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We study the phenomena of oscillation quenching in a system of limit cycle oscillators which are coupled indi-
rectly via a dynamic environment. The dynamics of the environment is assumed to decay exponentially with some
decay parameter. We show that for appropriate coupling strength, the decay parameter of the environment plays a
crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). The critical curves
for the regions of oscillation quenching as a function of coupling strength and decay parameter of the environment
are obtained analytically using linear stability analysis and are found to be consistent with the numerics.
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I. INTRODUCTION

Understanding of coupled oscillators provides an elegant
way to realize a variety of complex dynamical behaviors,
arising spontaneously in real-life systems [1–3]. Recently,
the fascinating phenomenon of oscillation quenching, i.e.,
amplitude death (AD) [4] and oscillation death (OD) [5],
has been extensively studied due to its applications in various
fields including physics, biology, chemistry, and engineering.
Amplitude death corresponds to a situation in which the
oscillations of coupled oscillators are suppressed in such a
way that they stabilize to the same stable steady state which
was otherwise unstable. First observed by Rayleigh [1] in
nineteenth century, this phenomenon has been studied with
different coupling schemes to understand its properties and
causes of manifestation [4] in diverse areas ranging from
oceanography [6] and chemical engineering [7] to lasers [8]
and neuronal systems [9].

On the other hand, oscillation death refers to stable
inhomogeneous steady states (IHSS), where oscillators occupy
different steady states which are created by the coupling.
The key ingredient for this type of emergent dynamics is the
breaking of the inherent symmetry of the system [5]. Thus,
in contrast to AD, OD is a much more complex phenomenon,
since it stimulates inhomogeneity in a rather homogeneous
system of oscillators. Occurrence of oscillation death (OD)
is quite common in many natural systems such as chemical
oscillators [10], chemical droplets [11], chemical reactors [12],
thermokinetic oscillators [13], and electronic circuits [14].
Moreover, eminent significance of OD can be clearly realized
in the case of biological systems including neural networks
[15], genetic oscillators [16], calcium oscillators [17], and
stem cell differentiation [18].

Since AD and OD both represent the state of suppressed
oscillations, they therefore have been considered as the same
phenomena for many years. It is only in the recent findings
of Koseska et al. [5] where the distinction between these
two structurally different states has been pointed out. In this
work, it is articulated that AD and OD are two entirely
different phenomena in their nascency as well as in their
properties. Over the past few years, this peculiar phenomenon
of OD has been profoundly explored and shown to subsist
under various coupling schemes, for example, dynamic and
conjugate coupling [19], time-delay coupling [20], mean-field
coupling [21–25], repulsive coupling [26], direct-indirect
coupling [27,28], etc.

The recent surge in studies related to the collective behavior
of indirectly coupled oscillators [29–36] is motivated by the
fact that elements in some realistic systems influence each
other indirectly through a common medium. For instance,
chemical oscillations of catalyst loaded reactants in a medium
exchange chemicals with the surrounding medium [37]. Ge-
netic oscillators also communicate to each other by diffusing
chemicals between cells and the extracellular medium [38].
Similarly, an ensemble of cold atoms also interact through
a coherent electromagnetic field [39]. The framework of
indirect coupling also provides a better understanding of
the functioning and operating mechanism of the biological
systems such as bacteria [40] and yeast cells [41] that
communicate through a common environment. In addition,
emergence of robust rhythms in biological organisms such as
central pattern generators, cardiac pacemakers, and circadian
clocks are also well explained by indirectly coupled oscillators.
Moreover, for the case of neuronal oscillators, this kind
of coupling has particular meaning where concentrations of
neurotransmitters released by each cell stimulate collective
rhythms in a population of circadian oscillators [42]. In order
to capture the essential features of such systems, Resmi et al.
proposed a model of indirectly coupled oscillators. They have
shown that the phenomena of synchronization and amplitude
death [34–36] emerge due to the interplay of direct and indirect
coupling in such systems. Later, the occurrence of OD was also
studied by Ghosh et al. [28] under the same coupling scheme.

The study about the collective dynamics of a system of
oscillators, coupled only via external environment, is a less
explored area and only a few studies are devoted to this
subject. For example, in an ensemble of indirectly coupled
chaotic oscillators with no direct coupling, the phenomena
of synchronization and quorum-sensing behavior has been
investigated [43]. Moreover, dynamical quorum sensing was
also observed for an ensemble of oscillators which were
coupled diffusively through an external medium [44]. How-
ever, the phenomena of oscillation quenching has not been
explored for the system of oscillators where communication
among them is through a common medium. In this work,
we explore the possibility of the existence of AD and
OD in a system of indirectly coupled oscillators where
direct interaction among them is absent. We identify various
quenched oscillation states, namely, amplitude death (AD),
homogeneous steady states (HSS), and inhomogeneous steady
states (IHSS). Using detailed bifurcation analysis, we also
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explore the transition from one quenched oscillation state to
another.

The outline of the paper is as follows. In Sec. II, we discuss
the model and find different nontrivial steady states possible
for the system. In Sec. III, we first present the numerical phase
diagram in the parameter plane showing different dynamical
regimes possible for the system and then corroborate the nu-
merical results with analytical results, obtained from linear sta-
bility analysis and bifurcation diagram obtained from the pack-
age XPPAUT [45]. Finally, in Sec. IV we summarize the results.

II. MODEL

To demonstrate the effect of indirect coupling on limit cycle
oscillators, we consider the Stuart-Landau (SL) oscillator as a
basic unit described by the equation

ż = f (z) = (1 + iω − |z|2)z, (1)

where z = reiθ = x + iy is the state variable, with real part
Re(z) = x and imaginary part Im(z) = y. This system exhibits
self-sustained limit cycle oscillations with radius r = 1 and
frequency ω [46,47].

The system of 2 (N > 1) SL oscillators, coupled through a
common environment, is given as

ż1 = (1 + iω1 − |z1|2)z1 + ε(s − x1),

ż2 = (1 + iω2 − |z2|2)z2 + ε(s − x2),

ṡ = −γ s − ε

(
x1 + x2

2

)
.

(2)

Here, the state variable s corresponds to the external
environment and ε (ε > 0) is the coupling strength. It is
the measure of particle species that can freely diffuse in
the environment and allows oscillators to communicate with
each other. The environment has its own dynamics and
in the absence of coupling it is decaying with the decay
rate γ . This model of indirectly coupled oscillators is able
to capture the gist of many chemical and biological systems.
In these systems, through diffusion of common species,
elements influence the environment and also get influenced
by the environment. Here, the dynamical equations of the
two oscillators are invariant under the permutation of indices.
Nevertheless, the continuous rotational symmetry present in
the single SL oscillator is broken by the coupling term
and results in different nontrivial steady states. This work
emphasizes the stability of these newly created homogeneous
and inhomogeneous steady states due to interaction. Without
any loss of generality, we set the internal frequency of each
oscillator at ω1 = ω2 = ω = 2 initially.

In order to study the behavior of homogeneous and
inhomogeneous fixed points, we introduce the following linear
coordinate transformation:

zs = 1
2 (z1 + z2); za = 1

2 (z1 − z2); (3)

which are symmetric and antisymmetric variables and corre-
spond to symmetric (za = 0) and antisymmetric (zs = 0) man-
ifolds respectively. In this coordinate system the dynamical

equations transform to

żs = 1
2 [f (zs + za) + f (zs − za)] − ε[s − Re(zs)],

ża = 1
2 [f (zs + za) − f (zs − za)] − εRe(za),

ṡ = −γ s − εRe(zs).

(4)

Thus, the dynamical equations from Eqs. (4) can be written
as [20]

żs = (
1 + iω − |z|2s

)
zs − ε[s − Re(zs)],

ṡ = −γ s − εRe(zs),

ża = 0

(5)

for the symmetric subspace, Zs = {(zs,s,za)|za ≡ 0}, and

żs = 0,

ṡ = 0,

ża = (
1 + iω − |z|2a

)
za − εRe(za)

(6)

for the antisymmetric subspace, Za = {(zs,s,za)|zs ≡ 0,s ≡ 0}.
Clearly, apart from the trivial homogeneous steady state,

(z1,z2,s) = (0,0,0), Eqs. (5) and (6) also allow the appearance
of nontrivial steady states in symmetric and antisymmetric
subspaces for the above system. Thus, from the equations
obtained above we can calculate the fixed points of the coupled
system and can also perform their stability analysis.

Note that the antisymmetric subspace allows only inho-
mogeneous solutions. Two different branches b1 and b2 of
steady-states solutions, represented as (zs,s,za) = (0,0,±zih

b1
)

and (zs,s,za) = (0,0,±zih
b2

), emerge from the trivial steady
state (z1,z2,s) = (0,0,0) and are given by

xih
b1,b2

= yih
b1,b2

(
∓ε + √

ε2 − 4ω2

2ω

)
,

yih
b1,b2

=
√

ε − 2ω2 ± √
ε2 − 4ω2

2ε
;

(7)

where zih
b1,b2

= xih
b1,b2

+ iyih
b1,b2

. Also note that solution of the
system will be of the form x1 = −x2 and y1 = −y2 and
therefore, if the system stabilizes to any of the solution
branches b1 or b2, it is called oscillation death. Moreover,
the superscript ih denotes the inhomogeneous steady state.

For the symmetric subspace, by definition, only homoge-
neous steady states can be found. The HSS of the system for
symmetric subspace also emerges from trivial steady state,
(z1,z2,s) = (0,0,0). The two solution branches of homoge-
neous steady states are represented as (zs,s,za) = (zh

b1
,sb1 ,0)

and (zs,s,za) = (zh
b2

,sb2 ,0) and given by

xh
b1,b2

= yh
b1,b2

(
∓ε(ε + γ ) +

√
ε2(ε + γ )2 − 4ω2γ 2

2ωγ

)
,

yh
b1,b2

=
√

ε(ε + γ ) − 2ω2γ ±
√

ε2(ε + γ )2 − 4ω2γ 2

2εγ
,

sb1,b2 = −xh
b1,b2

ε

γ
;

(8)
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where zh
b1,b2

= xh
b1,b2

+ iyh
b1,b2

. Here, the superscript h stands
for homogeneous steady states. If the system stabilizes to
any of the solution branch, b1 and b2, it is called amplitude
death as in this case both the solutions are of the form,
x1 = x2 and y1 = y2.

The rotational symmetry of the uncoupled system [given by
Eq. (1) for ε = 0] is broken by the coupling term leading to the
appearance of HSS (z1 = z2) and IHSS (z1 = −z2) solutions
of Eq. (2) [5].

III. RESULTS

Regions of different dynamical states of the system of
two indirectly coupled oscillators in the parameter plane of
coupling strength, ε, and decay rate of linear system, γ , are
calculated numerically and shown in Fig. 1. For each set of
parameters ε and γ we have chosen 102 initial conditions for
each oscillator as well as for the environment from a uniform
random distribution in the range (−1,1). In Fig. 1, AD refers
to stabilization of the system to the trivial fixed point, namely
the origin, while HSS and IHSS represent homogenous steady
states and inhomogenous steady states, respectively. Moreover,
the black curves are the analytical results, obtained from the
eigenvalue analysis. The stability of steady states is determined
by the eigenvalues of the Jacobian matrix calculated at the
fixed points. If the real part of the largest eigenvalue of this
matrix is negative, then the corresponding steady state is
stable; otherwise it is unstable. Additionally, we also define
the unstable dimension for the system, which is the number
of strictly positive eigenvalues of the Jacobian matrix at the
corresponding fixed point. Clearly, the unstable dimension will
be zero for the stable fixed point in the parameter plane.

We first consider the stability of origin in the parameter
plane (ε, γ ). For this state, the characteristic equation in the

0 2 4 6 8
ε

1

2

3

4

γ

OS

AD

HSS

HSS+IHSS

P

FIG. 1. (Color online) Diagram showing different phases of cou-
pled system in the parameter plane of ε and γ . The different colors
represent different dynamical regimes. White color corresponds to a
state where oscillatory solutions coexist with HSS solutions. Other
dynamical regimes are marked as OS, AD, HSS, and HSS + IHSS
(for details, please see text). The black curves separating different
dynamical regimes are obtained analytically using linear stability
analysis at ω = 2.

symmetric subspace is given as

λ3 + a2λ + a1λ + a0 = 0, (9)

with a2 = γ − 2 + ε, a1 = 1 + ω2 − 2γ + ε2 + γ ε − ε and
a0 = γ (1 + ω2) − ε2 − εγ and in the antisymmetric subspace

λ2 + λ(ε − 2) + (1 + ω2 − ε) = 0. (10)

Now, the solutions of these two equations decide the stability
of origin. At ε = 2 the real part of the two eigenvalues of
antisymmetric subspace crosses zero. Also, the remaining
three eigenvalues corresponding to symmetric subspace are
found to be negative, which leads to the occurrence of Hopf
bifurcation.

Now, the HSS solutions are born at γ = γc where

γc = ε2

1 − ε + ω2
. (11)

In the parameter plane of ε and γ , the curves ε = 2 and γ =
γc meet at γ = 4

ω2−1 = 1.333. So, for γ > 1.333 the origin
is stabilized via Hopf bifurcation. Using the Routh-Hurwitz
criterion of roots for polynomial equation, we find that for
γ > γc roots of Eq. (9) cross the y axis and become positive,
resulting in the destabilization of the AD solution. Thus, the
region of stability of origin lies within the boundary of two
curves, namely, ε = 2 and γ = γc. The statements made above
are well corroborated with the phase diagram (Fig. 1) and
the bifurcation diagram [Fig. 2(a)]. A typical time series of
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x1x2 = -x1
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x1,2(b) (c) (d)

-x1,2

FIG. 2. (Color online) (a) Bifurcation diagram (using XPPAUT)
of two coupled SL oscillators is plotted as a function of coupling
strength, ε. Solid and dashed lines denote stable and unstable steady
states, respectively, while filled blue (gray) circles represent stable
periodic solutions. The bifurcation points such as Hopf bifurcation
(HB) and pitchfork bifurcation (PB) are marked. Time series of state
variable x for the two oscillators at (b) ε = 2.5 showing AD, i.e.,
x1,2 = 0; (c) ε = 3.5 showing HSS solutions where x1 = x2; and
(d) at ε = 7 representing both HSS (shown by red and blue [gray]
lines) and IHSS solutions (dashed lines), where x1 = −x2. Here,
γ = 3 > γc and ω = 2.
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FIG. 3. (Color online) (a) Bifurcation diagram (using XPPAUT) of
the two SL oscillators is plotted as a function of coupling strength,
ε. Solid and dashed lines denote stable and unstable steady states,
respectively, while filled and open blue (gray) circles stand for stable
and unstable periodic solutions, respectively. The bifurcation points,
namely Hopf bifurcation (HB) and pitchfork bifurcation (PB), are
marked. Time series of state variable x of the two oscillator for ε =
1.85 for two different initial conditions showing (b) antiphase periodic
solutions and (c) HSS solutions. The other parameters γ = 1 < γc

and ω = 2.

x variable of the two oscillators for this dynamical regime is
shown in Fig. 2(b).

The HSS solutions born at γ = γc are stabilized by
pitchfork bifurcation as marked by PB1 in Fig. 2(a) for γ =
3 > 1.333. However, at γ = 1.333 both pitchfork and Hopf
bifurcation points merge, which results in the destabilization
of both periodic as well as the HSS solutions in the system. The
merging of pitchfork bifurcation point and Hopf bifurcation
point is also clearly visible in the phase diagram (Fig. 1) by
the point marked by P. In this case, both HSS and oscillatory
solutions coexist with each other. A representative time series
of x variable of both oscillators is shown in Figs. 3(b) and 3(c).
Here we have used different initial conditions for a particular
parameter values ε = 1.85 and γ = 1. Note that the oscillatory
solutions are in antiphase and can be seen in Fig. 3(b), which is
quite different from the cases which have been reported earlier
[12,23]. To check the stability of the HSS solution, we consider
the characteristic equation corresponding to HSS solutions in
both symmetric and antisymmetric subspaces. In symmetric
subspace it is given as

λ3 + b2λ
2 + b1λ + b0 = 0, (12)

where b2 = 4r2 + ε − 2 + k, b1 = 1 + ω2 + 3r4 − 4r2 +
ε(r2 + 2y2 − 1) + γ (4r2 + ε − 2), and b0 =γ (1 + ω2 + 3r4 −
4r2) + ε(r2 + 2y2 − 1)(γ + ε). The characteristic equation of

HSS in antisymmetric subspace is given by

λ2 + c1λ + c0 = 0, (13)

where c1 = 4r2 + ε − 2 and c0 = 1 + ω2 + 3r4 − 4r2 +
ε(r2 + 2y2 − 1). In Eqs. (12) and (13) r2 = x2 + y2 with the
value of x and y as given in Eq. (8). Here, we have also used
Routh-Hurwitz criterion and observed that for γ < 1.333 the
eigenvalues of symmetric subspace are negative and only one
eigenvalue of the antisymmetric subspace is positive. However,
this positive eigenvalue become negative at the critical value
of γ given as

γ = 4ε2(ε + 2)

4(1 + ω2) − ε(3ε + 4)
. (14)

Thus, the region of stability for HSS lies on the right side of the
curve given by Eq. (11) for γ > 1.333 and Eq. (14) for γ <

1.333. The phase diagram portrayed in Fig. 1 and bifurcation
diagrams displayed in Figs. 2(a) and 3(a) also validate the
statements made above. The time series of x variable of the
two oscillators is plotted for γ = 3 and ε = 3.5 in Fig. 2(c),
which shows the two stable HSS solutions for two different
initial conditions.

Now, the IHSS solutions are born via pitchfork bifur-
cation at ε = 1 + ω2 as marked by PB2 in Figs. 2(a) and
3(a). Behavior of this state is analyzed by considering the
characteristic equations for these points. It turns out that the
characteristic equation obtained for this state in symmetric and
antisymmetric subspaces is same as that of the HSS solutions
given by Eqs. (12) and (13). However, the difference is of IHSS
value, as given by Eq. (7). Using the Routh-Houritz criterion,
for the two equations we find that all eigenvalues are negative
except one in symmetric subspace, thus reducing the unstable
dimension of the system to one. Since the analytical expression
for the curve in ε and γ parameter space is complicated, we
take some representative values of ε and calculate the values
of γ numerically, where all the eigenvalues are negative. These
points are plotted in the phase diagram (Fig. 1) and match with
the stability boundary of IHSS. It turns out that these IHSS
solutions are stabilized by another pitchfork bifurcation (PB3)
as articulated in Figs. 2(a) and 3(a). Here, the IHSS solutions
coexist with HSS solutions, which can be seen in the time series
of state variable x of both oscillators in Fig. 2(d) for ε = 7 and
γ = 3. Here, depending on the initial conditions, oscillations
of two oscillators are quenched in such a way that the state
variable can be either in symmetric, i.e., x1 = x2,y1 = y2, or
in antisymmetric, i.e., x1 = −x2,y1 = −y2, state.

Now we will discuss the other important aspect, which is
the stability of the HSS solutions in the case of parameter
mismatch. We have introduced the mismatch parameter � in
Eq. (2) with � = ω1 − ω2. Clearly, the case � = 0 represents
identical systems. For � �= 0, we numerically compute the
phase diagram to understand the emergent behavior of the
system due to mismatch. Figure 4(a) shows the phase diagram
for the coupled system in ε and � plane. Here, the first
thing to notice is the absence of HSS solutions. Thus, even
a small heterogeneity may remove the HSS solutions. To
understand more about this, we have calculated the stable
steady-state solutions for the two cases, namely, � = 0
and � �= 0, numerically. It is found that the HSS solution
branch which is stable for � = 0 splits into two branches, as
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FIG. 4. (Color online) (a) Different dynamical regions plotted
by different colors in ε − � plane for γ = 3 and ω2 = 2. The
stable steady-state solutions against ε are calculated numerically for
(b) � = 0 and (c) � = 0.1. The blue (gray) line in panel (b) denotes
one of the HSS solution branches splits into two solution branches
due to parameter mismatch as shown by blue and green (gray) lines
in panel (c). Similarly, the other HSS solution branch also splits into
two branches.

displayed in Figs. 4(b) and 4(c). Now, the two mismatched
oscillators occupy these new steady states for a particular
initial condition. This explains the absence of HSS solution
in the parameter mismatch case. This result holds true even for
a small amount of mismatch. This is quite different from the
results reported for mean-field diffusion coupling [23], where
the HSS solution branches become unstable due to parameter
mismatch.

At last, we consider the oscillation quenching states for
the case where N > 2 identical SL oscillators are coupled
indirectly via environment. We have found a similar route to
oscillation quenching for this system (results not reported).
Here, the steady states of N oscillators crucially depend on the
initial conditions. For the quenched oscillation regime in the
parameter space, there can be either one or two stable steady
states for all oscillators. So, all oscillators can form either a
one-state HSS cluster shown in Figs. 5(a) and 5(b) or a stable
two-state IHSS cluster shown in Fig. 5(c) for the same value
of the parameters ε and γ .

IV. CONCLUSION

In summary, we have studied a system of limit cycle
oscillators coupled indirectly via dynamic environment in the
absence of direct interaction among the oscillators. The regions
of various dynamical regimes are obtained numerically, which
are further well corroborated analytically in the parameter
space of coupling strength and decay parameter of the
environment. We uncover that the route from oscillatory
solutions to quenching of oscillation crucially depends on the
decay parameter of the environment. For sufficiently larger
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FIG. 5. (Color online) A representative one-state cluster in (a)
and (b), and a two-state cluster in (c) for a network of N = 100
indirectly coupled identical SL oscillators. In all three diagrams the
initial conditions for all oscillators are different, but the parameter
values of the system are fixed to γ = 2.5,ε = 8.5, and ω = 2.

decay rate of the medium, γ , the system first stabilizes to trivial
fixed point, namely, the origin, followed by the stabilization of
HSS and IHSS through pitchfork bifurcations, as the value
of coupling strength is increased. However, for a smaller
value of decay rate of the environment, HSS solutions are
stabilized by Hopf bifurcation. Also, the coexisting region
of stable IHSS solutions with HSS solutions appears to
decrease for lower values of γ . The interesting thing to note
here is the behavior of dynamical regime, where oscillatory
solution coexist with quenched oscillation state. In all the
previous studies [12,19,23], it is observed that in this bistable
dynamical regime the oscillatory solution are in phase while
for the quenched oscillation state IHSS solutions are obtained.
However, in this particular coupling scheme, we have observed
that the antiphase oscillatory solution coexists with HSS
solutions. It is also found that each HSS solution branch splits
into two by introducing a small parameter mismatch leading
to inhomogeneity for this system. Extension of our findings
for a network of identical indirectly coupled SL oscillators
leads to the fact that the transition from one state to other is
preserved under this coupling scheme. As we have studied a
generic model of indirectly coupled self-sustained oscillators,
our results can be applied to a wide class of systems ranging
from biological networks to laser models where the interaction
among elements is via common environment. This study can
be further extended to indirectly coupled chaotic oscillators
[48] and we believe that these studies will improve our under-
standing of various indirectly coupled biological and chemical
systems. Now, there are experimental observations related
to oscillation suppression in the populations of BZ catalytic
particles [30] as well as in synthetically engineered bacteria
[49], and we thus hope our studies can provide a mechanism
for oscillation quenching in such systems where the elements
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interact via a common environment in the absence of direct
coupling.
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Schöll, New. J. Phys. 12, 113030 (2010).
[15] R. Curtu, Phys. D 239, 504 (2010).
[16] A. Koseska, E. Volkov, and J. Kurths, Chaos 20, 023132 (2010).
[17] K. Tsaneva-Atanasova, C. L. Zimliki, R. Bertram, and

A. Sherman, Biophys. J. 90, 3434 (2006).
[18] N. Suzuki, S. Furusawa, and K. Kaneko, PloS ONE 6, e27232

(2011).
[19] W. Zou, D. V. Senthilkumar, A. Koseska, and J. Kurths, Phys.

Rev. E 88, 050901(R) (2013).
[20] A. Zakharova, I. Schneider, Y. N. Kyrychko, K. B. Blyuss, A.

Koseska, B. Fiedler, and E. Schöll, Euro. Phys. Lett. 104, 50004
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