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We present a unified theoretical study of the bright solitons governed by self-focusing and defocusing
nonlinear Schrödinger (NLS) equations with generalized parity-time- (PT ) symmetric Scarff-II potentials.
Particularly, a PT -symmetric k-wave-number Scarff-II potential and a multiwell Scarff-II potential are
considered, respectively. For the k-wave-number Scarff-II potential, the parameter space can be divided into
different regions, corresponding to unbroken and broken PT symmetry and the bright solitons for self-focusing
and defocusing Kerr nonlinearities. For the multiwell Scarff-II potential the bright solitons can be obtained by
using a periodically space-modulated Kerr nonlinearity. The linear stability of bright solitons withPT -symmetric
k-wave-number and multiwell Scarff-II potentials is analyzed in detail using numerical simulations. Stable and
unstable bright solitons are found in both regions of unbroken and brokenPT symmetry due to the existence of the
nonlinearity. Furthermore, the bright solitons in three-dimensional self-focusing and defocusing NLS equations
with a generalized PT -symmetric Scarff-II potential are explored. This may have potential applications in the
field of optical information transmission and processing based on optical solitons in nonlinear dissipative but
PT -symmetric systems.
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I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation plays an im-
portant role in many fields of nonlinear physics [1–5]. The
cubic NLS equation is shown to be completely integrable for
both self-focusing and defocusing Kerr nonlinearities [6–8],
which can be used to describe the propagation of optical pulses
in Kerr-type optical media [3–5] or to describe the dynamics
of matter waves in Bose-Einstein condensates, known as the
Gross-Pitaevskii equation [9–12].

The NLS equations with real external potentials and
gain-and-loss distributions have been studied in many works
[13–17] because the refractive index of optical materials
is usually complex, i.e., n(x) = nR(x) + inI (x) with nR(x)
and nI (x) being the real and imaginary parts, respectively.
In optics, the propagation of a signal is stable unless the
propagation constant of the light is in real spectrum range. This
requirement can be efficiently achieved if the gain-and-loss
distributions in the medium are exactly balanced to ensure the
relation n(x) = n∗(−x) [or nR(x) = nR(−x) and nI (−x) =
−nI (x)], which is known as the parity-time- (PT ) symmetric
systems [18].PT symmetry may exhibit entirely real spectrum
of the respective optical potential in some parameter regions,
referred to as the unbroken PT symmetry [18–20]. Beyond
these regions, in the broken PT symmetry, the spectrum
becomes complex and propagating waves may be either grow
or decay.

Recently, various PT -symmetric potentials have been
introduced to the NLS equations, which have been shown to
possess stable and unstable solitons of different types [21–38].
Examples include the NLS equations with PT -symmetric
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Scarff-II potential [21–24,39], periodic potential
[21,22,25,26], harmonic potential [27,28], Rosen-Morse
potential [29], Gaussian potential [28,30,31], sextic
anharmonic double-well potential [40], time-dependent
harmonic-Gaussian potential [41], self-induced potential
[42], etc. (see, e.g., Refs. [32–38]). One the other hand,
due to the significant progress achieved in recent years
on developing optical materials with adjustable refractive
index, PT -symmetric optical systems made of solid-state
waveguides and fiber networks [43–45], multilevel atomic
systems [46–50], and microcavities [51,52] have been
suggested or realized experimentally. These practical systems
provide a solid ground for the study of solitons in the NLS
model with PT -symmetric potentials.

The PT -symmetric potentials play a key role in wave
propagation in the NLS equations in fiber and waveguide op-
tics. As an example, wave propagation with a PT -symmetric
Scarff-II potential in both linear and nonlinear models has
been studied in recent years [21–24]. The PT -symmetric
Scarff-II potential can support stable bright solitons in the
NLS models within particular parameter regions [19,20]. More
importantly, the real and imaginary parts of thePT -symmetric
k-wave-number Scarff-II potential [19,53] both approach to
zero as |x| → ∞ [cf. Eq. (4), for V0 = 2,W0 = 1, k = √

2,
we have V (x) ≈ 3.25 × 10−24 and W (x) ≈ 1.04 × 10−12 as
x = 20], that is, they have a limited effect on the nonlinear
waves for the NLS equation only in a boundary region (e.g.,
|x| < 20 for k = √

2) [cf. Eq. (3)] and can more easily
support the existence of bright solitons in the NLS equation,
compared with thePT -symmetric harmonic and optical lattice
potentials, which always have the effect on the nonlinear
waves in the whole region (see, e.g., Refs. [21,22,25–28]).
However, a complete analysis of the soliton stability in
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a PT -symmetric k-wave-number Scarff-II potential is still
lacking in a full parameter space [e.g., the space consists of
amplitudes of real and imaginary parts of the PT -symmetric
k-wave-number Scarff-II potential and the wave number k,
see Eq. (4)]. In addition, the study of optical solitons could be
very useful in information science. For example, one can use
optical solitons in coding for secured optical communication,
etc.

In this work we propose a unified study of optical bright
solitons governed by self-focusing and defocusing NLS equa-
tions with generalized PT -symmetric Scarff-II potentials.
Particularly, we consider a PT -symmetric k-wave-number
Scarff-II potential and a multiwell Scarff-II potential, respec-
tively. For the k-wave-number Scarf-II potential, we show
that by using two k-wave-number rays and a k-wave-number
parabola one can divide the parameter space {(V0,W0)|V0 >

0,W0 ∈ R} (V0 and W0 are, respectively, the real and imaginary
parts of the potential) in different regions, corresponding to
unbroken and broken PT symmetry and the bright solitons
with self-focusing and defocusing Kerr nonlinearities. For
the multiwell Scarff-II potential we obtain bright solitons
by using a periodically space-modulated Kerr nonlinearity.
Then we analyze the linear stability of bright solitons for
both potentials in details by using numerical simulations.
Surprisingly, stable and unstable bright solitons are found in
both regions of unbroken and broken PT symmetry due to
the existence of the nonlinearity. Furthermore, we explore the
bright solitons in three-dimensional (3D) self-focusing and
defocusing NLS equations with a generalized PT -symmetric
Scarff-II potential.

Turning to the possible experimental implementation of
the models we will study [see Eq. (1) with PT -symmetric
k-wave-number and multiwell Scarff-II potentials (4) and
(19)], we can exploit a PT -symmetric refractive index profile
(e.g., the considered PT -symmetric k-wave-number Scarff-II
potential) imprinted in a cold gas of two atomic isotopes of
�-type configuration (say of 87Rb and 85Rb isotopes) loaded
in an atomic cell, as suggested in Refs. [46–50]. By the
interference of two Raman resonances, the required spatial
distribution of the refractive index (i.e., the k-wave-number
and multiwell Scarff-II potentials) can be achieved by a proper
combination of a control laser field and a far-off-resonance
Stark laser field. Since the refractive index of the atomic vapor
is determined by two external laser fields, whose intensities
can be lowered to several microwatts achievable for the
lasers nowadays, the system has the advantages of real-time
all-optical tunable capability and controllable PT -symmetry
accuracy. In addition, the studied model supports a large Kerr
nonlinearity (which is at least 1013-order larger than those
measured for usual nonlinear optical materials) due to the
Raman resonant character, which favors the formation of
optical bright solitons.

The rest of this paper is arranged as follows. Section II gives
the bright spatial solitons in one-dimensional PT -symmetric
potentials. BothPT -symmetric k-wave-number and multiwell
Scarff-II potentials are considered. The linear stability of
optical bright solitons is analyzed. Stable solitons are found
for both unbroken and broken PT -symmetric potentials.
Section III gives the bright solitons in 3D self-focusing and
defocusing NLS equations with a generalized PT -symmetric

Scarff-II potential. Finally, the last section contains a summary
of main results obtained in this work.

II. BRIGHT SOLITONS IN ONE-DIMENSIONAL
PT -SYMMETRIC POTENTIALS

A. Nonlinear physical model and stationary solutions

Now we uniformly investigate the exact localized solution
modes and their stabilities of self-focusing and defocusing
NLS equations with a PT -symmetric potential. In the dimen-
sionless form, the physical model can be written as [21]

i∂tψ + ∂2
xψ + [V (x) + iW (x)]ψ + g|ψ |2ψ = 0, (1)

where ∂t = ∂/∂t, ∂x = ∂/∂x, ψ ≡ ψ(x,t) is a complex field
of x,t (x and t are, respectively, dimensionless space and time),
V (x) is a real external potential, W (x) is a real gain-and-loss
distribution, and g characterizes the self-focusing (g > 0)
or defocusing (g < 0) Kerr nonlinearity, respectively. Equa-
tion (1) is associated with a variational principle δL(ψ)/δ�∗ =
0 with the Lagrangian density

L(ψ) = i(ψ∗ψt − ψψ∗
t ) + 2|ψx |2

+ 2[V (x) + iW (x)]|ψ |2 + g|ψ |4. (2)

The PT -symmetric potential V (x) + iW (x) leads to the
sufficient (but not necessary) condition V (x) = V (−x) and
W (x) = −W (−x). The quasipower and power of Eq. (1)
are given by Q(t) = ∫ +∞

−∞ ψ(x,t)ψ∗(−x,t)dx and P (t) =∫ +∞
−∞ |ψ(x,t)|2dx, respectively. One can readily get that

Qt = i
∫ +∞
−∞ gψ(x,t)ψ∗(−x,t)[|ψ(x,t)|2 − |ψ(−x,t)|2]dx

and Pt = −2
∫ +∞
−∞ W (x)|ψ(x,t)|2dx. Note that if we set t → z

in Eq. (1), where z denotes the propagation distance [21], then
the following results about Eq. (1) still hold as t → z.

We focus on the stationary solutions of Eq. (1) in the form
ψ(x,t) = φ(x)eiμt , where μ is the real propagation constant
and the complex function φ(x) satisfies the stationary NLS
equation with varying parameter modulation:

μφ(x) = d2φ(x)

dx2
+ [V (x) + iW (x)]φ(x) + g|φ(x)|2φ(x), (3)

which can be solved by using numerical methods.
In the following, we consider two different types of PT -

symmetric potential, i.e., the PT -symmetric k-wave-number
Scarff-II potential and the periodically space-modulated
Scarff-II potential, and study the exact localized solutions and
their linear stability in both regions of unbroken and broken
PT symmetry.

B. PT -symmetric k-wave-number Scarff-II potential

To study the soliton solutions of Eq. (3), we first consider
thePT -symmetric k-wave-number Scarff-II potential [19,53],
which is given as

V (x)=V0 sech2(kx), W (x)=W0 sech(kx) tanh(kx), (4)

where k > 0 denotes the wave number and V0 > 0 and W0

are real parameters and modulate amplitudes of the external
potential and gain-and-loss distribution, respectively. The
wave number k and amplitude V0 can modulated the well width
and depth of the potential V (x), respectively. W0 can modulate
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FIG. 1. (Color online) Real (a) and imaginary (b) parts of PT -
symmetric k-wave-number Scarff-II potential (4). (a) V0 = 3, k =
1/

√
2 (dashed-dotted line), V0 = 2, k = √

2 (solid line), V0 = k = 1
(dashed line) and (b) W0 = 3, k = 1/

√
2 (dashed-dotted line), W0 =

2, k = √
2 (solid line), W0 = k = 1 (dashed line).

the impact of the gain-and-loss distribution. For the case
k = 1, the PT -symmetric k-wave-number Scarff-II potential
(4) becomes the usual PT -symmetric Scarff-II potential
[19]. Figure 1 displays the PT -symmetric k-wave-number
Scarff-II potential (4) for different amplitudes V0,W0, and
wave number k.

It follows from Eq. (4) that V (x),W (x) → 0 as |x| → ∞
and/or k → ∞ and V (x) → V0,W (x) → 0 as x = 0 and/or
k → 0. If V0W0 	= 0, then V (x) and W (x) satisfy the family
of elliptic curves:[

V (x)

V0
− 1

2

]2

+ W 2(x)

W 2
0

= 1

4
(5)

with the centers being (V0/2,0) in the (V (x),W (x)) space. It
is easy to see that the family of elliptic curves is dependent on
the wave number k.

In general, for the PT -symmetric k-wave-number Scarff-II
potential SPT = V (x) + iW (x) with V (x) and W (x) given by
Eq. (4) for any real parameters V0,W0 there are the following
three cases:

(i) When W0 = 0, the potential SPT = V (x) is a real,
Hermitian, and PT -symmetric potential;

(ii) when V0 = 0, the potential SPT = iW (x) is a pure
imaginary, non-Hermitian, and PT -symmetric potential; and

(iii) when V0W0 	= 0, the potential SPT = V (x) + iW (x)
is a complex, non-Hermitian, and PT -symmetric potential.

In the following, we mainly consider the potential SPT =
V (x) + iW (x) in Case (iii) with V0 > 0.

1. Linear eigenvalue problem with unbrokon
and broken PT symmetry

The linear eigenvalue problem

LPT �(x) = λ�(x), LPT = −∂2
x − [V (x) + iW (x)] (6)

with V (x) and W (x) given by Eq. (4) exhibits an entirely real
spectrum provided that two amplitudes V0 > 0,W0 and the
wave number k satisfy

|W0| � V0 + k2

4
, (7)

where λ and �(x) are eigenvalue and eigenfunction, re-
spectively. The inequality (7) is called the PT -symmetry-
unbreaking condition. If |W0| > V0 + k2/4, then the spectrum

FIG. 2. (Color online) The parameter space {(V0,W0)|V0 >

0, W0 ∈ R} can be divided into different regions by two families
of k-wave-number open rays l1,2 : W0 = ±(V0 + k2/4) with V0 > 0
and a family of k-wave-number parabola l3: W 2

0 = 9k2(V0 − 2k2),
corresponding to unbroken and broken PT symmetry and bright
solitons with self-focusing (g > 0) and defocusing (g < 0) Kerr
nonlinearities. The tangent points of three curves are P1,2 = (17k2/4,

±9k2/2).

becomes complex. For k = 1, the condition (7) reduces to
the well-known one, |W0| � V0 + 1/4 [19,20]. Therefore, two
families of k-wave-number open rays l1:

W0 = V0 + k2/4, V0 > 0 (8)

and l2:

W0 = −(V0 + k2/4), V0 > 0 (9)

divide the parameter space {(V0,W0)|V0 > 0,W0 ∈ R} into two
regions, i.e., the unbrokenPT -symmetric region |W0| � V0 +
k2/4 and the broken PT -symmetric region |W0| > V0 + k2/4
(see Fig. 2).

2. The conditions for the existence of nonlinear modes

For the given PT -symmetric k-wave-number Scarff-II
potential (4) with V0 > 0 and W0 ∈ R, Eq. (3) admits the
unified bright soliton for both self-focusing (g > 0) and
defocusing (g < 0) nonlinearities

φ(x) =
√

1

g

(
W 2

0

9k2
− V0 + 2k2

)
sech(kx)eiϕ(x), (10)

where μ = k2, g[W 2
0 /(9k2) − V0 + 2k2] > 0, and the phase

is

ϕ(x) = W0

3k2
arctan[sinh(kx)]. (11)

In particular, when g = k = 1 or −g = k = 1, the solution
(10) reduces to the known ones as given in Refs. [21,24].

Now we analyze the conditions for the existence of
bright soliton (10) for parameters W0, V0, k, and g. For the
positive (self-focusing) nonlinearity g > 0, the condition for
the existence of bright soliton (10) is given by

W 2
0 > 9k2(V0 − 2k2). (12)
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FIG. 3. (Color online) Real (solid lines) and imaginary (dashed lines) parts of bright soliton (10) for (a) the self-focusing nonlinearity g = 1
with V0 = 5, W0 = 5.2, k = √

2 and (b) defocusing nonlinearity g = −1 with V0 = 3, W0 = 0.5, k = 1/
√

2. (c) The transverse power-flow
vector (Poynting vector) S(x) given by Eq. (16) for the self-focusing nonlinearity g = 1 with V0 = 5, W0 = 5.2, k = √

2 (solid line) and
defocusing nonlinearity g = −1 with V0 = 3, W0 = 0.5, k = 1/

√
2 (dashed line).

The real and imaginary parts of the soliton are displayed in
Fig. 3(a). For the negative (defocusing) nonlinearity g < 0, the
condition for the existence of bright soliton (10) is given by

|W0| < 3k
√

V0 − 2k2, V0 > 2k2. (13)

The real and imaginary parts of the soliton are illustrated in
Fig. 3(b).

Taking into account the conditions (12) and (13) for the
existence of bright soliton (10) for g > 0 and g < 0, the pa-
rameter space {(V0,W0)|V0 > 0,W0 ∈ R} can be divided into
another two fundamental regions by the family of parabolas
l3: W 2

0 = 9k2(V0 − 2k2) with the vertex being (2k2,0). These
two conditions (12) and (13) for bright solitons with g > 0
and g < 0, respectively, are shown in Fig. 2.

Note that the bright soliton (10) with g > 0 [attractive
case for Eq. (1)] can also exist for the region {(V0,W0)|V0 �
0,W0 ∈ R}.

Two branches of k-wave-number open rays l1,2 given by
Eqs. (8) snd (9) are tangent to the parabola l3:

W 2
0 = 9k2(V0 − 2k2) (14)

at the points P1,2 = (17k2/4,±9k2/2), respectively. In other
words, |V0 + k2/4| > 3k

√
V0 − 2k2 always holds except for

two tangent points P1,2, at which they are equal (see Fig. 2 and
Ref. [54] for details).

Therefore, the parameter space {(V0,W0)|V0 > 0,W0 ∈ R}
can be divided into eight regions, i.e.,

{(V0,W0)|V0 > 0,W0 ∈ R}
= I1 + I2 + I3 + II + III + l1 + l2 + l3, (15)

where “+” denotes the union of two sets, these regions
I1,2,3, II, III denote open sets without the corresponding bound-
aries (see Fig. 2). To make it become clearer, we summarize
these different regions in Table I. One can see that the region for
bright solitons with self-focusing nonlinearity contains both
regions for unbroken and broken PT symmetry, whereas the
region for bright solitons with defocusing nonlinearity contains
only the region for unbroken PT symmetry.

For any complex solution φ(x) = |φ(x)|eiϕ(x) with ϕ(x)
bering a real phase of φ(x), we find that its corresponding
transverse power-flow or Poynting vector and the gradient of
phase obey the relation S(x) = i

2 (φφ∗
x − φ∗φx) = |φ(x)|2ϕx .

For the bright soliton (10), its corresponding transverse power-
flow or “Poynting vector” is given by

S(x) = W0

3kg

(
W 2

0

9k2
− V0 + 2k2

)
sech3(kx), (16)

which implies that sgn(S(x)) = sgn(W0) for any x and g = ±1
[see Fig. 3(c)] since k > 0 and g[W 2

0 /(9k2) − V0 + 2k2] > 0
are required for the conditions of the existence of bright
solitons. Therefore, the power always flows in one direction,
i.e., from the gain toward the loss. In addition, we have
the conserved power related to solution (10) is P (t) =
2
gk

( W 2
0

9k2 − V0 + 2k2).

3. Stability of nonlinear modes

Next we study the linear stability of the bright solitons
(10) in the above-mentioned different regions. To this end, we
considered a perturbed bright soliton solution [55]

ψ(x,t) = {φ(x) + ε[F (x)eiδt +G∗(x)e−iδ∗t ]}eiμt , (17)

TABLE I. The regions for unbroken and brokenPT symmetry and the existence of bright solitons with self-focusing (g > 0) and defocusing
(g < 0) nonlinearities in the parameter space {(V0,W0)|V0 > 0,W0 ∈ R} [Yes and No denote the corresponding problems exist and do not exist
in the regions, respectively. The signs + and − denote the union and difference of two sets, respectively].

Linear problem (g = 0): Linear problem (g = 0): Nonlinear problem (g > 0): Nonlinear problem (g < 0):
Region unbroken PT symmetry broken PT symmetry soliton (10) soliton (10)

I1 + I2 + I3 + l1
+l2 − {P1,2} Yes No Yes No

l3 Yes No No No
II No Yes Yes No
III Yes No No Yes
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where φ(x)eiμt is a stationary solution of Eq. (1), ε 
 1,
and F (x) and G(x) are the eigenfunctions of the linearized
eigenvalue problem. Substituting Eq. (17) in Eq. (1) and
linearizing with respect to ε, we obtain the following linear
eigenvalue problem:[

L gφ2(x)
−gφ∗2(x) −L∗

][
F (x)
G(x)

]
= δ

[
F (x)
G(x)

]
, (18)

where L = ∂2
x + V (x) + iW (x) + 2g|φ(x)|2 − μ.

The stability of the perturbed soliton ψ(x,t) is related to
the imaginary parts Im(δ) of all eigenvalues δ. If |Im(δ)| > 0,
then the solution ψ(x,t) will grow exponentially with t (i.e.,
it is unstable), otherwise the solution ψ(x,t) is stable. In the
following, we study the stability of exact soliton (10) under an
initial random noise perturbation up to 2% of its amplitude for
different parameters.

Since the regions I1 and I3 are symmetric about the V0

axes, we only need to consider one of them (say I1). Thus we
leave four regions for studying the linear stability of the bright
solitons (10). The regions I1, I2, and II correspond to bright
solitons for the self-focusing nonlinearity g = 1, whereas the
region III corresponds to bright solitons for the defocusing
nonlinearity g = −1. To be specific, we study the stability
of bright solitons in the regions for unbroken and broken
PT symmetry with k = 1 (the usual PT -symmetric Scarff-II
potential) and k 	= 1. Note that we only consider W0 > 0 as
W (x) is an odd function.

If k = 1 and g = 1: (i) for V0 = 0.1,W0 = 0.5 in region II
(broken PT symmetry), we numerically obtain the spectrum
of eigenvalues δ [see Fig. 4(a)] and a stable propagation of
the soliton intensity |ψ(x,t)|2 shown in Fig. 4(b); (ii) for
V0 = 1.5,W0 = 0.2 in region I2 (unbroken PT symmetry),
we numerically obtain the spectrum of eigenvalues δ [see
Fig. 4(c)] and a stable propagation of the soliton intensity
|ψ(x,t)|2 shown in Fig. 4(d); (iii) for V0 = 5,W0 = 5.2 in
region I1 (unbrokenPT symmetry), we numerically obtain the
spectrum of eigenvalues δ [see Fig. 4(e)] and an unstable prop-
agation of the soliton intensity |ψ(x,t)|2 shown in Fig. 4(f); (iv)
for V0 = −0.1,W0 = 0.1 in region {(V0,W0)|V0 � 0,W0 ∈
R}, we numerically obtain the spectrum of eigenvalues δ

[see Fig. 4(g)] and an unstable propagation of the soliton
intensity |ψ(x,t)|2 shown in Fig. 4(h). If k = 1 and g =
−1, for V0 = 3,W0 = 0.5 in the region III (unbroken PT
symmetry), we numerically obtain the spectrum of eigenvalues
δ [see Fig. 5(a)] and a stable propagation of the soliton
intensity |ψ(x,t)|2 shown in Fig. 5(b). We stress that the
stability (instability) of the bright solitons in the broken
(unbroken) PT -symmetry region is due to the existence of
Kerr nonlinearity.

If k 	= 1 and g = 1: (i) for V0 = 0.05,W0 = 0.25, k =
1/

√
2 in region II (broken PT symmetry), we numerically

obtain the spectrum of eigenvalues δ [see Fig. 6(a)] and a
stable propagation of the soliton intensity |ψ(x,t)|2 shown in
Fig. 6(b); (ii) for V0 = 2.16,W0 = 0.12, k = √

1.2 in region
I2 (unbroken PT symmetry), we numerically obtain the
spectrum of eigenvalues δ [see Fig. 6(c)] and a stable prop-
agation of the soliton intensity |ψ(x,t)|2 shown in Fig. 6(d);
(iii) for V0 = 10,W0 = 10.4, k = √

2 in region I1 (unbroken
PT symmetry), we numerically obtain the spectrum of

FIG. 4. (Color online) The linear stability eigenvalues (left col-
umn) and propagation of soliton intensity |ψ(x,t)|2 with g = k = 1
(right column). [(a) and (b)] V0 = 0.1, W0 = 0.5 (in the region II),
[(c) and (d)] V0 = 1.5, W0 = 0.2 (in the region I2), [(e) and (f)] V0 =
5, W0 = 5.2 (in the region I1), and [(g) and (h)] V0 = −0.1, W0 = 0.1
(in the region {(V0,W0)|V0 � 0,W0 ∈ R}).

FIG. 5. (Color online) (a) The linear stability eigenvalues; (b) the
stable propagation of soliton intensity |ψ(x,t)|2 with g = −1. The
other parameters are V0 = 3, W0 = 0.5, k = 1 (in the region III).
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FIG. 6. (Color online) The linear stability eigenvalues (left col-
umn) and propagation of soliton intensity |ψ(x,t)|2 with g = 1 (right
column). [(a) and (b)] V0 = 0.05, W0 = 0.25, k = 1/

√
2 (in region

II), [(c) and (d)] V0 = 2.16, W0 = 0.12, k = √
1.2 (in region I2), [(e)

and (f)] V0 = 10, W0 = 10.4, k = √
2 (in region I1), and [(g) and (h)]

V0 = −0.05, W0 = 0.05, k = 1/
√

2 (in the region {(V0,W0)|V0 �
0, W0 ∈ R}).

eigenvalues δ [see Fig. 6(e)] and an unstable propagation
of the soliton intensity |ψ(x,t)|2 shown in Fig. 6(f); (iv)
for V0 = −0.05,W0 = 0.05, k = 1/

√
2, in the region

{(V0,W0)|V0 � 0,W0 ∈ R}, we numerically obtain the
spectrum of eigenvalues δ [see Fig. 6(g)] and an unstable
propagation of the soliton intensity |ψ(x,t)|2 shown in Fig.
6(h). If k 	= 1 and g = −1, for V0 = 6,W0 = 1, k = √

2 in
region III (unbroken PT symmetry), we see that |Im(δ)| = 0
[see Fig. 7(a)] and a stable propagation of the soliton intensity
|ψ(x,t)|2 is obtained as shown in Fig. 7(b).

FIG. 7. (Color online) (a) The linear stability eigenvalues; (b) the
stable propagation of soliton intensity |ψ(x,t)|2 with g = −1. The
other parameters are V0 = 6, W0 = 1, k = √

2 (in region III).

C. PT -symmetric multiwell Scarff-II potential

Now we consider another type of PT -symmetric Scarff-II
potential, i.e., thePT -symmetric multiwell Scarff-II potential,
reading

V (x) =
[
W 2

0

9
+ 2 − σ cos(ωx)

]
sech2(x),

(19)
W (x) = W0sech(x) tanh(x),

where W0, σ ∈ R and ω � 0 denotes the wave number. If
ω = 0 and σ = W 2

0 /9 + 2 − V0, then V (x) becomes the usual
Scarff-II potential [19,20], which exhibits the shape of a
single well, but for nonzero wave number ω, V (x) exhibits
the shape of a multiwell, which can provide more abundant
structures. For W0 = 0.2, the external potential V (x) exhibits
double-well (σ = 2, ω = 1), single-well (σ = −2, ω = 1),
and multiwell (σ = ±2, ω = 6) structures, respectively (see
Fig. 8). In fact, for the fixed parameters W0 and ω, one
can change the parameter σ to control the number of the
wells. Note that in the figure we plot the profile of −V (x)
because the Hamiltonian of Eq. (1) is −∂2

x − V (x) − iW (x).
As ω → 0 (or ω 
 1), the linear problem associated with the
PT -symmetric potential (19) admits an entirely real spectra
provided that |W0| � W 2

0 /9 + 9/4 − σ . If ω ∼ 1, then the
condition for the unbroken PT symmetry is complicated.
For the fixed parameter W0 = 0.2, we find the regions of
the unbroken PT symmetry: (i) ω = 0.5, −550 � σ � 2.5;
(ii) ω = 1, −53.3 � σ � 3.17; (iii) ω = 2, −13.1 � σ �
6.65; and (iv) ω = 5, −13.9 � σ � 11.33.

FIG. 8. (Color online) The external potential −V (x) exhibiting a
multiwell structure for (a) σ = 2 and (b) σ = −2. Other parameters
are W0 = 0.2, ω = 1,6.
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For the PT -symmetric multiwell Scarff-II potential (19),
we consider the periodically space-modulated nonlinearity
g → g(x) in Eq. (3) with the form

g(x) = σ cos(ωx). (20)

For the zero wave number ω = 0, nonlinearity g(x) is a
constant, g(x) = σ ; however, for the given nonzero wave
number ω, the nonlinearity g(x) is either positive or negative
as x increases. Based on the potential (19) and the nonlinearity
(20) we have exact bright solitons of Eq. (3),

φ(x) = sech(x)eiϕ(x), (21)

where μ = 1 and the phase is

ϕ(x) = W0

3
arctan[sinh(x)]. (22)

The corresponding transverse power-flow or Poynting vector
is given by

S(x) = i

2
(φφ∗

x − φ∗φx) = W0

3
sech3(x), (23)

which implies that sgn[S(x)] = sgn(W0) for any x. Therefore,
the power always flows in one direction, i.e., from the gain
toward the loss. Moreover, the conserved power is P (t) =∫ +∞
−∞ |ψ(x,t)|2 = 2.

Now we consider the linear stability of the soliton solution
(21) using Eq. (18) with g being replaced by the periodic
function (20) with W0 = 0.2 and different values of ω, σ . We
find that for the fixed ω the soliton (21) is more (less) stable
if σ < 0 (σ > 0). For examples, we show the linear stability
eigenvalues and the stable propagation of the soliton (21) for
ω = 1, σ = 2 [see Figs. 9(a) and 9(b)]; ω = 1, σ = −2 [see
Figs. 9(c) and 9(d)]; ω = 0.5, σ = −3 [see Figs. 9(e) and 9(f)];
and ω = 0.5, σ = 1 [see Figs. 9(g) and 9(h)].

For the fixed parameters W0 = 0.2, ω = 0.5, when σ =
−310, for which the PT symmetry is unbroken, the soliton
(21) is stable [see Fig. 10(b)], however, when σ = 2.5, in
which PT symmetry is unbroken, the soliton (21) becomes
unstable [see Fig. 10(d)]. Thus, for W0 = 0.2, ω = 0.5, the
parameter σ has a significant influence on the linear stability
of the soliton solution (21). A negative σ favors obtaining
stable solitons.

III. SOLITONS IN THREE-DIMENSIONAL
PT -SYMMETRIC POTENTIAL

We now consider the 3D NLS equation with the PT -
symmetric potential

i∂tψ+∇2ψ+[V (x,y,z)+iW (x,y,z)]ψ+g|ψ |2ψ =0, (24)

where ψ = ψ(x,y,z,t) is a complex field with respect to
x,y,z,t ∈ R, ∇2 = ∂2

x + ∂2
y + ∂2

z , V (x,y,z), and W (x,y,z)
are both real-valued functions related to external potential
and gain-and-loss distribution, respectively, and g is a real
constant with g = ±1. The PT -symmetric potential requires
the sufficient (but not necessary) condition V (x,y,z) =
V (−x,−y,−z) and W (x,y,z) = −W (−x,−y,−z). The sta-
tionary solution can be solved in the form ψ(x,y,z) =
φ(x,y,z)eiμt , where μ is the real propagation constant and

FIG. 9. (Color online) The linear stability eigenvalues (left col-
umn) and stable propagation of soliton intensity |ψ(x,t)|2 (right
column). [(a) and (b)] W0 = 0.2, ω = 1, σ = 2; [(c) and (d)] W0 =
0.2, ω = 1, σ = −2; [(e) and (f)] W0 = 0.2, ω = 0.5, σ = −3; [(g)
and (h)] W0 = 0.2, ω = 0.5, σ = 1. All panels correspond to the
unbroken PT symmetry.

φ(x,y,z) satisfies

μφ = ∇2φ + [V (x,y,z) + iW (x,y,z)]φ + g|φ|2φ. (25)

We consider the generalized 3D PT -symmetric Scarff-II
potential

V (x,y,z) =
∑

η=x,y,z

(
W 2

0

9k2
η

+ 2k2
η

)
sech2(kηη)

− gφ2
0

∏
η=x,y,z

sech2(kηη), (26)

W (x,y,z) = W0

∑
η=x,y,z

sech(kηη) tanh(kηη),
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FIG. 10. (Color online) The linear stability eigenvalues (left col-
umn) and propagation of soliton intensity |ψ(x,t)|2 (21) (right
column). [(a) and (b)] σ = −310, corresponding to the unbroken
PT symmetry; [(c) and (d)] σ = 2.5, corresponding to the unbroken
PT symmetry. Other parameters are W0 = 0.2 and ω = 0.5.

where kη > 0 (η = x,y,z) are the wave numbers in the x,y,z

directions, respectively, and W0, φ0 are real constants. In
particular, the PT -symmetric potential (26) reduces to the
Scarff-II potential (4) when η = x and kx = 1. Since x,y,z are
symmetric in V (x,y,z) and W (x,y,z) thus we plot their profiles
in (x,y) space with z = 0 (see Fig. 11). For the self-focusing
nonlinearity g > 0, the external potential V (x,y,0) exhibits
the different profiles as g becomes large [see Figs. 11(a)–
11(c)].

For the above-mentioned 3D potential (26) we obtain the
exact bright solitons of Eq. (25)

φ(x,y,z)=φ0sech(kxx)sech(kyy)sech(kzz)eiϕ(x,y,z), (27)

where μ = k2
x + k2

y + k2
z and the phase is

ϕ(x,y,z) = W0

3

∑
η=x,y,z

k−2
η arctan[sinh(kηη)]. (28)

The real and imaginary parts and intensity of the solution (27)
are shown in Figs. 13(a)–13(c) for φ0 = 1 and W0 = 0.5.

The velocity field v(x,y,z) of the solitons (27) have the
form

v = ∇ϕ(x,y,z)

= W0

3

[
k−1
x sech(kxx), k−1

y sech(kyy), k−1
z sech(kzz)

]
, (29)

which is shown in Fig. 12(a) with W0 = 0.5. It follows from
Eq. (29) that the divergence of velocity field v(x,y,z) (alias
the flux density) is given by

div v(x,y,z) = ∇ ·v(x,y,z) = ∇2ϕ(x,y,z)

= −W0

3

∑
η=x,y,z

sech(kηη) tanh(kηη), (30)

FIG. 11. (Color online) The external potential V (x,y,0) with
(a) g = 1, (b) g = 3, (c) g = 8, and (d) g = −1; (e) the gain-and-loss
distribution W (x,y,0). The parameters are W0 = 0.5 and φ0 = kx =
ky = kz = 1.

which measures the flux per unit area and is dependent on both
W0 and space position. Figure 12(b) shows the flux density in
(x,y,0) space. In addition, we also have the relation

div v(x,y,z) = ∇2ϕ(x,y,z) = − 1
3W (x,y,z). (31)

From Eq. (30) we have the following proposition. For the given
parameter W0 > 0, we have:

(i) the fluid flows outward if f (x,y,z) < 0;
(ii) the fluid flows inward if f (x,y,z) > 0; and
(iii) the fluid does not flow if f (x,y,z) = 0,

FIG. 12. (Color online) (a) The velocity field v(x,y,z) (29);
(b) the flux density div v(x,y,0) (30). The parameter are W0 = 0.5
and kx = ky = kz = 1.
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FIG. 13. (Color online) The (a) real part, (b) imaginary part, and
(c) the intensity of the soliton solution (27); (d) the transverse power-
flow vector (Poynting vector) 
S(x,y,z). The parameter are W0 = 0.5
and kx = ky = kz = 1.

where we have introduced f (x,y,z) = ∑
η=x,y,z sech

(kηη) tanh(kηη). For the case W0 < 0, we also have the
corresponding results.

For any complex solution φ(x,y,z) = |φ(x,y,z)|eiϕ(x,y,t),
we find that its corresponding transverse power-flow or
Poynting vector and the gradient of phase obey the relation


S(x,y,z) = i

2
(φ∇φ∗ − φ∗∇φ)

= |φ(x,y,z)|2∇ϕ(x,y,z). (32)

The transverse power-flow or Poynting vector related to the
solution (27) is given by


S(x,y,z)= φ2
0

∏
η=x,y,z

sech2(kηη)v(x,y,z)

= W0φ
2
0

3

∏
η=x,y,z

sech2(kηη)

× [
k−1
x sech(kxx), k−1

y sech(kyy), k−1
z sech(kzz)

]
, (33)

for either g = 1 or −1 (i.e., it does not depend on the sign of
the nonlinearity), which is exhibited in Fig. 13(d). In addition,
the conserved power related to the solution (27) is given by
P (t) = 8φ2

0/(kxkykz) for either g = 1 or g = −1.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have presented a unified theoretical
study of the optical bright solitons governed by self-focusing
and defocusing NLS equations with PT -symmetric Scarff-II-
like potentials. Particularly, a PT -symmetric k-wave-number
Scarff-II potential and a multiwell Scarff-II potential are
considered, respectively. For the k-wave-number Scarff-II
potential, the parameter space can be divided into different
regions, corresponding to unbroken and broken PT symmetry
and bright solitons with self-focusing and defocusing Kerr
nonlinearities. For the multiwell Scarff-II potential the bright
solitons can be obtained by using a periodically space-
modulated Kerr nonlinearity. The linear stability of bright
solitons with PT -symmetric k-wave-number and multiwell
Scarff-II potentials is analyzed in detail by using numerical
simulations. Stable and unstable bright solitons are found in
both regions of unbroken and broken PT symmetry due to the
existence of the nonlinearity. Furthermore, the bright solitons
in 3D self-focusing and defocusing NLS equations with a
generalized PT -symmetric Scarff-II potential are explored.
The used method can also be used to study optcial solitons in
other PT -symmetric k-wave-number potentials.

The results we obtained in this work provide a new way
of control over soliton stability by using generalized PT -
symmetric Scarff-II potentials in different parameter domains.
This may have potential applications in the field of optical
information transmission and processing based on optical
solitons in nonlinear dissipative but PT -symmetric systems.
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