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Transition to coarsening for confined one-dimensional interfaces with bending rigidity
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We discuss the nonlinear dynamics and fluctuations of interfaces with bending rigidity under the competing
attractions of two walls with arbitrary permeabilities. This system mimics the dynamics of confined membranes.
We use a two-dimensional hydrodynamic model, where membranes are effectively one-dimensional objects. In
a previous work [T. Le Goff et al., Phys. Rev. E 90, 032114 (2014)], we have shown that this model predicts
frozen states caused by bending rigidity-induced oscillatory interactions between kinks (or domain walls). We
here demonstrate that in the presence of tension, potential asymmetry, or thermal noise, there is a finite threshold
above which frozen states disappear, and perpetual coarsening is restored. Depending on the driving force, the
transition to coarsening exhibits different scenarios. First, for membranes under tension, small tensions can
only lead to transient coarsening or partial disordering, while above a finite threshold, membrane oscillations
disappear and perpetual coarsening is found. Second, potential asymmetry is relevant in the nonconserved case
only, i.e., for permeable walls, where it induces a drift force on the kinks, leading to a fast coarsening process
via kink-antikink annihilation. However, below some threshold, the drift force can be balanced by the oscillatory
interactions between kinks, and frozen adhesion patches can still be observed. Finally, at long times, noise restores
coarsening with standard exponents depending on the permeability of the walls. However, the typical time for
the appearance of coarsening exhibits an Arrhenius form. As a consequence, a finite noise amplitude is needed
in order to observe coarsening in observable time.
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I. INTRODUCTION

Bending rigidity is a crucial ingredient in soft matter
systems, which leads to a number of nontrivial effects in the
equilibrium and nonequilibrium behavior of membranes [1,2]
and filaments [3–5]. For example, in equilibrium, the min-
imization of bending energy leads to nontrivial shapes of
membrane vesicles [6] and knotted filaments [7]. In nonequi-
librium conditions, bending rigidity also plays a crucial role
in cell adhesion or in the rheology and stability of membrane
stacks [8,9].

Here we explore the dynamical behavior of a model where
an interface with bending rigidity is confined between two
walls. This model aims at understanding the behavior of lipid
membranes confined into double-well potentials. Such double-
well potentials have been evidenced in various experimental
contexts, for example, when a membrane is placed under the
combined influences of a short-range attraction induced by
ligand-receptor pairs and a medium range repulsion caused
by polymer brushes mimicking glycocalyx [10,11]. A second
example is that of intermembrane attraction in the presence
of ligand-receptor pairs with two different lengths [12]. We
also expect this double-well picture to represent membrane
adhesion to the cytoskeleton or to a substrate during cell
adhesion. Indeed, cell membranes are known to be able to
bind to, or unbind from, the cytoskeletal cortex during the
adhesion of cells to a substrate, e.g., to form blebs [13–15].

For the sake of simplicity, and following our previous
work [16], we consider a two-dimensional system. As a con-
sequence, the interface—hereafter denoted as a membrane—
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is effectively a one-dimensional object. The walls attract
the membrane, mimicking physical adhesion [9,17,18] (such
as Van der Waals interactions, hydration interactions, os-
motic pressures, and entropic interactions) or specific adhe-
sion [19,20] via a simple effective adhesion potential. We have
recently shown that in such a model the membrane bending
rigidity leads to arrested dynamics [16], with frozen adhesion
patches on both walls.

Other studies in the literature have suggested that finite-size
adhesion patches may also be induced by more complex
(bio-)physical ingredients, such as the clustering ligand-
receptor pairs [21–23], the disorder of the environment [24],
the trapping of ligands in membrane partitions [25], or the
active remodeling of the cytoskeleton [26]. One aim of
our simple modeling is to provide hints towards a better
understanding of the formation of finite-size adhesion patches.

Moreover, the spatial organization of the frozen states ob-
served in Ref. [16] was strongly influenced by the permeability
of the confining walls. Indeed, strong wall permeabilities were
shown to give rise to disordered states, while vanishing per-
meabilities led to ordered states with a periodic arrangement
of patches [16].

Here we discuss the robustness of the frozen states with
respect to various physical “perturbations”: membrane tension,
potential asymmetry, and thermal fluctuations. We find that in
all cases, the frozen states can be destroyed, and coarsening
can be restored when the amplitude of these effects exceeds a
finite threshold.

In the following, we start in Sec. II with the derivation
of the evolution equation for the membrane in the lubrication
limit. We focus on the two opposite regimes of very permeable
and perfectly impermeable walls, respectively, leading to
nonconserved and conserved dynamics. We then report the
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equations of quantitative kink model derived in Ref. [27]. We
also recall the main results regarding the existence of frozen
states [16] in Sec. III.

In Sec. IV, we show that there is a critical tension σc above
which the oscillations of the membrane profile disappear.
In this regime, the resulting dynamics is similar to that
of the standard time-dependent Ginzburg-Landau (TDGL)
equation [28] for the permeable case and Cahn-Hilliard (CH)
equation [28,29] for the impermeable case, with perpetual
coarsening caused by attractive interactions between neigh-
boring kinks. For finite tensions below the threshold σc, one
can observe transient coarsening (i.e., which stops after some
finite time). This transient coarsening is able to alter the perfect
order observed in the conserved case in the absence of tension.

Then, in Sec. V, we discuss the consequences of an
asymmetric adhesion potential, favoring the adhesion on one
of the two walls. While it is irrelevant in the conserved
case, this asymmetry gives rise to a drift force on the kinks
in the nonconserved case. This drift tends to increase the
size of the adhesion patches on the favored wall. When
the asymmetry is large enough, the resulting drift leads an
enhanced kink-antikink collision and annihilation rate, giving
rise to a fast coarsening scenario with a final state where the
membrane is only on the side of the favored wall. However,
for weak asymmetries, the drift force on the kinks is not strong
enough to overcome kink interactions. Thus, localized frozen
adhesion patches can still be found.

Furthermore, the effect of thermal noise is analyzed in
Sec. VI, using the kink model supplemented with Langevin
forces. The results indicate that noise always lead to perpetual
coarsening. However, the time for the appearance of coarsen-
ing exhibits and Arrhenius law. Hence, observable coarsening
in a finite time requires a finite noise amplitude, i.e., a finite
temperature.

Finally, we conclude in Sec. VII.

II. MEMBRANE LUBRICATION MODEL

Assuming for simplicity a two-dimensional system in the
z,x plane, we wish to describe the dynamical behavior of a lipid
membrane of height z = h(x,t). This membrane is confined
between two walls at z = ±h0, as shown in Fig. 1, and is
surrounded by an incompressible fluid in the Stokes regime,
obeying

∇p − μ∇2v = 0. (1)

Here p is the pressure, μ the viscosity, and v is the fluid
velocity. The membrane is assumed to be impermeable.
Moreover, we consider a no-slip condition at the walls, leading
to vx(±h0) = 0. Arbitrary wall permeability is accounted for
using a phenomenological kinetic law

vz±(±h0) = ±ν(p± − pext), (2)

where ν is permeability kinetic coefficient, p± is the pressure
at z = ±h0, and pext is a constant external pressure.

Here we consider both membrane bending rigidity and
membrane tension via the standard Helfrich model [1,2]. The
membrane is also subject to a double-well potential U(h),
which accounts for its interaction with the walls. In the small
slope limit, which is discussed below, the total energy of the

FIG. 1. (Color online) Schematic of a confined membrane. The
wall on the top is at z = h0, and the bottom wall is at z = −h0. The
blue solid line at h(x,t) is the height of the membrane. Quantities
above the membrane are written with + and those below with −. We
discuss the influence of three physical ingredients on the dynamics
of confined membranes (a) a tension σ , (b) an asymmetry of the
adhesion potential U(h), and (c) thermal fluctuations.

membrane is

E =
∫

dx

[
κ

2
(∂xxh)2 + σ

2
(∂xh)2 + U(h)

]
. (3)

where ∂x denotes the partial derivative with respect to x, κ is
the bending rigidity modulus, and σ is the tension.

Following Ref. [16], we consider the lubrication regime,
where the horizontal scale is much bigger than vertical scale,
i.e., ∂xh � 1 with h ∼ h0. In this limit, the hydrodynamic flow
is to leading order along x, with a parabolic Poiseuille-like
profile along z. In addition, we focus on the two limits of
very permeable walls ν → ∞ and impermeable walls ν → 0,
respectively, leading to

∂th = ν

2
fz, (4)

∂th = ∂x

[
− h3

0

24μ

(
1 − h2

h2
0

)3

∂xfz

]
, (5)

with the force along z acting on the membrane

fz = −κ∂4
xh + σ∂xxh − U ′(h). (6)

As discussed in Ref. [16], in the impermeable case there are
additional nonlocal terms. However, these terms are irrelevant
for dynamics. We can therefore safely neglect them. For the
sake of simplicity we also neglect the nonlinear mobility
term (1 − h2/h2

0)3 appearing in the conserved case. Its main
consequence is to slow down the dynamics in the late stages
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by a constant factor. Finally, in rescaled coordinates, Eqs. (4)
and (5) now read

∂T H = −∂4
XH + γ ∂XXH − U ′(H ), (7)

∂T H = ∂XX

[
∂4
XH − γ ∂XXH + U ′(H )

]
, (8)

with X = [U0/(κh2
0)]1/4x and H = h/h0. The normalized

time variable is T = tνU0/(2h2
0) in the nonconserved per-

meable case, and T = U3/2
0 t/(24μκ1/2) in the conserved

impermeable case. We have also defined the normalized
tension:

γ = h0σ

κ1/2U1/2
0

. (9)

Using the parameter γ , two limits can be defined. First, when
γ � 1, i.e., κ → 0, the fourth-order derivative in the force
term in Eqs. (7) and (8) is negligible, and one recovers the
standard TDGL equation and CH equation, respectively. In the
opposite case γ � 1, i.e., σ → 0, the second-order derivative
in the force term in Eqs. (7) and (8) is negligible. We denote
the resulting equations as the TDGL4 and CH4 equations,
respectively.

An additional level of coarse graining is possible, based
on the dynamics of kinks, which are defined as the transition
zones, or domain walls, separating adhesion patches in the
two different wells of the potential U . Kink dynamics was
derived in the 1980s for the TDGL and CH equations [30,31].
Following our recent generalized derivation of kink dynamics
including bending rigidity [27] and a symmetric potential
[U (−H ) = U (H )], the position Xn of the nth kink obeys:

Ẋn = 1

B1
�R̃n, (10)

Ẋn = 1

B2
0�n−1/2�n+1/2 − B2(�n−1/2 + �n+1/2)

×{�n−1/2(B2Ẋn+1 + R̃n+3/2 − R̃n−1/2)

+ �n+1/2(B2Ẋn−1 + R̃n+1/2 − R̃n−3/2)} (11)

for permeable and impermeable walls, respectively. Here the
most important quantity is the function R̃(�), derived in
Ref. [27], which is exponentially decreasing and possibly
oscillating for large �. Its explicit form will be given later. As
for notations, we have defined the difference operator � such
that �Yn = Yn+1/2 − Yn−1/2 for any quantity Yn. Moreover,
the interkink distance is denoted as �n+1/2 = Xn+1 − Xn =
�Xn+1/2, and we also use the notation R̃n+1/2 = R̃(�n+1/2).
Finally, the constants

B0 = Hk(+∞) − Hk(−∞), (12)

B1 =
∫ +∞

−∞
dX(∂XHk)2, (13)

B2 =
∫ ∞

−∞
dX[Hk(+∞) − Hk(X)][Hk(X) − Hk(−∞)], (14)

are calculated from the profile Hk(X) of an isolated kink.
Notice that B0 is simply the distance between the two minima
of the double-well potential. B0 > 0 for kinks, and B0 < 0 for

antikinks. In addition, we have B1 > 0. Moreover, B2 > 0 is
positive for all monotonically varying kink profiles. For more
complex profiles, the sign of B2 is not know a priori but for
all cases discussed below B2 > 0.

The implementation of the kink dynamics provides an
analytically simplified—and numerically lighter—way to
compute membrane dynamics. The quantitative accuracy of
these equations was tested and confirmed in Ref. [27] from
a direct integration of the full dynamics. Kink dynamics is
asymptotically exact when the distance between kinks is large.

III. THE BASIC MODEL: FROZEN STATES AND
ORDER-DISORDER TRANSITION

In Ref. [16] we have studied the dynamics emerging from
Eqs. (7) and (8) in the absence of tension σ = 0, for a
symmetric potential U(h) = U(−h), and without fluctuations.
Let us recall the main results.

First, both in the permeable and impermeable cases, dy-
namics are rapidly arrested and the membrane profile reaches
a frozen steady state. The origin of this steady state was traced
back to the presence of oscillatory interactions between kinks,
which are caused by the bending rigidity.

Using typical orders of magnitude with a physical potential
including hydration repulsion and van der Waals attrac-
tion [17], we find that the scale L of the adhesion patches is [16]
L ∼ h

1/2
0 κ1/4U−1/4

0 . Using h0 ≈ 10 to 20 nm as suggested by
experiments in Refs. [10,12], typical adhesion patch lengths
are predicted to range from 100 nm to 1 μm. Since the
slopes are bounded at all times in the rescaled coordinates,
they remain small in physical coordinates, and the lubrication
approximation is self-consistent.

The second main result of Ref. [16] is that, starting
from small random initial conditions, very permeable or
impermeable walls, respectively, lead to disordered or ordered
frozen configurations. In order to understand this result,
we first recall that the membrane is initially destabilized
by the competitive attractions of the two walls in opposite
directions. Since short-wavelength perturbations are stabilized
by bending rigidity, the instability can only be present at
long-enough wavelengths. For permeable walls, modes of
large wavelengths all have the same dissipation rate, which
is essentially that of the translation of a flat membrane in the
z direction. As a consequence, all the long-wavelength modes
have the same growth rate, and many wavelengths are present
simultaneously, leading to a disordered membrane profile.
However, for impermeable walls, this translational mode along
z is forbidden due to mass conservation, and the increase of
the amplitude of long wavelengths modes require flows along
x over large scales which are impeded due to their large cost in
viscous dissipation. Since long-wavelength perturbations are
slowed down and small wavelength perturbations are stable,
an optimum wavelength exists and the instability develops at
some well-defined intermediate scale, leading to an ordered
periodic state.

This result is readily obtained from the linear stability anal-
ysis of Eqs. (7) and (8). Indeed, assuming small perturbations
of amplitude ε � 1, and wavelength λ around a flat profile
H = H̄ + ε exp i(ωT + qX), with q = 2π/λ, one obtains the
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following dispersion relation:

iω = −Aq[q4 + γ q2 + U ′′(H̄ )], (15)

where we have defined Aq = 1 for the nonconserved case and
Aq = q2 for the conserved case. A positive real part of the
growth rate iω indicates an instability. Thus, the membrane
is unstable when U ′′(H̄ ) � 0. In addition, we confirm that all
long-wavelength perturbations grow with the same growth rate
in the case of TDGL4. In contrast, the growth rate iω exhibits
a maximum for CH4.

From the analysis of the periodic nonlinear steady states,
we have further shown in Ref. [16] that the periodic pattern
emerging in the impermeable case are stable, so no further
evolution is possible and the membrane profile remains frozen
in this ordered state. In the nonconserved case, the disordered
pattern emerging from the linear instability rearranges and
reaches a frozen disordered steady state [16].

We now review the basic model. The next three sections
report original results on the effects of membrane tension
(Sec. IV), asymmetric potential (Sec. V), and noise (Sec. VI).

IV. FINITE MEMBRANE TENSION

Even though bending rigidity plays a major role in mem-
brane dynamics, experiments usually report the existence of an
effective tension, varying from 10−5 to 10−3 J m−2 [9,17,32].
Therefore, in this section we wish to discuss its effect.

As already noticed in Ref. [16], the tension-dominated
limit where κ = 0 and σ 
= 0 leads to the standard TDGL
and CH models, respectively, for permeable and impermeable
walls, which exhibit monotonous kink profiles leading to
attractive nonoscillatory interaction between kinks, which
trigger perpetual coarsening. From these results, it is natural
to investigate the dynamics at finite values of σ and κ , mainly
for two reasons. First, we aim to identify the threshold above
which coarsening can be observed. Second, even when no
perpetual coarsening is present, we point out that tension is able
to affect the spatial organization of the frozen states observed
at σ = 0.

A. Critical tension

As discussed above, a crucial property of Eqs. (7) and (8)
is the existence of oscillations in the kink tails at the edges
of adhesion patches. Consider a small perturbation H =
Hm + δH , where Hm is a minimum of the potential U . To
leading order, both in the conserved and nonconserved cases,
stationary states obey

∂4
XδH − γ ∂XXδH + U ′′

mδH = 0, (16)

where U ′′
m = U ′′(Hm). Assuming δH ∼ exp(−rX), we obtain

r4 − γ r2 + U ′′
m = 0. (17)

Solving Eq. (17) with the two constraints U ′′
m > 0 and γ >

0, we find two different regimes separated by the critical
tension

γc = (4U ′′
m)1/2. (18)

For small normalized tensions γ < γc the oscillations are
still present. Considering only the profiles δH (X) = R(X)

decaying for X → +∞ (profiles decaying as X → −∞ can
be obtained by symmetry), we find

R(X) = A cos(Q1X + α) exp(−Q2X), (19)

where

Q1,2 = [(
U ′′

m

1/2)
/2 ∓ γ /4

]1/2
. (20)

Hence, the wavelength of the oscillation � = 2π/Q1 increases
when the tension increases. At the threshold, � diverges and
the kink profile becomes monotonic.

For larger normalized tensions γ > γc, the profile is the
superposition of two nonoscillating exponentials:

R(X) = A+ exp(−Q+X) + A− exp(−Q−X), (21)

where

Q± = 2−1/2[γ ± (γ 2 − 4U ′′
m)1/2]1/2. (22)

Following Ref. [27], the function R̃ which intervenes in
the evolution equations (10) and (11) for the kink positions, is
obtained from R as follows:

R̃(X) = 2

[
U ′′

mR2

(
X

2

)
− R′′2

(
X

2

)]
. (23)

Hence, R̃ is oscillatory when R is oscillatory. As a consequence
of the disappearance of oscillatory kink tails in R and R̃, we
expect that coarsening should be restored for γ > γc.

In order to check this prediction, we have obtained numer-
ical solutions of Eqs. (7) and (8) in the presence of tension
with an initial condition consisting of small perturbations
around the average height H̄ = 0. We choose the specific
potential

U (H ) = 1
4

(
H 2

m − H 2
)2

, (24)

with Hm = 0.9, leading to the critical tension γc � 2.55. The
existence of this threshold is confirmed both in the conserved
and nonconserved cases. As shown in Figs. 2 and 3, coarsening
is stopped for γ = 2, while perpetual coarsening is observed
for γ = 3. While the full membrane dynamics Eq. (7) can be
implemented for the nonconserved case, we have used kink
dynamics Eq. (11) to reach long-enough time scales in the
conserved case. For γ = 3 > γc, we have implemented the
kink dynamics using only the exponential contribution Q+ in
Eq. (21). Indeed, due to its slower decay, the term involving
Q+ is always dominant at large scales.

B. Transient coarsening and disordering in CH4

In Fig. 3, we also see that, for conserved dynamics in
the presence of a small tension γ = 2 < γc, a finite amount
of coarsening can be observed. Moreover, in contrast to
the tensionless case, some disorder is obtained in the final
configuration.

To understand this result, we perform a straightforward
extension of the results of Eq. (23) in Ref. [16] on the stability
of periodic steady states to the case of finite tensions. We
obtain that periodic steady states are unstable if ∂λLλ � 0 and
stable if ∂λLλ � 0, with

Lλ = −
∫ λ

0
dX[2(∂XXH )2 + γ (∂XH )2]. (25)
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FIG. 2. (Color online) Nonconserved dynamics. (a) Average
wavelength as a function of time. Black solid line corresponds to
γ = 2, and the red dashed line to γ = 3. (b) Zeros of the membrane
profile for γ = 2 and (c) for γ = 3. Black points correspond to the
condition h = 0 and ∂xh > 0, and red points correspond to h = 0 and
∂xh < 0.

As seen on Fig. 4, this criterion reveals that the periodic
state of wavelength λm � 14.87 emerging from the linear
instability is unstable, i.e., ∂λLλm

� 0. This is in contrast with
the tensionless limit where the linear instability was producing
a stable periodic steady state [16].

As a consequence of the unstable character of the pe-
riodic steady state with λ � λm, the system reorganizes
into a nonperiodic state with a larger wavelength, as seen
in the histogram in Fig. 4. Then the coarsening stops,
and the membrane profile is frozen. We attribute the ab-
sence of perpetual coarsening to the existence of oscilla-
tory interactions between the kinks, as already discussed in
Refs. [16,27].

C. Discussion on tension effects

In summary, tension leads to a threshold above which
coarsening is restored, and, in addition, tension can induce
changes in the spatial organization of the adhesion patches
below the threshold.

Using a substrate between the two gaps ∼10 to 20 nm,
with bending rigidity and van der Waals attraction as in
Refs. [9,16,17], we obtain that the critical tension,

σc = γc

U1/2
0 κ1/2

h0
, (26)

is σc ∼ 10−2 J m−2. This value is larger than the tensions
σ ∼ 10−5–10−3J m−2 reported by experiments [17,32]. Hence,
the frozen states should not be eliminated by membrane tension
in usual experimental conditions.

FIG. 3. (Color online) Conserved dynamics. (a) Membrane pro-
file as a function of time for γ = 2. (b) Trajectories of the zeros
of the membrane profile. Bottom: Full simulation; top: subsequent
dynamics obtained from the kink model. (c) Same plots as (b) for
γ = 3. (d) Average wavelength as a function of time. Interrupted
coarsening is found in the lower curve with γ = 2: The black solid
line corresponds to the full dynamics, and the green dashed line
is obtained from the kink model for γ = 2. Endless coarsening is
found in the upper curve with γ = 3: The red solid line denotes full
dynamics and the blue dotted line the kink model.

V. ASYMMETRIC POTENTIAL

Another natural extension of our model is to consider
asymmetric adhesion potentials. Such an asymmetry occurs
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FIG. 4. (Color online) In black with circles, Lλ obtained by
simulations as a function of λ for γ = 2 and mean height H̄ = 0. The
red vertical line gives the position of the most unstable wavelength
λm in the linear analysis. The solid green histogram is the distribution
of wavelengths for the early dynamics of the membrane with γ = 2,
and the dotted blue histogram is the long-time distribution.

when the membrane is sandwiched between two different
substrates and therefore is expected to be the rule rather
than the exception. As an example, the adhesion of a cell
membrane sandwiched between the cytoskeleton and the
extracellular matrix has no reason to be symmetric. Moreover,
model systems with vesicles and polymer brushes exhibits a
controlled asymmetric double-well potential [10,11].

A. Asymmetric TDGL4 equation

In order to control the asymmetry within a simple model,
we assume a potential of the form

U(h) = U0[Us(H ) + βH ], (27)

where Us(−H ) = Us(H ) is symmetric and β is a constant
tuning the asymmetry. Within this model, the normalized force
acting on the membrane is now:

FZ = −∂4
XH + γ ∂XXH − U ′

s(H ) − β. (28)

In the following discussion on the consequences of potential
asymmetry, we only consider the tensionless case γ = 0. As
seen from Eq. (5) or Eq. (8), in the conserved case this force
intervenes only via its partial derivative with respect to x.
As a consequence, the constant term in the force, i.e., the
asymmetry, is irrelevant for impermeable walls.

In contrast, the asymmetry plays an important role in the
nonconserved case. In order to discuss this case in more detail,
we use the quartic potential Eq. (24) for the symmetric part Us ,
and the normalized membrane evolution equation then reads:

∂T H = −∂4
XH + H 2

mH − H 3 − β. (29)

First, note that for very strong asymmetries |β| > β0 =
2H 3

m/33/2 � 0.385H 3
m, there is only one minimum, and the

dynamics consists in a trivial relaxation to a flat membrane in
a single potential well.

For moderate β, i.e., β0 > |β| > βc ≈ 0.056H 3
m, the nu-

merical solution of Eq. (29) indicates that kinks drift at constant
velocity and annihilate so the whole membrane moves to the
lowest potential minimum in finite time, as shown in Fig. 5(c).

For smaller values of the asymmetry |β| < βc, the drift of kinks
is still observed, but, depending on the initial conditions, the
membrane sometimes ends up in a configuration with frozen
asymmetric adhesion patches in the unfavorable well of the
potential, as shown in Fig. 5(d). In the following subsections
we discuss and analyze quantitatively these results.

B. Kink drift

Let us first discuss the kink drift. Consider an isolated kink
separating two adhesion domains in the two potential wells.
If the depth of the potential wells differ, the total energy can
be decreased by a displacement of the kink in the direction
that increases the size of the adhesion domain with the lowest
energy. We assume that a kink drifts at some constant velocity
V , with a profile Hk(X − V t). Multiplying Eq. (29) by ∂XHk

and integrating over x, we find

V = β
B0

B1
. (30)

Due to the change of sign of B0, kinks and antikinks drift in
opposite directions (due to symmetry, the absolute values of
their drift velocities are also equal).

In general, the kink profile Hk depends on β, so V might
exhibit a complex dependence on β via B0 and B1 in the
right-hand side of Eq. (30). However, we expect from Eq. (30)
that V should be linear in β when β � 1. In addition, due
to the H → −H symmetry of Eq. (29) at β = 0, both B0 =
Hk(+∞) − Hk(−∞) and B1 = ∫ +∞

−∞ dX(∂XHk)2 depend only
on β2. As a consequence, the first corrections to linearity in
the dependence of V in β should be cubic, and the linear
approximation could be a good approximation up to finite
values of β. This result is confirmed in Fig. 5(b). Furthermore,
the prefactor of this linear relation can be calculated from
the kink profile at β = 0. Using the numerical evaluation
of the static kink profile at β = 0 with Hm = 0.9, we find
from Eq. (30) V ≈ 2.36β. This is in good agreement with
the direct numerical measurement of the kink drift velocity at
small β in Fig. 5(b).

C. Asymmetric frozen adhesion patches

To perform a systematic analysis of the asymmetric frozen
patches, we have implemented the numerical solution of
Eq. (29). Depending on the initial condition and on β, one
may obtain different final states. Some examples are shown in
Figs. 5(c) and 5(d).

In order to rationalize these results, we have plotted in
Fig. 5(e) the size of a single, steady domain in a large
system as a function of β. In this figure, the steady-state
branches with β > 0 represent finite-size patches in the higher
energy potential well, while the branches with β < 0 represent
finite-size adhesion patches in the lower potential well. Each
simulation point is obtained from a suitable choice of initial
condition. The lower branch for β > 0 is obtained with a
sinusoidal initial condition. The upper branch is obtained
from an initial condition with a localized domain formed by
superposition of tanh functions. Finally, the lower branch with
β > 0 was used as an initial condition to obtain the steady-state
solutions in the branch with β < 0.
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FIG. 5. (Color online) Membrane dynamics in an asymmetric double-well potential. (a) Asymmetric potential U (H ) for Hm = 0.9 and
β = β0 � 0.281 or β = βc ≈ 0.041. (b) Velocity V of an isolated kink as a function of β. Circles: Full simulations. The red solid line is the
linear prediction for small β, see text. [(c) and (d)] Nonconserved dynamics in an asymmetric potential for (c) β = 0.1, which is intermediate
between βc and β0, and (d) β = 0.04, which is smaller than βc. (e) Steady-state distance length l of an isolated adhesion patch on the upper
wall as a function of β. The circles are found from full simulation, and the the line is the prediction of the kink model. The solid line represents
the stable steady states and the dashed line the unstable ones. The insets show the dynamics of the membrane in specific cases.

Globally Fig. 5(e) suggests the presence of several branches
of steady-state solutions for |β| < 0.041, while no steady-state
patch is observed for |β| > 0.041.

These results can be described quantitatively within the
kink model. Indeed, the kink model Eq. (10) can be simply
extended to account for asymmetry, leading to:

Ẋn = 1

B1
(�R̃n + βB0), (31)

where the sign of B0 alternates between + for kinks and − for
antikinks. Considering a single adhesion domain on the upper
wall, centered at x = 0, we have a kink at X1 = −�/2 and
an antikink at X2 = �/2. We therefore find that steady states,
corresponding to ∂t� = 0, obey

β = − R̃(�)

|B0| . (32)

In addition, from Eq. (19):

R̃(�) = 2A2U ′′
m cos

[
�U ′′

m
1/4

21/2
+ 2α

]
exp

[
−�U ′′

m
1/4

21/2

]
. (33)

For β � 1, the constants can be determined numerically
from the symmetric case at β = 0, leading to: |B0| ≈ 2Hm,
A = 0.87, and α = 2.72 [16]. As shown in Fig. 5(e), these
assumptions allow one to obtain a good quantitative agreement

between the kink model (solid and dashed lines) and the steady
states observed in the simulations (symbols).

Furthermore, the stability of these steady states can also
be understood within the kink model. Indeed, consider a
stationary state with two kinks separated by the distance �.
Then, assuming a perturbation of � equal to δ� ∝ exp(iωT ),
we obtain from Eq. (31)

iω = −2R̃′(�)

B1
, (34)

indicating that if R̃′(�) � 0, then the state is unstable. Using
Eq. (32), we find that the steady state is unstable if ∂�β � 0.
This is in agreement with the results of Fig. 5(e), where no
steady state is observed in the unstable branches with ∂�β � 0,
indicated with a dashed line.

D. Discussion on asymmetry

In summary, in the nonconserved case, a finite potential
asymmetry is needed in order to eliminate the frozen adhesion
patches. However, we recall that asymmetry in the depth of
potential wells has no effect in the presence of impermeable
substrates.

Asymmetric two-state adhesion potentials have been ob-
tained in experiments [10,11] using competition between
a medium-range repulsion created by polymer brushes
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(mimicking the glycocalyx of cells) and a short-range attrac-
tion resulting from the attachment of ligand-receptor pairs.

It is difficult to provide precise quantitative predictions for
these experiments because the potentials of Refs. [10,11] do
not exhibit the simple quartic form with a linear bias that we
assumed here in Eqs. (24) and (27). However, asymmetries
can be compared using a simple dimensionless parameter

b = U (Hm+) − U (Hm−)

U (HM ) − [U (Hm+) + U (Hm−)]/2
, (35)

where Hm± are the positions of the two minima of the
potential and HM is the position of the maximum. Our model
potential Eqs. (24) and (27) leads to b ≈ 8β/H 3

m for small
β. As a consequence, the critical asymmetry above which
patches cannot survive is bc ≈ 8βc/H

3
m ≈ 0.45.

We find a smaller asymmetry b ≈ 0.3 from Fig. 5 of
Ref. [10], and a larger asymmetry b ≈ 1.5 for Ref. [11],
suggesting that adhesion patches may survive the asymmetry
for the potential of Ref. [10] but not for that of Ref. [11]. This
conclusion should not be taken as a quantitative statement.
However, it suggests that both situations could be observable
in this type of experiments, provided that the substrate is
permeable.

VI. THERMAL NOISE

Another important physical ingredient which is able to
affect the frozen states and restore coarsening is thermal
fluctuations. Lipid membranes usually exhibit a bending
rigidity of the order of 30 kBT and are therefore subject to sig-
nificant thermal fluctuations. In this section, we investigate the
consequences of thermal fluctuations on membrane dynamics.

A. Noisy kink dynamics

We include Langevin forces in the kink dynamics equations
following the same lines as in Refs. [30,31]. As discussed in
Appendix A, we then have for the nonconserved and conserved
cases, respectively,

Ẋn = 1

B1
�R̃n + ζn(T ), (36)

Ẋn = 1

B2
0

(
R̃n+3/2 − R̃n−1/2

�n+1/2
+ R̃n+1/2 − R̃n−3/2

�n−1/2

)

+ ξn+1/2(T )

�
1/2
n+1/2

+ ξn−1/2(T )

�
1/2
n−1/2

, (37)

where the Langevin forces ζ and ξ are zero-average white
Gaussian noise. Their correlations read

〈ζn1 (T1)ζn2 (T2)〉 = 2Dζδn1n2δ(T1 − T2), (38)

〈ξn1 (T1)ξn2 (T2)〉 = 2Dξδn1n2δ(T1 − T2), (39)

where δn1n2 and δ(t) are, respectively, the Kronecker symbol
and Dirac δ function. In the conserved case Eq. (37), we
have neglected the subdominant terms proportional to B2 in
Eq. (11), which are not expected to affect qualitatively the
asymptotic dynamics.

The noise amplitudes are derived in Appendix A using the
fluctuation-dissipation theorem:

Dζ = kBT

B1U3/4
0 h

1/2
0 κ1/4

, (40)

Dξ = kBT

B2
0U

3/4
0 h

1/2
0 κ1/4

. (41)

We have implemented numerically these Langevin equa-
tions. The details of the numerical scheme are described in
Appendix B.

B. Activated coarsening

The numerical solution of Eqs. (36) and (37) indicates that
thermal fluctuations always lead to coarsening at long times.
As shown in Figs. 6(a) and 6(b), the coarsening exponent 1/2
for noisy-TDGL4 and 1/3 for noisy-CH4 are the same as
those found for noisy-TDGL and noisy-CH, respectively. The
same exponents would be observed if the deterministic terms
on the right-hand sides of Eqs. (36) and (37) were absent.
This suggests that the precise form of the linear terms (second
or fourth order) is irrelevant at long times, and asymptotic
coarsening is controlled only by the noise and the conservation
law.

In contrast, the short-time behavior is strongly influenced
by the deterministic stabilizing terms. In the TDGL and CH
cases, the coarsening is logarithmic in the early time dynamics,
as in the deterministic case [30,31]. Then it crosses over to
an asymptotic power law in the late stages. This well-known
behavior is shown in Fig. 6(a). Similarly, the TDGL4 and CH4
noisy kink dynamics behave like the deterministic dynamics
at short times, i.e., with arrested dynamics. Then we find
a crossover to the expected power-law behavior, as seen in
Fig. 6(b).

The crossover time tc to the coarsening regime in TDGL4
and CH4 exhibits an exponential dependence in the noise
amplitude:

tc = tc0 exp

[
E0

D̂

]

= tc0 exp

[
E021/2A2U ′′

m

3/4 U3/4
0 h

1/2
0 κ1/4

kBT

]
, (42)

where we have used the normalized noise amplitude

D̂ = kBT

21/2A2U ′′
m

3/4U3/4
0 h

1/2
0 κ1/4

, (43)

defined in the normalized equations of Appendix B.
Note that, in order to obtain the dependence of our results on

the kink parameters (A, U ′′
m, B0, and B1), we have performed

the noisy kink simulations with a special set of normalized
coordinates defined in Appendix B. This dependence in the
kink parameters then appears explicitly when going back to
the coordinates used in main text.

We have measured tc using an arbitrary threshold wave-
length λc from the relation λ(tc) = λc, where λ(t) is the average
distance between kinks at time t . We started from randomly
distributed kinks with an initial average separation λ(t = 0) =
2.30 × U

′′−1/4
m corresponding to the most unstable wavelength
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FIG. 6. (Color online) Activated coarsening. (a) Normalized average distance λU 1/4
m 2−1/2 between kinks as a function of normalized time.

Noisy-TDGL kink dynamics: black solid lines, with, from bottom to top, D̂ = 0.002,0.01,0.1,0.2,0.3. Noisy-CH kink dynamics: red dashed
lines, with, from bottom to top, D̂ = 0.002,0.1,0.3. Thin lines are expected power laws at long times, and the inset in semilog coordinates shows
logarithmic coarsening in the case of low noise amplitude D̂ = 0.002 for TDGL (solid line) and CH (dashed line). (b) Normalized average
distance λU 1/4

m 2−1/2 between kinks as a function of normalized time. Noisy-TDGL4 kink dynamics: black solid lines, with, from bottom to top,
D̂ = 0.09,0.1,0.11,0.12. Noisy-CH4 kink dynamics: red dashed lines, with, from bottom to top, D̂ = 0.07,0.070.075,0.08,0.10.15,0.20.3.
(c) Time tc for the initiation of coarsening: Disks for TDGL4 and diamonds for CH4. (d) Energy of a periodic steady state E s

λ as a function of its
period λ for the potential defined in Eq. (24), with Hm = 0.9. The symbols (dashed line) indicate the full numerical solution of the membrane
profile. The red solid line is the large λ approximation from Eq. (44).

within the kink model. We obtain E0 ≈ 0.095 for TDGL4
with λc = 17.0 × U

′′−1/4
m and E0 ≈ 0.085 for CH4 with λc =

7.92 × U
′′−1/4
m . This thermal activation of coarsening can be

intuitively understood from the need to overcome small energy
barriers corresponding to the oscillatory interactions between
kinks.

The existence of barriers can be quantitatively discussed
within the kink approximation. One basic assumption under-
lying the kink description, and explored in detail in Ref. [27],
is that the profile between two kinks can be approximated by
that of a periodic steady state. Using this approximation, we
may design an expression for the energy of a periodic steady
state with a large λ:

E s
λ = 2Ekink + 4A2U ′′

m

3/4 sin

[
λU ′′

m
1/4

23/2
+ 2α − π

4

]

× exp

(
−λU ′′

m
1/4

23/2

)
, (44)

where Ekink is the energy of an isolated kink. The detailed
derivation of this result is reported in Appendix A. A
comparison to the exact energy computed numerically in

Fig. 6(d) shows that Eq. (44) is a good approximation for
the energy for large λ. When λ < 8.35.. × U

−1/4
m , the full

numerical solution appears to be unstable. The expression (44)
exhibits a maximum around λ ≈ 6.83.. × U

−1/4
m , and, for

smaller distances, pairs of kinks are expected to experience an
attraction leading to annihilation. The energy barrier, i.e., the
difference between the minimum energy and the maximum
energy that can be reached before annihilation is similar in
both cases. Since we wish to approximate the profile between
two kinks by half a periodic steady state, the effective energy
barrier is half the barrier observed in Fig. 6(d). We find similar
values Eth

b ≈ 0.143 from Eq. (44), and Enum
b ≈ 0.13 from the

numerical solution of the full profile. Hence the kink model
provides a reasonable description of the energy barrier.

Using Eq. (42) with Eqs. (40) and (41), we find the
expected value of E0 for both the conserved and nonconserved
cases:

E0 = Eb

21/2A2U ′′
m

3/4 . (45)

Using the above-mentioned value Eth
b ≈ 0.143, we finally ob-

tain E0 ≈ 0.093, in good agreement with the values extracted
from the exponential dependence of tc (see above). Hence,
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Eq. (44) provides a quantitative understanding of the origin of
the energy barriers controlling the activation of coarsening in
noisy kink dynamics.

C. Discussion on noise

The results of this section can be interpreted qualitatively
within a simple picture where coarsening is controlled by
the competition between two time scales. The first time scale
tdiff ∼ λθ is the time needed for noninteracting kinks moved
only by Langevin forces to collide with their neighbors,
which are initially located at a typical distance λ. From the
dimensional analysis of Eqs. (36) and (37), one finds θ = 2
for the nonconserved case and θ = 3 for the conserved case.

In tension-dominated models, i.e., TDGL or CH, the second
time scale is the time tint needed for two neighboring kinks to
annihilate due to their deterministic mutual attraction. Since
this attraction decreases exponentially with the distance, we
have tint ∼ eλ. Here, kink random motion and deterministic
interactions act in parallel, and the shortest of the two time
scales dominates. Thus, initially for small λ, and if the
noise strength is small enough, one has tint � tdiff , leading
to a dynamical behavior dominated by tint, with the standard
logarithmic coarsening law λ ∼ ln t . However, at large times
tint � tdiff . As a consequence, the dynamics is dominated by
the random motion of the kinks, and one finds the power-law
behavior λ ∼ t θ .

In bending-dominated models, i.e., TDGL4 or CH4, the
second time scale is the time tc [given in Eq. (42)] for a pair of
kinks to overcome the energy barrier for collision via thermal
fluctuations. Here kink random motion and the passage over
the energy barrier act in series, so the largest of the two time
scales tdiff and tc dominates. Thus, at short times and for small-
enough noise strength, one has tdiff � tc, and coarsening is
absent. In contrast, at long times tdiff � tc, and the power-law
coarsening with λ ∼ t θ is recovered.

As an important remark, the predictions of the previous
sections on tension and asymmetry depend on the length
scales h0 and (κ/U0)1/2 and the time scales h2

0ν
−1U−1

0 or
μκ1/2U−3/2

0 for the nonconserved and conserved cases, re-
spectively. These spatial and temporal scales naturally extend
to two-dimensional membranes in three-dimensional liquids,
keeping the same formula and replacing the physical constants
κ and U0 by the two-dimensional ones which have different
dimensions. Hence, we expect the above-mentioned results
to catch some of the physical behavior of two-dimensional
membranes.

However, in the presence of thermal fluctuations, we now
have a relevant energy scale, which is the energy barrier Eb. In
physical coordinates, it reads

Eb = U3/4
0 h

1/2
0 κ1/4Eb. (46)

This energy scale cannot be naturally extended to two-
dimensional membranes, and a simple substitution of the
energy parameters κ and U0 by their two-dimensional coun-
terparts provides an expression of Eb which does not have the
dimension of an energy. Physically, confined two-dimensional
membranes would exhibit one-dimensional domain walls
instead of kinks. The collision and annihilation of two one-
dimensional domain walls should occur locally in a region

whose spatial extent should be fixed by the physics of the
two-dimensional problem. It is therefore clear that we cannot
directly use the result of our model to perform quantitative
predictions about two-dimensional membranes. However,
there should still be an energy barrier for domain-wall collision
in two-dimensional membranes.

VII. CONCLUSION

In summary, we have shown that the frozen patches
observed in the 1D dynamics of membranes with bending
rigidity survive up to a finite threshold to various other
physical driving forces such as tension, potential asymmetry,
and thermal fluctuations. Beyond these thresholds, coarsening
is restored. However the transition to coarsening exhibits
different scenarios in these three cases.

(i) In the presence of tension, there is a critical tension
σc above which the oscillations of the membrane profile
disappear, leading to monotonic attractive interactions similar
to that of the standard TDGL or CH equations. The orders
of magnitude indicate that the tensions usually observed in
experiments are smaller than the critical tension σc, showing
that frozen adhesion patches should still exist in typical
experimental conditions.

(ii) An asymmetry in the depth of the two potential
wells has no effect on the conserved case, where walls
are impermeable. However, in the nonconserved case, i.e.,
for permeable walls, kinks and antikinks experience drift
forces in opposite directions, which are able to overcome
the oscillatory kink-kink interactions beyond some finite
threshold. The critical asymmetry above which frozen patches
cannot be observed is comparable to the asymmetry obtained
in experimental works [10,11], suggesting that an asymmetry-
induced transition could be observed experimentally in the
presence of impermeable walls.

(iii) The presence of thermal fluctuations always leads
to coarsening at long times. Nevertheless, the time required
for the system to undergo coarsening depends exponentially
on the noise strength, i.e., on the temperature. Hence, for
temperatures smaller that the typical energy barrier for
collision and annihilation, the coarsening process cannot be
observed. Although we expect energy barriers to exist for
fully two-dimensional membrane, we cannot conclude on the
quantitative value of the barriers within our model with a
one-dimensional membrane.

Additional differences could appear between one-
dimensional and two-dimensional membranes. For example,
kinks in one-dimensional membranes mimic flat domain walls
separating adhesion zones between the upper and the lower
walls. However, it is clear that any effect related to the
curvature of these domain walls cannot be accounted for within
our model with one-dimensional membranes.

To conclude, our study of idealized zero-thickness and
one-dimensional interfaces with bending rigidity sandwiched
between two flat walls was aimed at capturing qualitatively
some of the complex dynamics of lipid membranes in con-
fined biological environments. Our results show that bending
rigidity is at the origin of a unique zoology of dynamical
behaviors, with finite-size patches that are robust to various
physical perturbations up to a finite threshold.
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APPENDIX A: DERIVATION OF THE NOISE AMPLITUDE
IN THE KINK MODEL FOR THERMAL NOISE

Here we relate kink dynamics to an energetic picture. The
amplitude of thermal noise then follows directly from this
derivation using the fluctuation-dissipation theorem.

1. Energy and force acting on a kink

We start by decomposing the membrane into regions. The
region n + 1/2 is located betweens kinks n and n + 1. The
total energy

E =
∫

dx

[
σ

2
(∂xh)2 + κ

2
(∂xxh)2 + U (h)

]
(A1)

is then equal to the sum of the corresponding energy contribu-
tions En+1/2:

E =
∑

n

En+1/2. (A2)

In the kink picture, the energy En+1/2 is approximated by
half the energy E s

λ of a periodic steady state of wavelength
λ = 2ln+1/2, where ln+1/2 = xn+1 − xn. This reads

En+1/2 = 1
2E

s
λ|λ=2ln+1/2 . (A3)

The energy En+1/2 then only depends on the positions of the
neighboring kinks at xn and xn+1, and the force experienced
upon the motion of the nth kink is

Fn = − d

dxn

E

= ∂ln+1/2En+1/2 − ∂ln−1/2En−1/2

= ∂λE s
λ|λ=2ln+1/2 − ∂λE s

λ|λ=2ln−1/2 . (A4)

In addition, from the expression

E s
λ =

∫ λ

0
dx

[
σ

2
(∂xh)2 + κ

2
(∂xxh)2 + U (h)

]
, (A5)

we find

∂λE s
λ = 1

λ

∫ λ

0
dx

[
− σ

2
(∂xh)2 − 3κ

2
(∂xxh)2 + U (h)

]
.

(A6)

Moreover, one can easily check that

∂xh
δE

δh
= ∂x

[
σ

2
(∂xh)2 − κ∂xh∂xxxh + κ

2
(∂xxh)2 − U (h)

]
.

(A7)

A periodic steady-state hs(x) by definition obeys δE/δh =
0, and

− σ

2
(∂xh

s)2 + κ∂xh∂xxxh
s − κ

2
(∂xxh

s)2 + U (hs) = U ∗,

(A8)

where U ∗ is a constant. As a consequence, Eq. (A6) can be
rewritten as

∂λE s
λ = U ∗. (A9)

The relation (A9) can be used to express the force of the
nth kink as

Fn = U ∗
λ |λ=2ln+1/2 − U ∗

λ |λ=2ln−1/2 . (A10)

Since Eq. (A8) is valid everywhere in a steady state, we can
evaluate it in the zone far away from kinks, where

h ≈ h0
{
HM + R

[
(x − xn)

(
U0/κh2

0

)1/4]
+R

[
(xn+1 − x)

(
U0/κh2

0

)1/4]}
, (A11)

leading to

U ∗
λ |λ=2ln+1/2 = U0 R̃

[
ln+1/2

(
U0/κh2

0

)1/4]
, (A12)

where R̃ is defined in Eq. (33).
Combining Eq. (A12) with Eq. (A9), one can compute a

convenient expression of the energy of a periodic steady state:

Eλ = 2Ekink − U0

∫ ∞

λ

dx R̃

[
λ

2

U1/4
0

κ1/4h
1/2
0

]
, (A13)

which leads to Eq. (44).

2. Nonconserved dynamics

Assuming a simple constant kink mobility η (local in space
and with no memory effect), we write that the kink velocity is
proportional to the force plus a noise term

ẋn = ηFn + ζ̄n = ηU0�R̃n + ζ̄n. (A14)

Here ζ̄n is a white noise obeying

〈ζ̄n1 (t1)ζ̄n2 (t2)〉 = 2Dζ̄ δn1n2δ(t1 − t2), (A15)

where Dζ̄ is a constant.
Comparing the deterministic part of Eq. (A14) with

Eq. (36), one finds

η = νκ1/4

2B1U1/4
0 h

3/2
0

. (A16)

We may then use the fluctuation-dissipation theorem, here in
the form of an Einstein relation, leading to

Dζ̄ = ηkBT = νκ1/4

2B1U1/4
0 h

3/2
0

kBT . (A17)

Finally, the normalized noise ζ used in Eq.(36) of the main
text is related to the noise ζ̄ in physical variables via the relation

ζ̄n = νκ1/4U3/4
0

2h
3/2
0

ζn. (A18)
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3. Conserved dynamics

In the conserved case, one starts with the observation
that, due to mass conservation, the elementary event is the
translation of a whole domain instead of that of a single kink.
The total force relative to the translation of the domain n + 1/2
is the sum Fn+1 + Fn of the forces acting on the two kinks n

and n + 1. This translational motion is physically realized by
a flux jn+1/2 of liquid under the membrane, to which one
associates a mobility μn+1/2 and a noise ψn+1. The flux jn+1/2

produces a contribution to the motion of the domain n + 1/2
with the velocity jn+1/2/|B0|. Hence

jn+1/2

|B0| = μn+1/2(Fn+1 + Fn) + ψn+1/2, (A19)

with the noise correlation

〈ψn1 (t1)ψn2 (t2)〉 = 2Dψ,n1δn1n2δ(t1 − t2), (A20)

where n1 and n2 are half-integers and Dψ,n1 depends on n1 but
not on t .

Mass conservation then allows one to obtain the kink
velocity from the fluxes

ẋn = jn+1/2 + jn−1/2

|B0| , (A21)

leading to Eq. (37), with the identification

μn+1/2 = h
1/2
0 U1/4

0

24μB2
0κ1/4�n+1/2

= h0

24μB2
0 ln+1/2

, (A22)

where we use ln+1/2 for physical lengths and �n+1/2 for
normalized lengths.

Hence, from the fluctuation-dissipation theorem,

Dψ,n+1/2 = μn+1/2kBT = h0

24μB2
0 ln+1/2

kBT . (A23)

Then, defining ξ̄n+1/2 = l
1/2
n+1/2ψn+1/2 with the correlations

〈ξ̄n1 (t1)ξ̄n2 (t2)〉 = 2Dξ̄ δn1n2δ(t1 − t2), (A24)

we obtain a constant noise amplitude:

Dξ̄ = ln+1/2Dψ,n+1/2 = h0

24μB2
0

kBT . (A25)

The normalized noise ξ used in Eq. (37) of the main text is
related to the noise ξ̄ in physical variables via

ξ̄n+1/2 = h
3/4
0 U9/8

0

24μκ1/8
ξn+1/2. (A26)

APPENDIX B: NUMERICAL SCHEMES FOR THE
IMPLEMENTATION OF NOISY KINK DYNAMICS

For the kink simulations with noise, we have further
normalized all variables in order to have all numerical
prefactors in the kink equations equal to 1. For any variable
A, we associate a normalized simulation variable Â. We have
therefore defined the spatial coordinate X̂ = (U ′′

m
1/4

/21/2)X,
the time coordinate T̂ = (21/2A2U ′′

m
5/4

/B1)T , and the noise
amplitude D̂ = B1Dζ/(21/2AU ′′

m
3/4) for the nonconserved

case. In the conserved case we use the same spatial coordinate
but different normalizations for time and noise amplitude: The
time coordinate is T̂ = A2U ′′

m
3/2

/(B2
0 )T , and the noise am-

plitude is D̂ = B2
0Dξ/(21/2AU ′′

m
3/4). Using these coordinates,

the kink model equations read

˙̂Xn = �R̂n + ζ̂n(T ), (B1)

˙̂Xn =
(

R̂n+3/2 − R̂n−1/2

�̂n+1/2
+ R̂n+1/2 − R̂n−3/2

�̂n−1/2

)

+ ξ̂n+1/2(T )

�̂
1/2
n+1/2

+ ξ̂n−1/2(T )

�̂
1/2
n−1/2

, (B2)

where

R̂(�̂) = cos(�̂ + 2α) exp(−�̂), (B3)

and the Langevin forces ζ̂ and ξ̂ are zero-average white
Gaussian noise. Their correlations read

〈ζ̂n1 (T̂1)ζ̂n2 (T̂2)〉 = D̂δn1n2δ(T̂1 − T̂2), (B4)

〈ξ̂n1 (T̂1)ξ̂n2 (T̂2)〉 = D̂δn1n2δ(T̂1 − T̂2). (B5)

Equations (B1) and (B2) are rewritten as evolution equa-
tions for the interkink distances �̂n+1/2 = X̂n+1 − X̂n. The
resulting equations have the form

˙̂�n+1/2 = un + ζ̂n+1 − ζ̂n

˙̂�n+1/2 = vn + ξ̂n+3/2

�̂
1/2
n+3/2

+ ξ̂n+1/2

�̂
1/2
n+1/2

− ξ̂n+1/2

�̂
1/2
n+1/2

− ξ̂n−1/2

�̂
1/2
n−1/2

,

where un,vn are deterministic terms. These equations have
been discretized with a standard Euler scheme as follows:

�̂n+1/2(T + dT )

= �̂n+1/2 + dT un +
√

dT
(
ζ̃n+1 − ζ̃n

)
�̂n+1/2(T + dT )

= �̂n+1/2 + dT vn

+
√

dT

(
ξ̃n+3/2

�̂
1/2
n+3/2

+ ξ̃n+1/2

�̂
1/2
n+1/2

− ξ̃n+1/2

�̂
1/2
n+1/2

− ξ̃n−1/2

�̂
1/2
n−1/2

)
,

where all the quantities on the right-hand side are calculated
at time T and ζ̃n,ξ̃n are Gaussian random variables.

The integration time step dT has been chosen as the
minimum between dτ and dT ∗, where dτ is a fixed time step
and dT ∗ = minn(dT ∗

n+1/2), where dT ∗
n+1/2 is the extrapolated

closure time of interval (n + 1/2). This criterion allows one to
have no kink annihilation or one single annihilation event per
update. The former case occurs if dT = dτ , while the latter
occurs if dT = dT ∗

n∗+1/2 (in which case kinks n∗ and n∗ + 1
annihilate).

022918-12
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