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Fermi resonance in dynamical tunneling in a chaotic billiard
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We elucidate that Fermi resonance ever plays a decisive role in dynamical tunneling in a chaotic billiard.
Interacting with each other through an avoided crossing, a pair of eigenfunctions are coupled through tunneling
channels for dynamical tunneling. In this case, the tunneling channels are an islands chain and its pair unstable
periodic orbit, which equals the quantum number difference of the eigenfunctions. This phenomenon of dynamical
tunneling is confirmed in a quadrupole billiard in relation with Fermi resonance.
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I. INTRODUCTION

Dynamical tunneling, which is a subset of quantum phe-
nomenon in a chaotic system, was suggested by Davis and
Heller in 1981 by considering the analogy of the barrier tunnel-
ing phenomena in the one-dimensional symmetric double well
[1,2]. In this phenomenon, two eigenstates, which are localized
on classically disconnected regions in phase space, can be
quantum-mechanically coupled with each other. Since the
report, the phenomenon has been intensively studied and found
in various chaotic systems such as molecules [3], billiards
[4–6], microcavities [7–10], cold atom systems [11,12], and
a nanowire [13]. Through the studies, several variations have
been theoretically and experimentally found [2–17].

Among the variations, chaos-assisted tunneling [4,5,11,12]
and resonance-assisted tunneling [2,14,16] are much studied.
In the case of chaos-assisted tunneling, the chaotic dynamics
of the corresponding generic classical Hamiltonian system can
quantum-mechanically mediate dynamical tunneling between
two regular regimes in classical phase space even though
the probabilities of the direct dynamical tunneling are very
small for the distance between the two regular regimes
is too far. In the case of resonance-assisted tunneling, a
pair of eigenfunctions localized on classically disconnected
regions are quantum-mechanically coupled through classical
resonances. When two eigenfunctions are coupled with each
other, the pair of coupled eigenfunctions due to dynamical
tunneling do not seem to be supported by a pair of periodic
orbits because, according to a report [3], they are either
irregular or scarred by other periodic orbits. Hence, the
coupled eigenfunctions seemingly not satisfying the Fermi
resonance relation and dynamical tunneling has been regarded
as a different phenomenon from scar formation. Recently, it
was proved that scar formation is the phenomenon of Fermi
resonance [18].

In this manuscript, however, we elucidate for the first
time that dynamical tunneling is the phenomenon of Fermi
resonance in a chaotic billiard. In this two-dimensional system,
when an eigenfunction localized on a periodic orbit interacts
with another eigenfunction, coupled eigenfunctions caused by
dynamical tunneling are also the superposed states of a pair
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of eigenfunctions and the tunneling channels are supported
by a pair of periodic orbits, which are governed by the
Poincaré-Birkhoff theorem (PBT) [19]. Hence the periodic
orbits of the tunneling channels equals the quantum number
difference of the original normal modes of the eigenfunctions.

To prove this phenomenon, this paper is organized as
follows: in Sec. II, we show the relation between dynam-
ical tunneling and Fermi resonance in a two-dimensional
quadrupole billiard; in Sec. III, we demonstrate Fermi reso-
nance in dynamical tunneling when an eigenfunction localized
on a periodic orbit interact with another eigenfunction in this
billiard; in Sec. IV, we discuss the phenomenon of Fermi
resonance in dynamical tunneling and conclude our results.

II. DYNAMICAL TUNNELING IN A
QUADRUPOLE BILLIARD

The role of Fermi resonance in dynamical tunneling is
examined in a quadrupole billiard, which is given as follows:

r(θ ) = R(1 + ε sin 2θ ), (1)

where ε is the deformation parameter, R is the radius of the
circle at ε = 0, and θ is the angle from the x axis in polar
coordinate. We obtain eigenvalues depending on ε by solving
the Helmholtz equation by the boundary element method
with the Dirichlet boundary condition [20,21]. In obtaining
eigenvalues, the cavity area is preserved as ε increases.

A. Eigenvalue spectrum and interactions

Figure 1 is the eigenvalues in the region ε < 0.1 and
21 < kR < 24, where k is the vacuum wave number. In the
figure, the (l,m) = (1,18) and the (2,14) normal mode, which
are eigenfunctions in a circular billiard, interact with each
other around A. Here l and m are the radial and the angular
quantum number in polar coordinate, respectively. Due to the
interaction, a pair of eigenfunctions are generated, which are
localized on a diamond-shaped periodic orbit and on its pair
rectangular-shaped unstable periodic orbit, respectively. The
diamond-shaped and the rectangular-shaped periodic orbit is
a pair of periodic orbits in the sense of the PBT. Hereafter,
in order to avoid confusion, when no specific concern is
given, the pair of periodic orbits referred to in this paper
imply an elliptic and a hyperbolic fixed points following
the PBT, which are a pair. In this interaction, an avoided
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FIG. 1. (Color online) Eigenvalue spectrum in a quadrupole bil-
liard depending on the deformation parameter. Around A, a pair of
normal modes labeled by (1,18) and (2,14) interact with each other
through an AC and a pair of eigenfunctions are generated, which
are localized on a diamond-shaped periodic orbit and on its pair
rectangular-shaped unstable periodic orbit, respectively. Around B,
the (6,2) and the (7,0) normal mode interact with each other and a pair
of bouncing-ball type modes (BBTMs) are generated: one is vertical
and the other horizontal. Around C, a vertical BBTM, generated from
the (7,0) normal mode, and a (3,10) normal mode interact with each
other. Around D, a vertical and a horizontal BBTM interact with each
other through an AC for dynamical tunneling. Around E, a rectangular
scar interacts with a vertical BBTM. We mainly focus on ACs around
C and D in this paper to elucidate the phenomenon of dynamical
tunneling.

crossing (AC) takes place over a broad range, which is the
typical Demkov-type interaction [22]. Around B, the (7,0) and
the (6,2) normal mode generate a pair of bouncing-ball-type
modes (BBTMs): one is vertical and the other horizontal.
The vertical BBTM is localized on a period-2 periodic orbit
and the horizontal one on its pair period-2 unstable periodic
orbit. On further increase of ε, the vertical BBTM interacts
with the (3,10) normal mode around C. After the interaction,
the original eigenfunctions are recovered by exchanging their
properties. This is the typical Landau-Zener-type interaction
[23,24], which takes place in a narrow range. On further
increase of ε, the vertical BBTM interacts with the horizontal
BBTM developed from the (4,8) normal mode around D.
The horizontal BBTM is caused by the interaction of the
(4,8) normal mode with a horizontal BBTM developed from
the (5,6) normal mode around F. The AC around F is
also the Demkov-type interaction. After the interaction around
D, the original eigenfunctions are also recovered by exchang-
ing their properties. Around E, the vertical BBTM interacts
with the scar localized on a rectangular unstable periodic
orbit. After the interaction, the original eigenfunctions are
also recovered by exchanging their properties due to the
Landau-Zener-type interaction.

B. Fermi resonance in dynamical tunneling

For the Landau-Zener-type interaction around D in Fig. 1,
we can see that the two eigenfunctions are nearly degenerated.
Then the Hamiltonians of the two eigenfunctions can be

described by H (I1,I2) and H (I ′
1,I

′
2), where Ii and I ′

i are the
action variables and the subscripts 1 and 2 are the degrees
of freedom. When |I ′

i − Ii | � 1, we can obtain the following
condition by expanding H (I ′

1,I
′
2) around H (I1,I2):

(I1 − I ′
1)ω1 + (I2 − I ′

2)ω2 = 0, (2)

where ωi = ∂H/∂Ii is the frequency associated with the action
Ii . Since Ii = (ni + αi/4), we can obtain the relation |n1 −
n′

1|ω1 = |n2 − n′
2|ω2 for two eigenstates (n1,n2) and (n′

1,n
′
2),

where αi is the Maslov index. According to Berry and Tabor,
when winding number ω1/ω2 is rational, the orbit is periodic
[25]. Then we can obtain the following relation for Fermi
resonance by letting that ω1 = m1 and ω2 = m2:

(|�n1|,|�n2|) = (m2,m1), (3)

where (m2,m1) is the classical periodic orbit, which should
be determined according to the cavity morphology [18], and
(|�n1|,|�n2|) is the quantum number difference of two quan-
tum states (n1,n2) and (n′

1,n
′
2) such that |�n1| = |n1 − n′

1| and
|�n2| = |n2 − n′

2|. In a quadrupole cavity, m1 and m2 are the
number of bounces on each degree of freedom of a periodic
orbit. Because the quantum number difference (|�n1|,|�n2|)
implies a pair of superposed states, the periodic orbit (m2,m1)
should support the superposed states. This is the phenomenon
of Fermi resonance. According to the PBT, the periodic orbit
(m2,m1) implies the stable and the unstable periodic orbit,
which are a pair. When the vertical BBTM developed from
(7,0) normal mode interacts with the horizontal one developed
from the (4,8) normal mode, coupled states should be localized
on the (3,8) periodic orbits. This is the very dynamical
tunneling.

III. DYNAMICAL TUNNELING THROUGH
PERIODIC ORBITS

To understand the phenomenon of dynamical tunneling,
we obtain the intensity plots of eigenfunctions around D as
shown in Fig. 2. Figures 2(a) and 2(b) are the vertical and the
horizontal BBTM at ε = 0.0723, which are developed from
the (7,0) and the (4,8) normal mode, respectively. When the
two BBTMs interact with each other through an AC, the two
eigenfunctions are coupled as shown in Figs. 2(c) and 2(d) at
ε = 0.0724. In order to show that these states are quantum-
mechanically superposed states, the two BBTMs shown in
Figs. 2(a) and 2(b) are superposed. As are shown in Figs. 2(e)
and 2(f), [(7,0) + (4,8)]/

√
2 and [(7,0) − (4,8)]/

√
2 states are

the same as the eigenfunctions shown in Figs. 2(c) and 2(d),
respectively. We note here that (7,0) and (4,8) denote the
vertical and the horizontal BBTM developed from the (7,0)
and the (4,8) normal mode, respectively. This result is an
evidence of Fermi resonance. After the AC, the BBTMs are
recovered by exchanging their properties. The coupled states,
as they are the phenomenon of Fermi resonance, should satisfy
the Fermi resonance relation (|�l|,|�m|) = (pθ ,pr ) = (3,8),
where pθ is the number of librations on the angular axis and
pr is the number of bounces on the boundary. At a glance,
the patterns shown in Figs. 2(c) and 2(d) do not seem to be
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FIG. 2. (Color online) Intensity plots of eigenfunctions around
D. (a), (b) The vertical and the horizontal BBTM, respectively, at
ε = 0.0723. (c), (d) A pair of coupled states when the vertical and the
horizontal BBTM interact with each other at ε = 0.0724. (e), (f) The
symmetric and antisymmetric superposition of the wave functions of
(a) and (b) at ε = 0.0723, respectively. The trajectories shown in (c)
and (d) are a stable and an unstable (mθ,mr ) = (3,8) periodic orbit,
which are a pair in the sense of the PBT. The color order from the
maximum to the minimum value is yellow, purple, and black.

supported by the (3,8) periodic orbits, which are superimposed
on the intensity plot of the eigenfunctions.

In order to elucidate the role of Fermi resonance in dynam-
ical tunneling, Husimi functions are obtained. Figures 3(a)
and 3(b) are the Husimi functions of the vertical and the
horizontal BBTM superimposed on classical trajectories in
phase space, respectively. The two BBTMs are localized
on a period-2 stable periodic orbit and a period-2 unstable
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FIG. 3. (Color online) Husimi functions superimposed on clas-
sical trajectories. (a), (b) The Husimi functions of the vertical and
the horizontal BBTM, respectively. (c), (d) The Husimi functions of
the coupled states shown in Figs. 2(c) and 2(d), respectively. The
classical trajectories exhibit a period-8 stable (upward triangles) and
an unstable periodic orbit (downward triangles) comprising a period-8
islands chain. χ is the incident angle, S is the arc length from the
x axis, and Smax is the boundary length. The color order from the
maximum to the minimum value is yellow, red, blue, and white.

periodic orbit, respectively, as shown by the yellow bright
spots around triangles (upward for stable and downward
for unstable). The vertical BBTM, as it is caused by the
interaction of the (7,0) normal mode with the (6,2) one,
should be localized on the (1,2) periodic orbit. Similarly, the
horizontal BBTM, as it is caused by the interaction of the
(4,8) normal mode with the (5,6) horizontal BBTM around
F, should be localized on the (1,2) unstable periodic orbit.
Hence the vertical and the horizontal BBTM satisfy the Fermi
resonance relation (|�l|,|�m|) = (pθ ,pr ) = (1,2). This is the
very Fermi resonance in formation of scars [18,26–28]

When an AC takes place, the two BBTMs are coupled
as shown by the Husimi functions in Figs. 3(c) and 3(d). In
both figures, the yellow bright spots are placed on a period-2
stable periodic orbit and a period-2 unstable periodic orbit and
wave functions are connected with each other as shown by
the weak blue distributions between the two regions. This
connection is classically forbidden because the stable and
the unstable periodic orbit are disconnected by the secondary
islands chain and Kolmogorov-Arnold-Moser (KAM) barriers
in phase space. Such distributions are made possible only by
dynamical tunneling. This result may not seem to satisfy the
Fermi resonance relation because while the quantum number
difference of the two BBTMs is (3,8), the yellow bright spots
are neither localized on the (3,8) stable periodic orbit nor on the
(3,8) unstable periodic orbit. However, with much attention,
we can see faint channels connecting the two BBTMs. The
tunneling channels in Fig. 3(c) are localized on a period-8
stable periodic orbit, while those in Fig. 3(d) are localized on
a period-8 unstable periodic orbit. The stable and the unstable
periodic orbit of the period-8 islands chain are the tunneling
channels for dynamical tunneling.

In order to clearly show the tunneling channels, the log-plot
of the Husimi functions superimposed on classical trajectories
are obtained as shown in Fig. 4. Figure 4(a) clearly exhibits
16 tunneling channels on two period-8 stable orbits. The
16 tunneling channels are caused by two opposite traveling
directions of the (3,8) periodic orbit. The figure also shows 16
zeros of Husimi function [28] around two period-8 unstable
periodic orbits, which appear as local-minimum regions.
Because an eigenfunction is not distributed on the zeros of
the Husimi function, dynamical tunneling takes place through
the stable periodic orbits of the islands chains, which is
classically forbidden. In contrast to those of the stable periodic
orbits, the tunneling channels in Fig. 4(b) are two period-8
unstable periodic orbits. Here, we can discern 12 zeros of
Husimi function. The large size zeros of Husimi function
around p = 0 are caused by two close zeros of Husimi
function not by a single one. This result verifies that when
the two BBTMs developed from the (7,0) and the (4,8)
normal mode interact with each other, the quantum number
difference (|�l|,|�m|) = (3,8) equals the (pθ ,pr ) = (3,8)
periodic orbit, where the tunneling channels are localized.
Hence dynamical tunneling also satisfies the Fermi resonance
relation.

For a more quantitative justification of the tunneling
channels, we transform the trajectories on (s,p) coordinate
into polar coordinate. First, the s coordinate is transformed into
ξ = 4s/smax − 1 as shown in Fig. 5(a). Then, the trajectories
on the left half coordinate can be transformed into polar
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FIG. 4. (Color online) Log plot of the Husimi function super-
imposed on classical trajectories. (a), (b) The Husimi functions of
the eigenfunctions shown in Figs. 2(c) and 2(d), respectively. El-
liptically distributed local-minimum points around the islands chains
are the zeros of the Husimi function. χ is the incident angle, S is the arc
length from the x axis, and Smax is the boundary length. Triangles are
stable fixed points of a (4,8) islands chain. The color order from the
maximum to the minimum value is yellow, red, blue, and white.

FIG. 5. (Color online) Trajectories on Birkhoff coordinate and
on polar coordinate when the deformation parameter is ε = 0.0724.
(a) The trajectories on Birkhoff coordinate, and (b) is those on polar
coordinate. The horizontal and the vertical axis are defined by Eqs. (4)
and (5), respectively.

coordinate as follows:

ϑ = arctan

(
p

ξ

)
, (4)

J̃ =
√

p2 + ξ 2, (5)

where J̃ is the distance from the center to the trajectory and ϑ

is the angle as shown in Fig. 5(a). To note here, we apply the
transformation to only the half plane of the original phase space
since it has a virtue of symmetry. The trajectories transformed
into polar coordinate are shown in Fig. 5(b). For example,
the arrow shown in Fig. 5(a) is transformed as indicated in
Fig. 5(b).

By using the same mechanism of the transformation, we
obtain the transformed Husimi functions on polar coordinate
as shown in Fig. 6. Figures 6(a) and 6(b) are the vertical and
the horizontal BBTM on polar coordinate at ε = 0.0714. When
they interact with each other, the transformed Husimi functions
also exhibit zeros of Husimi functions as shown in Figs. 6(c)
and 6(d), around J̃ = 0.5, which are the [(7,0) + (4,8)]/

√
2

and the [(7,0) − (4,8)]/
√

2 state at ε = 0.0724, respectively.
In order to obtain the intensity variation of the Husimi

functions around the tunneling channel depending on the
deformation parameter, we obtain adiabatic KAM curves
[29,30], which correspond to the period-8 islands chain. The
adiabatic KAM curves in Birkhoff-coordinate are given as
follows:

p(s) = sin χ (s) =
√

1 − (1 − p̃2)κ(s)2/3, (6)

where p̃ is the parameter determining the curves and κ is the
curvature of the system boundary depending on the s. For
the curves to cross the stable points of the period-8 islands
chain, we set p̃ = 0.270 for ε = 0.0714 and p̃ = 0.275 for
ε = 0.0724. In these parameters, the adiabatic KAM curves
pass through the center of the islands chain. The curves are
also transformed into polar coordinate, that is, γ (s,p; p̃) to
γ (ϑ,J̃ ). The curves are plotted in Fig. 6 as thin “w”-like lines.
In Figs. 6(c) and 6(d), we also plot highlighted period-8 islands
chains. It is stressed that the adiabatic KAM curves and the
islands chains well coincide.

Now, we obtain the intensity of the Husimi functions along
the adiabatic KAM curves depending on the deformation
parameter as shown in Fig. 7. As is shown in Fig. 7(a), when
there is no tunneling, the intensities of the Husimi functions
of the vertical and the horizontal BBTM are almost uniform
along the adiabatic KAM curves as shown by the thin dashed
blue and the thin solid red curve. Obviously, when dynamical
tunneling takes place, the intensity around the islands chain
is much higher than that around the unstable periodic orbit as
shown by the thick dashed (blue) curve as shown in Fig. 7(a),
which is the [(7,0) + (4,8)]/

√
2 state. In contrast to the thick

dashed (blue) curve, in the case of the [(7,0) − (4,8)]/
√

2
state, the intensity around the unstable periodic orbit is much
higher than that around the islands chain as shown by the thick
solid (red) curve in Fig. 7(a). Figure 7(b) shows the position
of the islands chain and the unstable periodic orbits. This
analysis quantitatively elucidates the tunneling channels when
dynamical tunneling takes place.
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FIG. 6. (Color online) Husimi functions h(ϑ,J̃ ) superimposed on classical trajectories on polar coordinate. (a), (b) The Husimi functions
of the vertical and the horizontal BBTM at ε = 0.0714, respectively. (c), (d) The Husimi functions of Figs. 2(c) and 2(d) at ε = 0.0724,
respectively, when an AC takes place. Thin “w”-like lines (yellow in (a), (c), and (d) and black in (b)) in the figures are the adiabatic KAM
curves γ . (a), (b) When p̃ = 0.270; (c), (d) when p̃ = 0.275. The horizontal and the vertical axes are defined by Eqs. (4) and (5), respectively.
The color order from the maximum to the minimum value is white, green, and black.

The tunneling channels satisfying the Fermi resonance
relation are easily observed when an eigenfunction localized
on a periodic orbit interacts with the other eigenfunctions.
As another example, we take an interaction around C, where
the (3,10) normal mode interacts with the vertical BBTM
developed from the (7,0) normal mode. Figures 8(a) and 8(b)
are the normal mode and the vertical BBTM at ε = 0.043 00,
respectively. When the two eigenfunctions interact with each
other, they exhibit a pair of coupled states as shown in Figs. 8(c)
and 8(d) at ε = 0.043 99, respectively. These states are also

FIG. 7. (Color online) Intensities of Husimi functions along the
adiabatic KAM curves γ . (a) The intensity of each Husimi function
along the adiabatic KAM curves γ in Fig. 6. Solid (red) thin and thick
lines correspond to Figs. 6(a) and 6(c), respectively. Dashed (blue)
thin and thick lines correspond to Figs. 6(b) and 6(d), respectively.
(b) The classical trajectories and the adiabatic KAM curve γ on polar
coordinate at ε = 0.0724. Vertical (green) dot dashed lines show the
region of the islands chain.

quantum-mechanically superposed states. The trajectories on
the figures are the (4,10) periodic orbits. Figures 8(e) and 8(f)
are the eigenfunctions of the vertical BBTM and the normal
mode at ε = 0.045 00, which are recovered after an AC,
respectively. The coupled states, as they are the phenomenon
of Fermi resonance, should also satisfy the Fermi resonance
relation (|�l|,|�m|) = (pθ ,pr ) = (4,10). The eigenfunctions
shown in Figs. 8(c) and 8(d) do not also seem to be supported
by the (4,10) periodic orbits, which are superimposed on the
intensity plot of the coupled states.

FIG. 8. (Color online) Eigenfunctions around C in Fig. 1.
(a), (b) The (3,10) normal mode and the vertical BBTM devel-
oped from the (7,0) normal mode at ε = 0.043 00, respectively.
(c), (d) The coupled eigenfunctions at the AC point, ε = 0.043 99.
(e), (f) The recovered BBTM and (3,10) normal mode after the AC
at ε = 0.045 00, respectively. The color order from the maximum to
the minimum value is yellow, purple, and black.
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FIG. 9. (Color online) Log plot of the Husimi function super-
imposed on classical trajectories. (a), (b) The Husimi functions of
the eigenfunction shown in Figs. 8(c) and 8(d) at ε = 0.043 99,
respectively. Elliptically distributed local-minimal points around the
islands chains are the zeros of the Husimi function. The color order
from the maximum to the minimum value is yellow, red, blue, and
white.

Figures 9(a) and 9(b) are the log-plots of the Husimi
functions of the eigenfunctions shown in Figs. 8(c) and 8(d),
respectively. Figures 9(a) and 9(b) clearly exhibit 20 tunneling
channels on two period-10 stable and on two period-10 un-
stable periodic orbits, respectively. The 20 tunneling channels
are caused by two opposite traveling directions of the (4,10)
periodic orbit. Figures 9(a) and 9(b) also show 20 zeros of
Husimi function around two period-10 unstable periodic orbits
and two period-10 stable periodic orbits, respectively. This
result also verifies that when the two eigenfunctions developed
from the (7,0) and the (3,10) normal mode interact with each
other, the quantum number difference (|�l|,|�m|) = (4,10)
equals the (pθ ,pr ) = (4,10) periodic orbit, where the tunneling
channels are localized.

Similarly, when the horizontal BBTM developed from the
(6,8) normal mode interacts with the (3,16) normal mode,
dynamical tunneling takes place. In this case, the (3,8)
quantum number difference of the pair also equals the (3,8)
periodic orbit of the tunneling channels. Hence we can say that
when an eigenfunction localized on a periodic orbit interacts
with another eigenfunction through an AC in a narrow range, a
pair of quantum-mechanically coupled states are generated at
the AC point due to dynamical tunneling. Here, the orbit of the
tunneling channels equals the quantum number difference of
each pair such that (|�l|,|�m|) = (pθ ,pr ), which is the Fermi
resonance relation.

IV. DISCUSSIONS AND CONCLUSION

It is generally known that dynamical tunneling is a
phenomenon distinctive from scar formation. For example,

in the latter, a scar is localized on an unstable periodic
orbit due to Fermi resonance [18,26], but in the former, a
coupled state seems to be either irregular or scarred by other
periodic orbits not satisfying the Fermi resonance relation.
And while scars are generated by an interaction of a pair
of normal modes [18,26], dynamical tunneling takes place
when an eigenfunction localized on a periodic orbit interacts
with another eigenfunction. Here, the quantum numbers of the
eigenfunctions cannot be defined in a chaotic billiard. How-
ever, through our investigation, we elucidate that dynamical
tunneling and scar formation are the same phenomenon of
Fermi resonance. First, in both cases, a pair of eigenfunctions
are the quantum-mechanically superposed states of a pair of
original eigenfunctions and, second, they satisfy the Fermi
resonance relation. According to a report [3], when an AC takes
place in a narrow range of a deformation parameter, original
wave functions are recovered by exchanging their properties
after the AC, and when it takes place over a broader range, scars
keep their eigenfunctions. The former is dynamical tunneling
due to the Landau-Zener-type interaction [23,24] and the latter
scar formation is due to the Demkov type [22].

In Ref. [17], quantum manifestation of the PBT is analyzed
in the Harper map. In this map, when two eigenfunctions
interact with each other through an AC, two coupled eigen-
functions are localized on a stable and on an unstable
periodic orbit, respectively. After the interaction their original
eigenfunctions are recovered by exchanging their properties.
During the interaction, the quantum number difference equals
the period of the periodic orbits, which is a phenomenon of
dynamical tunneling. In a chaotic billiard, in general, when
dynamical tunneling takes place, two coupled eigenfunctions
are not localized on periodic orbits, but tunneling channels are
localized on the periodic orbits. Detailed discussions on this
phenomenon will appear elsewhere later.

In conclusion, we have investigated dynamical tunneling
in a quadrupole billiard. When an eigenfunction localized
on a periodic orbit interacts with another eigenfunction, the
two eigenfunctions are coupled through dynamical tunneling.
In this case, because a pair of periodic orbits are the
tunneling channels for dynamical tunneling, the quantum
number difference of two eigenfunctions equals the periodic
orbits such that (|�l|,|�m|) = (pθ ,pr ). Hence a pair of
eigenfunctions tunnel through the periodic orbits. This is
the Fermi resonance relation. These results imply that Fermi
resonance plays a decisive role when two eigenfunctions
interact with each other through an AC. Our results will
promote a deeper understanding of dynamical tunneling and
provide a fundamental knowledge for analyzing complex
eigenfunctions, which appear not only in physical, chemical,
and optical systems but also in engineering systems.
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