakly nonlinear dynamics of the system.

In the context of Hele-Shaw flows [42], our Laplacian
problem is specified by two boundary conditions. The first one
is the augmented pressure jump boundary condition [20,21],

p|r=R =−
[
γ κ + 1

2
μ0(M · n̂)2

]
r=R

, (6)

where p = [
∫ +b/2
−b/2 Pdz]/b and n̂ denotes the unit normal

vector at the interface. The first term on the right-hand side
of Eq. (6) expresses the conventional contribution related to
surface tension and interfacial curvature κ . The second term
on the right-hand side of (6) is related to the magnetic nature
of the problem: It is commonly known as the magnetic normal
traction term [20,21,35] and incorporates the influence of
the discontinuous normal component of the magnetization
at the interface. This particular magnetic contribution has
a key role in determining the shape of the emergent MR
fluid interfacial patterns. The remaining boundary condition
(commonly known as the kinematic boundary condition [42])
connects the velocity of the MR fluid with the motion of the
interface itself,

∂R
∂t

=
[

1

r2

∂R
∂θ

∂φ

∂θ
− ∂φ

∂r

]
r=R

. (7)

Equation (7) expresses the fact that the normal components of
the fluids velocities are continuous across the interface.

To complete our derivation we define Fourier expansions
for the velocity potential and use the kinematic boundary
condition (7) to express the Fourier coefficients of φ in
terms of ζn. Substituting these relations and the pressure
jump condition (6) into a modified Darcy’s law [Eq. (3)],
always keeping terms up to second order in ζ and Fourier
transforming, we find the dimensionless equation of motion
for the perturbation amplitudes ζn (for n �= 0). We present the
evolution of the perturbation amplitudes in terms of the k-th
order in the perturbation (k = 1, 2)

ζ̇n = ζ̇ (1)
n + ζ̇ (2)

n , (8)

with

ζ̇ (1)
n = λ(n)ζn, (9)

where the overdot represents a total time derivative with
respect to time,

λ(n) = |n|
[
χNB

R4
− (n2 − 1)

R3
− S0

R
− S

R3

]
(10)

denotes the linear growth rate, and

ζ̇ (2)
n =

∑
n′ �=0

[F (n,n′)ζn′ζn−n′ + G(n,n′)ζ̇n′ζn−n′ ]. (11)
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The functions F (n,n′) and G(n,n′) are the second-order mode-
coupling terms given by

F (n,n′) = −|n|
R

{
3

2
χ

NB

R4

[
1 + 1

3
χn′(n′ − n)

]

+ 1

R3

[
1 − n′

2
(3n′ + n)

]
− S

R3

}
, (12)

and

G(n,n′) = 1

R
{|n|[1 − sgn(nn′)] − 1}. (13)

In Eq. (13) the sign function sgn equals ±1 according to
the sign of its argument. In Eqs. (8)–(13) lengths and time
are rescaled by r0 and (12ηr3

0 )/(b2γ ), respectively, where
r0 is a typical length being on the order of the unperturbed
droplet radius R. Note that, in the remainder of this paper, we
work with the dimensionless version of the equations. Within
this dimensionless description the system is conveniently
characterized by three governing parameters,

NB = μ0I
2

4π2γ r0
, S0 = 3σy0r

2
0

γ b
, and S = 3αI 2

4π2γ b
.

The parameter NB represents the magnetic Bond number and
measures the ratio of magnetic to capillary forces. On the other
hand, S0 and S are related to the yield-stress contributions
at zero and nonzero applied magnetic field, respectively. We
emphasize that in the presentation of our results in the next
sections we make sure that the values of all relevant dimension-
less quantities we utilize are consistent with realistic physical
parameters [17,35,37,43–45] related to existing magnetic field
arrangements and material properties of MR fluids. The
condition of validity for our model presented at the beginning
of Sec. II A can be written as Bi = (bσy0)/(ηζ̇ ) < 0.2. We have
verified that such a condition holds for the range of parameters
used in our problem.

As commented earlier in this section, here we substantiate
our homogeneity assumption for the MR fluid. We do that by
comparing the characteristic migration time of the magnetic
particles induced by the field gradient, with the typical
time scale for instability development. In Ref. [46] (see
p. 1835) this migration time is calculated by taking into
consideration magnetic forces and hydrodynamic drag acting
on the magnetic particles. Applying their expression for the
migration time to our problem, we obtain

τm = 3ηr2
0

2μ0[H (r0)]2a2
0

∼ 107 s, (14)

where the particle radius a0 ≈ 1 μm, η = 0.1 Pa s, r0 ≈
10−2 m, H ≈ 1 kA/m, and μ0 = 4π × 10−7 Tm/A. On the
other hand, the typical time for instability development in our
problem is

τi = 12ηr3
0

b2γ
∼ 102 s, (15)

where b ≈ 10−4 m and γ = 0.3 N/m. It is clear that τm �
τi , indicating that the effect of particle migration on our
interfacial instability problem can be neglected. This supports
our assumption that the MR fluid can be considered as a
homogeneous medium.

B. Discussion: Linear and weakly nonlinear regimes

By inspecting Eq. (10) for the linear growth rate, one readily
notices that it is a time-independent quantity. Therefore, at
the linear level, Eq. (9) can be easily integrated, resulting
in the exponential growth (decay) of the linear perturbation
amplitudes with time if λ(n) > 0 [λ(n) < 0]. In this context, it
is also clear that the only destabilizing term in Eq. (10) is the
one related to the azimuthal magnetic field (term proportional
to NB). On the other hand, the contribution coming from
surface tension [term proportional to (n2 − 1)], and yield stress
(both S0 and S) effects act to restrain interface deformation.
A quantity of interest that can be extracted from the linear
growth rate is the critical value of the magnetic Bond number
at which the n-th mode becomes unstable. This happens when
λ(n) = 0 and is given by

N crit
B (n) = R

χ
[(n2 − 1) − R2S0 − S]. (16)

From this expression we realize that the minimum value of
N crit

B (n) required to drive the system unstable occurs when
n = 2. These are essentially the most important pieces of
information that can be extracted at a purely linear level
(i.e., stability behavior of the circular interface against small
perturbations).

Now we turn our attention to the mode-coupling, second-
order contributions expressed in Eq. (11). The terms appearing
in the expression for the function F (n,n′) in Eq. (12) arise from
the magnetic applied field, surface tension, and field-dependent
yield stress, respectively. The term proportional to χ2 comes
from the square of the projection of the interface normal in the
azimuthal direction in the pressure jump condition [Eq. (6)].
In addition, the function G(n,n′) defined in Eq. (13) couples
the perturbed flow ζ̇ with the interface shape perturbation ζ

and presents no dependence on magnetic effects.
An important aspect of our second-order perturbative

approach is the fact that, through the coupling of just a few
Fourier modes, one is able to extract key analytical information
about the morphology of the interface (shape of the fingering
structures) at the onset of nonlinearities [39]. From Eq. (9) it is
evident that, at the linear level, the participating Fourier modes
do not couple, so a mode n does not affect the dynamical
evolution of a mode n′. However, at second order in ζ , the
situation considerably differs: From Eq. (11) one can verify
that the time evolution of a given mode n is actually influenced
by an infinite number of modes n′. In this sense a second-order
multimode perturbative analysis should imply the solution of
a complicated set of coupled, nonlinear differential equations.
Depending on the number of interacting modes one wishes to
take into account, the analytical assessment of the interfacial
pattern evolution can be considerably challenging. Fortunately,
it is possible to circumvent this difficulty in such a way
that a description of the underlying nonlinear pattern forming
mechanisms can still be captured by considering the interplay
of a few participating Fourier modes.

In fact, Miranda and Widom [39] have shown that a weakly
nonlinear, mode-coupling analysis based on Eq. (8) is quite
effective in providing very useful clues about the typical
shapes of the emerging fingering structures in Hele-Shaw
cell problems. For instance, in order to find out if a given
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interfacial finger would tend to be wide or narrow, it has been
shown that one does not need to consider the complicated
coupling of an infinite (or a large) number of Fourier modes,
but just to examine the interaction of two specific modes:
namely a fundamental mode and its associated first harmonic.
In this way, the basic morphological mechanism of fingertip
widening or fingertip narrowing could be efficiently captured
even at the lowest nonlinear order and by considering the
interplay between just two Fourier modes. The effectiveness
of this particular weakly nonlinear strategy has been amply
substantiated by a number of analytical, numerical, and
experimental studies in the Hele-Shaw flow literature (see,
for instance, Refs. [47–55]).

To investigate the shape of the uprising MR fluid fingering
structures at the weakly nonlinear regime, we follow Ref. [39].
We begin our analysis by rewriting Eq. (8) in terms of cosine
and sine modes, where the cosine an = ζn + ζ−n and sine
bn = i(ζn − ζ−n) amplitudes are real valued. As in Ref. [39]
we choose the phase of the fundamental mode so an > 0
and bn = 0. As pointed out earlier, within the scope of our
mode-coupling description, fingertip widening, and fingertip
narrowing can be described by considering the influence of a
fundamental mode n on the growth of its first harmonic 2n.
Writing the equations of motion for the harmonic mode we
have

ȧ2n = λ(2n)a2n + 1
2T (2n,n)a2

n, (17)

ḃ2n = λ(2n)b2n, (18)

where the fingertip function is defined as

T (2n,n) = F (2n,n) + λ(n)G(2n,n). (19)

Since the growth of the sine mode b2n is uninfluenced by an

and does not present second-order couplings, we focus on the
growth of the cosine mode a2n which is given by Eq. (17).

Even without explicitly solving Eq. (17), just by inspection
one can assess valuable information about possible shapes
assumed by the emergent interfacial fingers. It is known that
the function T (2n,n) dictates the fingertip behavior [30,39].
From Eq. (17), notice that, depending on the sign of T (2n,n),
the term of order a2

n can drive the growth of a2n either positively
or negatively. If T (2n,n) < 0, a2

n is driven negatively, making
that the inward pointing fingers of the MR fluid will tend to be
narrow at their tips. In this case [T (2n,n) < 0], the outward-
pointing fingers of the nonmagnetic bubble would have blunt
tips.

Reversing the sign of T (2n,n) exactly reverses the above
conclusions. If the fingertip function is positive, a2

n is driven
positively, a phase that results in MR fluid inward-pointing
fingers that become wide and flat at their tips. In this situation
[T (2n,n) > 0], the outward-pointing fingers of the bubble are
the ones that tend to be comparatively narrower.

To begin extracting the most relevant morphological fea-
tures of the emerging fingering patterns by using the weakly
nonlinear approach, in Fig. 2 we plot T (2n,n) as a function
of the Fourier mode n for two values of magnetic Bond
number NB : 15 and 25. It is also illustrated how the fingertip
function behaves when the magnetic field-dependent yield
stress parameter S is modified: the solid (dashed) curve

FIG. 2. (Color online) Behavior of the fingertip function T (2n,n)
as the Fourier mode n is varied for NB = 15 and NB = 25. Solid
(dashed) curves represent the situation for the magnetic field-
dependent yield stress parameter S = 10 (S = 2).

considers that S = 10 (S = 2). Here we fixed χ = 1 and
S0 = 0.5.

By examining Fig. 2, we verify that the fingertip function
T (2n,n) is positive for n � 2 and that it grows quickly as the
value of n is increased. This indicates that the nonlinear effects
favor the development of inward-pointing fingers of the MR
fluid presenting wide tips. Additionally, one can see that such
a fingertip-widening behavior becomes more intense for larger
values of NB . It is also worth noting that, since the solid curves
are located above the dashed ones, larger values of S lead to
enhanced fingertip broadening of the MR fluid inward-pointing
structures. Finally, as indicated previously in this section,
all these findings also anticipate the simultaneous formation
of outward-pointing fingering structures of the nonmagnetic
bubble that are narrower at their tips, as compared to the
corresponding inward-pointing fingers of the MR fluid.

In order to reinforce and better illustrate the major conclu-
sions obtained from the analysis of Fig. 2, in Fig. 3 we plot
the time evolution of the interface considering the interaction
of two representative cosine modes, a fundamental mode n,
and its first harmonic 2n. In each pattern depicted in Fig. 3
eight snapshots of the evolving interface are shown, separated
at equal time intervals, for three different values of NB :
(a) NB = 25, n = 3, and 0 � t � 0.4; (b) NB = 35, n = 4,
and 0 � t � 0.4; and (c) NB = 50, n = 5, and 0 � t � 0.28.
The thicker black interface is the one obtained at the final
time. The fundamental mode was chosen as being the highest
mode inside the linear instability band [defined by setting
λ(n) = 0] so the first harmonic dynamics is driven by just
nonlinear effects. In addition, we keep fixed χ = 0.65, S0 = 1,
and S = 2. The initial perturbation amplitudes are taken as
an(0) = 10−3 and a2n(0) = 5 × 10−4.

By observing Fig. 3, we see the formation of N -fold
interfacial patterns with N = 3, 4, and 5 presenting inward
pointing fingers of the MR fluid that tend to grow wide and
flat at their tips. As predicted by the fingertip function analysis
(Fig. 2), these blunt fingering structures of the MR fluid are
accompanied by outward-pointing fingers of the nonmagnetic
inner bubble that are evidently narrower at their tips.
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FIG. 3. (Color online) Snapshots of the evolving interface, showed at equal time intervals for the interaction of two cosine modes. The
values of NB increase from left to right, and three different fundamental modes are considered: (a) NB = 25, n = 3, and 0 � t � 0.4; (b)
NB = 35, n = 4, and 0 � t � 0.4; and (c) NB = 50, n = 5, and 0 � t � 0.28. The thicker solid black curve represents the final time interface.
All depicted N -fold patterns (N = 3,4, and 5) present the formation of wide, flat penetrating fingers of the MR fluid. The outward moving
fingers of the nonmagnetic bubble are clearly narrower at their tips.

III. FULLY NONLINEAR STEADY SHAPES

In the previous section we have seen that linear stability
analysis provides useful information about the stability of
the interface separating the nonmagnetic and the MR fluid
at initial stages of the dynamics. Furthermore, we have also
verified that a second-order weakly nonlinear theory is able
to extract important information about the morphology of the
fingering patterns at intermediate time regimes. In this section,
however, our main purpose is to have access to fully nonlinear
features of the pattern formation process in a nonperturbative
fashion. One useful method utilized to accomplish this task in
the Hele-Shaw setup is a technique known as the vortex sheet
approach [56,57].

As mentioned in Sec. II A the kinematic boundary condi-
tion (7) expresses the fact that the normal component of the
fluids velocities are continuous when one crosses the two-fluid
interface [42]. In contrast, the tangential components of the
velocities are discontinuous across the interface and give rise
to a region of nonzero vorticity. Therefore, Hele-Shaw flows
are assumed to be irrotational, except right at the interface.

The vortex sheet formalism explores the jump in the
tangential component of the fluid velocity and defines the
vortex sheet strength as

� = (v1 − v2) · ŝ, (20)

where v1 and v2 are the two limiting values (from the outer
and inner sides of the interface, respectively) of the velocity
at a given point. In Eq. (20) ŝ denotes the unit tangent vector
along the interface. With the help of the generalized Darcy’s
law Eq. (3), we can say that

v1 = − b2

12η1

[
∇p1 − ∇
 − 3σy(H )

b
êr

]
(21)

and

v2 = − b2

12η2
∇p2. (22)

Now subtract η2v2 from η1v1, evaluated at the interface, to
obtain

η2v2 − η1v1 = − b2

12

[
∇p2 − ∇p1 + ∇
 + 3σy(H )

b
êr

]
.

(23)

This equation can be conveniently rewritten as

A
(v1 + v2)

2
− (v1 − v2)

2

= b2

12(η1 + η2)

{
∇

[
(p1 − p2) − 


]
− 3σy(H )

b
êr

}
. (24)

Then, by taking the dot product of Eq. (24) with ŝ and writing
the pressure difference (p1 − p2) by using the pressure jump
Eq. (6), we get

AV · ŝ − �

2
= − b2

12(η1 + η2)

×
{
∇

[
γ κ + 1

2
μ0(M · n̂)2 + 


]
· ŝ + 3σy(H )

b
êr · ŝ

}
, (25)

In Eq. (25) A = (η2 − η1)/(η2 + η1) is the viscosity contrast,
and V = (v1 + v2)/2 is an average velocity of the interface
which can be expressed as a Birkhoff integral [56,57],

V(s,t) = 1

2π
P

∫
ds ′ ẑ × [r(s,t) − r(s ′,t)]

|r(s,t) − r(s ′,t)|2 �(s ′,t), (26)

where P means a principal-value integral and ẑ is the unit
vector along the direction perpendicular to the cell. Finally, by
explicitly writing the expressions for 
 [Eq. (5)] and σy(H )
[Eq. (2)] in Eq. (25), a dimensionless equation for the vortex
sheet strength can be obtained, yielding

� = 2

{
AV · ŝ + ∇

[
κ + 1

2

NB

r2
χ [1 + χ (n̂ · êθ )2]

+ S0r − S

r

]}
· ŝ. (27)

The term (n̂ · êθ )2 in Eq. (27) is evocative of the magnetic
normal traction contribution in Eq. (6). Notice that Eq. (27)
is made dimensionless by using the same rescaling utilized to
nondimensionalize Eqs. (8)–(13).

If one wishes to investigate the time evolution of the
interface, one has to solve numerically a complicated nonlinear
integrodifferential equation defined by (27) and (26). Nonethe-
less, a considerably simpler vorticity equation is obtained if
one focus on the still fully nonlinear, but stationary, solutions
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of Eq. (27). In this situation, we have that v1 = v2 = 0. By
taking V = 0 in Eq. (27), considering the condition of zero
vorticity (� = 0), and writing n̂ · êθ = rs , we find that

κs + ∂s

{
1

2

NB

r2
χ

[
1 + χr2

s

] + S0r − S

r

}
= 0, (28)

where the subscripts indicate derivative with respect to the
arclength. Numerical solution of Eq. (28) is relatively simple
[58–61] and offers a neat, nonperturbative way to access
nontrivial, fully nonlinear, steady interfacial shapes in our
problem. By integrating this differential equation, we readily
find

κ = a − 1

2

NB

r2
χ

[
1 + χr2

s

] − S0r + S

r
, (29)

where a is a constant of integration.
Figure 4 depicts a representative set of nonperturbative,

fully nonlinear stationary solutions acquired by the numerical
integration of Eq. (28), taking into consideration the interfacial
curvature expression (29). The resulting stationary shapes
constitute N -fold symmetric structures, where the number of
fingers depends on the physical parameters of the problem
(NB , χ , S, and S0) and on the numerical constant a, which is
related to the value of the curvature κ at r = r0 [30,35,37,59].
We focus on the morphological features produced by the
most prominent physical aspect of the MR fluid system: the
magnetic field-dependent yield-stress parameter S. Therefore,
in all patterns illustrated in Fig. 4 we take the typical values
NB = 10, χ = 1, and S0 = 1 as fixed parameters, as S is
increased from the top to the bottom panel (S = 2,5,10).

Before we proceed, we make a few remarks about the
unconstrained vortex sheet approach used to generate the
shape solutions represented in Fig. 4. The shapes displayed
in a given panel of Fig. 4 are obtained by utilizing the
same physical parameters but can present different areas
and contour lengths. In this framing, the different interfacial
morphologies presented in a panel are obtained by varying a,
which is arbitrary, and is carefully tuned in order to keep the
interfacial curves commensurable and non-self-intercepting
(see Refs. [30,35,37,58–61] for details). In other words, while
we numerically search for physically relevant, closed, non-
self-crossing interfacial patterns, we do it without imposing
constraints on the area and perimeter of different patterned
structures. This is the reason why one can observe that some
patterns shown in Fig. 4 present different dimensions (enclosed
area and boundary length). Nevertheless, these observations do
not overshadow the most advantageous facet of the vortex sheet
method: namely its ability to access essential, fully nonlinear
elements of the patterns’ morphologies. Finally, it should be
emphasized that all patterns shown in Fig. 4 are a collection
of stationary solutions and not a time-evolving sequence of
events.

By inspecting Fig. 4, one notices that the morphology
of the nonperturbative, fully nonlinear stationary solutions
is consistent with the perturbative, weakly nonlinear, time-
evolving patterned shapes presented in Sec. II B. Recall that
our weakly nonlinear analysis predicted the development
of structures presenting inward pointing fingers that should
become wider at their tips as the parameter S is increased. This
is in fact what is revealed in Fig. 4: as the value of S is increased

from the top panel (S = 2) to the bottom panel (S = 10),
the finger-widening effect becomes more pronounced due
to the nonlinear action of the field-dependent yield stress,
and the inward-pointing fingers of the MR fluid get flattened.
One can also verify that the outward-pointing fingers of the
nonmagnetic, inner fluid are comparatively narrower, tending
to be more rounded (i.e., not flat) at their tips. This last feature
is also in line with the predictions outlined in Sec. II B.

In addition to substantiating our weakly nonlinear findings,
the vortex sheet approach unveils a morphological aspect that
could not be foreseen at the weakly nonlinear regime: the
occurrence of a finger pinch-off phenomenon. From Fig. 4
one observes that, as S is increased, the outward-pointing
fingers of the inner fluid get “strangled” at their necks and
tend to pinch off and eventually separate from the main body
of the nonmagnetic bubble. It is worthwhile to note that
similar pinch-off events have also been detected in other finite
surface-tension Hele-Shaw flows (with nonmagnetic, as well
as magnetic, fluids), notably those taking place in rotating
Hele-Shaw cells [35,48,58,59].

Even though some of the stationary shapes we exemplified
in Fig. 4 can be complicated, it is clear that they are still regular,
showing some symmetry. We close this section by briefly
commenting on the connection of these theoretical, stationary
structures, with time-evolving shapes that eventually can arise
in real experiments or numerical simulations. Under realistic
experimental situations, one should expect the presence of
noise during the time evolution of the interface. Possible
sources of noise may come, for instance, from inhomogeneities
on the plates of the Hele-Shaw cell, imperfections in the
magnetic field arrangement, irregularities in the gap thick-
ness b, or even from thermal or pressure fluctuations. Under
such circumstances, the formation of unequal finger configu-
rations presenting fingers that compete and present different
lengths should be expected. Consequently, real experiments
and numerical simulations can evolve towards configurations
close to the stationary shape solutions depicted in Fig. 4
but probably presenting irregularities and asymmetries. They
can also assume the shapes close to those illustrated in Fig.
4 during a transient but that eventually can depart from
them.

Although the definite relevance of our current MR fluid
steady shapes remains to be checked by experiments and
advanced time simulations, there are existing evidence sup-
porting the pertinence of such type of stationary solutions for
other Hele-Shaw flow studies. This is particularly true for the
Hele-Shaw problem in rotating cells involving nonmagnetic
[48,53,58] or magnetic fluids [34,35]. For instance, the exis-
tence of symmetric stationary solutions in Refs. [53,58] can
explain the experimental observation [48] of a plateau in the
time evolution of the area of inner fluid contained in a reference
circle. In addition, the stationary ferrofluid solutions obtained
in Ref. [35] are found to be quite similar to the fully nonlinear,
time-evolving patterns simulated numerically in Ref. [34].
Finally, in our present work, the morphological similarities
between the time-evolving weakly nonlinear shapes shown
in Fig. 3 and some of the stationary patterns depicted in
Fig. 4 are also indicative that symmetric stationary solutions
capture important qualitative features of the corresponding
time-evolving shapes.
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FIG. 4. (Color online) Typical nonperturbative, stationary shape solutions for a nonmagnetic fluid bubble surrounded by a MR fluid,
considering three values of S. For each value of S the different N -fold patterns (N = 3, 4, and 5) are obtained by taking increasingly larger
values of the constant of integration a (in a given panel a increases from left to right). The values we used for this constant of integration are as
follows: top panel, a = 5.881, a = 12.884 and a = 15.095; middle panel, a = 6.619, a = 11.149, and a = 12.290; bottom panel, a = 5.291,
a = 6.609, and a = 6.860.

IV. SUMMARY AND CONCLUSIONS

In contrast to what is observed in ferrofluid research, Hele-
Shaw flow studies addressing interfacial pattern formation in
MR fluids are relatively scarce in the literature. To contribute
to the growth of this interesting, but still poorly explored,
topic, in this work we have investigated the behavior of the
interface separating a nonmagnetic inviscid bubble and a
surrounding MR fluid when they are confined in a motionless
Hele-Shaw cell. The fluid-fluid interface is made unstable
through the action of an azimuthal magnetic field generated
by a current-carrying wire. The wire is set perpendicularly
to the Hele-Shaw cell plates and located at the center of
the bubble. This magnetic field configuration produces a
magnetic body force that acts radially inward, deforming the
initially circular two-fluid interface. A conspicuous aspect of
the problem is the fact that MR fluids present a dual solid-liquid

behavior, characterized by a magnetic field-dependent yield
stress. Another relevant physical ingredient of the system is
surface tension: It tries to stabilize the deformed interface,
tending to maintain it as close as possible to a circle. The
interplay of magnetic, yield-stress, and surface tension forces
ultimately determines the shape of the two-fluid interface.

Our study focuses on understanding the pattern-forming
behavior of the interface during early linear, weakly nonlinear,
and fully nonlinear regimes. Linear stability analysis reveals
the destabilizing nature of the azimuthal magnetic field, as
well as the stabilizing role played by surface tension and
yield-stress contributions. On the other hand, mode-coupling
analysis opens up the possibility of investigating analytically
important morphological features of the evolving interface at
the onset of nonlinear effects. In particular, we have found
that, due to the action of the magnetic field-dependent yield
stress, the resulting MR fluid patterns present inward pointing
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fingers that have the tendency to become flat and wide at
their tips. This morphological attribute has been confirmed by
our fully nonlinear, nonperturbative vortex sheet results that
unveiled the emergence of N -fold stationary structures having
blunt inward-pointing fingers. We have also verified that these
fingers are accompanied by the development of outward-
pointing protuberances of the bubble, which eventually can
lead to the occurrence of pinch-off events.

Our theoretical work makes specific predictions that have
not yet been subjected to experimental check. We do hope
that experimentalists, mainly those already working with
magnetic fluids, will feel motivated to test our findings. On the
theoretical side, a welcoming, natural extension of this work
would be the investigation of fully nonlinear, time-evolving
MR patterns via numerical simulations.
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APPENDIX: INFLUENCE OF THE DEMAGNETIZING
FIELD

In this work we have considered only the lowest-order effect
of the magnetic interactions that would result in fluid motion.
Thus, in the azimuthal field situation, we have considered only
the applied field in determining the magnetization. This is well
justified by the fact that the azimuthal field is parallel to the
plane of the Hele-Shaw cell, so the formation of magnetic
surface charge densities that would have been responsible for
inducing demagnetizing field effects is not favored [33,34,37].
For the sake of completeness, in this Appendix we extend
our results by calculating the next order contribution on the
interface dynamics due to the fringing field generated by
induced magnetic charges in the perturbed circular droplet.
This leading order correction appears at the linear growth rate
and allows us to estimate the validity of the inductionless
approximation.

We follow a procedure similar to the one presented in
Ref. [62] by taking Eq. (3) and by considering that now the
local magnetic field differs from the applied field H0 by a
demagnetizing field of the polarized MR fluid H = H0 + Hd ,
where Hd = −∇ψ and ψ is the scalar magnetic potential,

ψ = 1

4π

∫
S

M · n′

|r − r′|d
2r ′. (A1)

The unprimed coordinates r denote arbitrary points in space,
and the primed coordinates r′ are integration variables within
the magnetic domain S defined on the ribbonlike interface

separating the two fluids. The infinitesimal area element is
denoted by d2r ′ = r ′dθ ′dz′. The vector

n′ =
(
êr − 1

r ′
∂ζ (θ ′)
∂θ ′ êθ

)
√

1 + (
1
r ′

∂ζ (θ ′)
∂θ ′

)2
(A2)

represents the unit normal to the magnetic domain in consid-
eration, bounded by R(θ ′,t) = R + ζ (θ ′,t).

In order to determine ψ we take its first approximation as
being the scalar magnetic potential related to the magnetic
charges induced by the applied magnetic field. Therefore,
the magnetization follows the linear relation M = χH0 =
χ (I/2πr ′)êθ . Taking this assumption into consideration,
Eq. (A1) becomes

ψ =− χI

8π2

∫ +b/2

−b/2

∫ 2π

0

1
r ′

∂ζ (θ ′)
∂θ ′√

1 + (
1
r ′

∂ζ (θ ′)
∂θ ′

)2

× dθ ′dz′√
r2 + r ′2 − 2rr ′ cos (θ ′ − θ ) + (z − z′)2

. (A3)

Regarding the magnetic-field-dependent yield stress, we
point out that since the magnitude of the applied magnetic
field is much larger than the magnitude of the demagnetizing
field, in this analysis we may proceed considering H ≈ H0

in Eq. (2). It is also worth noticing that the corrections in the
pressure jump condition (6) due to the demagnetizing field are
of third order in ζ and, therefore, will not be present in our
second-order approach.

By performing the linear perturbation analysis described
in Sec. II A with the inclusion of the demagnetizing field, we
derive a new expression for the linear growth rate:

λ(n) = |n|
{

χNB

R4

[
1 + 2χ

π
W (n)

]
− (n2 − 1)

R3
− S0

R
− S

R3

}
,

(A4)

where

W (n) = n
R

b

∫ π/2

0

⎡
⎣

√
1 +

(
b csc τ

2R

)2

− 1

⎤
⎦

× cos τ sin (2nτ )dτ. (A5)

As we compare Eq. (A4) with Eq. (10), we notice that the
term proportional to W (n) is precisely the one related to
the contribution of the demagnetizing field. By numerically
integrating this extra demagnetizing term in the range of
parameters we utilize in this work, we found that it corresponds
to a maximum of 10% of the magnitude of the usual applied
magnetic field term, and it does not lead to any qualitative
difference in the growth rate behavior.
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