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Intermittency route to chaos and broadband high-frequency generation in semiconductor
superlattice coupled to external resonator
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We investigate the onset of broadband microwave chaos in the miniband semiconductor superlattice coupled
to an external resonator. Our analysis shows that the transition to chaos, which is confirmed by calculation of
Lyapunov exponents, is associated with the intermittency scenario. The evolution of the laminar phases and the
corresponding Poincare maps with variation of a supercriticality parameter suggest that the observed dynamics
can be classified as type I intermittency. We study the spatiotemporal patterns of the charge concentration and
discuss how the frequency band of the chaotic current oscillations in semiconductor superlattice depends on the
voltage applied.
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I. INTRODUCTION

Nowadays semiconductor superlattices (SLs) [1–4] are
considered as promising elements for sub-THz and THz
electronics [5,6]. Being formed by several alternating layers
of different semiconductors, they provide a unique quantum
mechanical environment [3,7], which can be utilized for
generation [8,9], amplification [10,11], and detection of high-
frequency electromagnetic signals [12,13]. In this respect, the
effects of the external resonator on high-frequency current
generation in SLs is of great research interest from both
fundamental and practical points of view [6] for a number of
reasons. First, at high frequencies it is impossible to avoid
the parasitic capacitances and inductances in the elements
enclosing the SL (wires, contacts, electrodynamic structures),
which can significantly influence the charge transport in the
device [14,15].

Second, the external resonant system is widely used for
tuning and enhancing the characteristics of the high-frequency
generation [16]. Finally, coupling of the generating device
to an external electrodynamic structure sometime leads to
emergence of new unexpected phenomena, including bistabil-
ity [17], self-pulsations [18,19], and appearance of chaos [20],
which is unfeasible in the isolated devices.

The possibility to generate high-frequency (up to few GHz)
chaos in miniband and weakly coupled SLs was previously
demonstrated in both theory [21–24] and experiment [25–28].
These findings have opened wide perspectives for using SL
devices in a number of key modern technologies including
fast random number generation [27,29], which is crucially
important in chaos-based communication systems [30–32]
and cryptography [33]. Certain progress in the development
of true random bit generators for applications to secure
communications was achieved by using weakly coupled
superlattices [27] and chaotic semiconductor lasers [29,34].
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Recently we discovered that a resonant electrodynamic
system connected to an SL can drive the latter to generate
chaotic current oscillations, even if the SL alone is unable
to generate chaos [20]. The aims of the present work are
to study the dynamical mechanisms responsible for onset of
chaos in an SL connected to a resonator and to investigate
how the frequency band of chaotic output depends on the
voltage applied to the system. In particular, we revealed that
appearance of chaos in such a system is accompanied by
intermittent dynamics, whose scaling properties are typical
for type I intermittency [35]. This type of intermittency is
associated with the inverse tangent bifurcation, when two
limit cycles (a stable and an unstable ones) merge and
disappear [36]. Interestingly, such intermittent behavior is
one of most generic fundamental mechanisms of transition to
chaos [37–40] and to synchronization [41,42] in both purely
deterministic and noisy dynamical systems of different origin.
We demonstrate that in the system under study the relative
spectral band width of generated chaotic voltage oscillations
is very sensitive to applied voltage and can reach values more
than 25%. The results, which we report here, will be useful,
e.g., for development and design of high-frequency chaos
generators that use SL devices as key elements [27,43].

In Sec. II we introduce a mathematical model which
describes charge transport in an SL connected to a single-mode
resonator. Section III studies the bifurcation mechanism of
the onset of chaos. Section IV analyzes the evolution of
spatiotemporal patterns of charge dynamics in SL and the band
width of the corresponding high-frequency output. Finally, in
Sec. V we summarize results and draw conclusions.

II. MATHEMATICAL MODEL

The device under study is schematically sketched in
Fig. 1(a). In order to describe miniband transport along
the SL axis (axis x) we consider a set of one-dimensional
continuity and Poisson equations. In numerical simulations
we use descretized version of these equations, following the
approach suggested in Ref. [44]. Within the frames of this
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FIG. 1. (Color online) (a) Schematic diagram of a semiconductor
superlattice coupled to an external strip-line resonator. (b) Equivalent
circuit for an SL interacting with an external single-mode resonator.
Here C, L, and R are the equivalent capacitance, inductance, and
resistance of the resonator, respectively, I (VSL) is the current through
the SL, with voltage VSL dropped across it, and V0 is the dc supply
voltage. The load resistance is Rl = 0.1�. (c) The dependence of the
miniband drift velocity, vd (F ), for the temperature T = 4.2 K.

approach the transport region of SLs having length Lsl is split
into a number of layers, each of width �x. Then the time
evolution of charge density nm(t) in the mth layer is determined
by the equation

e�x
dnm

dt
= Jm−1 − Jm, m = 1, . . . ,N, (1)

where e is the electron charge, and Jm−1 and Jm are the volume
current densities on the left and right boundaries of the mth
layer. The latter can be calculated using the equation

Jm = enmvd (Fm), (2)

where Fm is the mean field in the mth layer [3,44]. It is assumed
that charge transport is realized within the lowest miniband,
when interminiband tunneling can be neglected. In this case
the miniband drift velocity vd for the finite temperature T and
the given Fm can be calculated using the Esaki-Tsu-Romanov
formalism [4]:

vd (F ) = �d

2�

I1(�/2kBT )

I0(�/2kBT )

eFdτ/�

1 + (eFdτ/�)2
, (3)

where d = 8.3 nm is the period of the SL, � = 19.1 meV
is the miniband width, and τ is an effective scattering time,
which takes into account both elastic and inelastic scattering
events [3,45,46]. Parameter kB represents the Boltzmann
constant and In(x), where n = 0,1, is a modified Bessel
function of the first kind. In our calculations we fix T = 4.2 K,
and τ = 176 fs, whose value we chose close to one from recent
experiments [20,46,47]. The dependence of the electron drift
velocity vd on electric field strength F is illustrated in Fig. 1(c).

The function vd (F ) demonstrates a characteristic maximum,
which is associated with the onset of Bloch oscillations. With
further growth of F the effect of Bloch oscillations on electron
dynamics becomes stronger. This leads to localization of
electrons and the decrease of vd . Although Eq. (3) was obtained
for a static electric field F , it can be also used for a slowly
oscillating electric field, when the miniband electrons can
follow the ac field adiabatically [48–50], i.e., for 2πf τ � 1,
where f is the frequency of an electric field applied. We note
that for the value of τ used in our model this adiabatic limit
spans up to several hundred GHz.

The electric field Fm at the left-hand edge of mth layer is
determined by the discretized Poisson equation

Fm+1 = e�x

ε0εr

(nm − nD) + Fm, m = 1, . . . ,N. (4)

Here ε0 and εr = 12.5 are the absolute and relative permittivi-
ties, respectively, and nD = 3 × 1022 m−3 is the n-type doping
density in the SL layers [46]. In the emitter and collector
Ohmic contacts, F = F0. Similarly to Refs. [20,44], we chose
N = 480 and �x = 0.24 nm, which is small enough to
approximate a continuum and provide converge of a numerical
solution.

Ohmic boundary conditions determine the current, J0 =
σF0, in the heavily doped emitter of electrical conductivity
σ = 3788 Sm−1 [46]. The voltage, Vsl, applied to the device
is a global constraint given by

Vsl = U + �x

2

N∑

m=1

(Fm + Fm+1), (5)

where the voltage, U , dropped across the contacts includes the
effect of charge accumulation and depletion in the emitter and
collector regions and a contact resistance R = 17� [51,52].
We calculate the current through SL as

I (t) = A

N + 1

N∑

m=0

Jm, (6)

where A = 5 × 10−10 m2 is the cross-sectional area of the
SL [3,44,46]. We assume that the current I (t) excites only
one mode in the external resonator. In this case the resonator
can be substituted by an equivalent lumped LRC circuit,
which is characterized by frequency, fQ, and by quality
factor, Q. Such a single-mode approximation, which allows us
to significantly simplify analysis and simulation of extended
electrodynamic systems, is often used in a wide spectrum of
problems, examples of which include helix structures in TWT
amplifiers [53,54], klystrons [55], and Gunn diodes coupled to
an external resonator [56,57].

The current I (t) generated by the SL depends on voltage
Vsl applied to the device. This voltage includes a dc bias V0

and ac voltage V1 induced by the resonator, which, according
to Fig. 1(b), can be described by the following equations:

C
dV1

dt
= I (Vsl) − I1, (7)

L
dI1

dt
= −RI1 + V1 + RlI (Vsl). (8)
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Here Vsl = V0 − V1, C, L, and R are the equivalent capaci-
tance, inductance, and resistance of the resonator, respectively,
and Rl is the load resistance.

Equations (7) and (8) yield the resonance frequency fQ =
1/(2π

√
LC) and the quality factor Q = (1/R)

√
L/C. In

our calculations we use the circuit parameters from recent
experiment [20]: Rl = 0.1�, R = 0.5�, C = 3.0 pF, and
L = 0.17 nH.

III. TRANSITION TO CHAOS

Depending on the bias voltage V0, the model (1)–(8)
demonstrates either constant or oscillating electric current I (t).
In a single SL without external resonator, the periodic current
oscillations appear when V0 exceeds a certain threshold value
≈0.34 V. These oscillations remain periodic for any larger
values of V0. However, connecting the SL to a resonator can
cause additional instabilities eventually leading to generation
of chaos [20].

Figure 2 presents a bifurcation diagram illustrating different
dynamical regimes of an SL coupled to a resonator for a range
of bias voltage V0 = 400–900 mV (a) and the dependence of
the frequency of the current I (t) generated by the SL without a
resonator on V0 (b). The plot in Fig. 2(a) shows local maxima
of voltage oscillations V1(t) calculated for different values
of V0. For low bias voltage V0 = 400–500 mV the diagram
reveals periodic oscillations, which for each value of V0 are
represented by one or a few points. The range of V0 = 500–
550 mV demonstrates two regions of irregular dynamics of
V1(t) (erratic sets of points) split by a region of period-three
oscillations. Further increase of V0 regularizes the oscillations;
however, for high enough voltage V0 > 840 mV, the diagram
again displays a large area of chaotic dynamics. Notably, as
is seen from Fig. 2(b), chaos in the system emerges when the
frequency of resonator (fQ = 13.81 GHz) is detuned from the
frequency of I (t).

V0 (V)

V 1
m

ax
 (V

)

(a)

-0.8

-0.4

 0

 0.4

 0.8

 0.4  0.9

 1

 5

 10

 15

 20

 25

 30

 35

 0.4  0.5  0.6  0.7  0.8  0.9

f (
G

H
z)

V0 (V)
 0.5  0.6  0.7 0.8

(b)

FIG. 2. (Color online) (a) Bifurcation diagram illustrating the
evolution of voltage oscillations in resonator V1 with variation of the
supply voltage V0 for fQ = 13.81 GHz and Q = 150; (b) dependence
of the frequency of I (t), generated by the SL without resonator,
upon V0.
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FIG. 3. Time series of V1(t) for (a) V0 = 510.68 mV, (b) V0 =
510.7 mV, (c) V0 = 510.75 mV; turbulent phases in (b) and (c) are
marked by a gray stripe. (d) Single period of voltage oscillations for
V0 = 510.7 mV and (e) its zoomed part. The circles in (e) show four
local maxima. (f) Change of the amplitude of V1(t) within the laminar
phase; the gray box indicates the turbulent phase. External resonator
is characterized by fQ = 13.81 GHz and Q = 150.

In order to better illustrate the transition to chaos in
the region framed by the dashed rectangle in Fig. 2(a), we
calculate time realizations of V1(t) for three characteristic
values of V0 [see Figs. 3(a)–3(c)]. As Fig. 3(a) shows, for
V0 = 510.68 mV the voltage V1 demonstrates pure periodic
behavior. For V0 = 510.7 mV [Fig. 3(b)] the long periodic
phases of V1(t) are occasionally intermitted by turbulent
oscillations, which are marked in Fig. 3(b) by a gray strip.
It is also seen that the chaotic behavior arises on the basis of a
period-four cycle. On order to illustrate this, one period of this
cycle is shown in Figs. 3(d) and 3(e), where four local maxima
of I (t) are indicated by circles.

Further raising of V0 up to 510.75 mV leads to rapid increase
of frequency of the turbulent events [Fig. 3(c)]. Such evolution
of the time realizations V1(t) with variation of V0 suggests the
transition of chaos via the intermittency phenomenon [35].
Remarkably, the height of local maxima is increasing from the
start of the laminar region to its end [Fig. 3(f)], which is quite
typical for the type I intermittency [37].

To get deeper insight into observed intermittent dynamics,
we investigate how the mean length of laminar phase 〈τ 〉
changes with increase of voltage V0. Figure 4 presents
the dependence of 〈τ 〉 upon the supercriticality parameter
V0 − V0crit, where V0crit is the value of the critical voltage V0

corresponding to the onset of the intermittent dynamics. For the
chosen set of the parameters we estimate V0crit = 510.69 mV.
In our calculations shown in Fig. 4 we analyze V1(t) within
the time intervals, which are long enough to provide us with
at least 103 turbulent phases for V0 − V0crit ∈ [2,10] μV. One
can see that the calculated dependence of 〈τ 〉 upon V0 − V0crit

(black circles) in Fig. 4 is close to the power law with exponent
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FIG. 4. The log-log plot of the mean laminar phase length 〈τ 〉
versus criticality parameter (V0 − V0crit) (points) and its approxima-
tion 〈τ 〉 ∼ (V0 − V0crit)−0.5 (dashed line). Here V0crit = 510.69 mV;
parameters of external resonator: frequency fQ = 13.81 GHz, quality
factor Q = 150.

−0.5 (dashed line):

〈τ 〉 = α(V0 − V0crit)
−0.5, (9)

which confirms the development of type I intermit-
tency [36,37].

It is known that the transition to chaos via a type I
intermittency involves the inverse tangent bifurcation, in which
two limit cycles (a stable and an unstable one) merge and
disappear. This instability leads to formation of a specific
pattern in Poincare map, which is associated with emergence
of a “channel” between the map points and the diagonal [36].
Figure 5(a) demonstrates the Poincaré map of V1(t), when
V0 = 510.71 mV slightly exceeds V0crit. It was constructed
numerically as dependence of V1(n+1) upon V1(n), where V1(n)

is the nth local maximum in a time realization of V1(t).
Since we deal with period-four limit cycles, every fourth local
maxima was taken for this map. As one can see, the map
indeed demonstrates a narrow channel formed due to an inverse
tangent bifurcation, which becomes more evident in a zoomed
fragment of the map presented in Fig. 5(b). Wandering of the
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Q = 150. The turbulent phase in the time series is indicated by gray
areas.

map points within this channel corresponds to the laminar
phase of oscillations V1(t), whereas leaving the channel leads
to appearance of turbulent dynamics. Specifically in Fig 5, the
turbulent phase of oscillations is represented by a complex
structure of the map for V1 > 480 mV. After spending some
time in this region, the phase trajectory returns to the vicinity
of V1 ≈ 477 mV, where relaminarization of oscillations is
realized.

To understand the physical processes generating the turbu-
lent phase we analyze a time realization of V1(t) and Vsl(t)
[Fig. 6(a)], I (t) [Fig. 6(b)] together with the corresponding
spatiotemporal pattern of n(t,x) [Fig. 6(c)]. The charge density
n(t,x) is presented by a color scale in units of the doping
density nD . Figure 6 reveals that the laminar phases of V1(t)
are characterized by regular behavior of high-density charge
domains traveling along the SL. Each domain is generated
when the values of V1 achieve a minimum. This time moment
corresponds to the maximal value of Vsl =V0 − V1, which
triggers domain formation, and while a domain propagates
along the SL, no new domains can be generated. As we
mentioned above, the decoupled SL and the resonator have
different characteristic time scales. However, for small V0, the
interaction of the resonator and the SL coordinates oscillations
of I (t) and the resonator response V1(t). Growth of V0 leads to
increase of the amplitude of I (t), which excites the resonator.
Therefore, the response of the resonator V1(t) becomes more
powerful. Occasionally, interaction of the SL and the resonator
produces a phase slip between I (t) and V1(t), which leads to
local decrease of V1 [arrow (1) in Fig. 6(a)] and thus growth
of Vsl. Eventually, raising Vsl exceeds the threshold value and
launches an additional domain [arrow (2) in Fig. 6(c)], which
imposes disorder in the queue of domains. This causes further
perturbations in I (t) forming a turbulent phase in V1(t). A
slight increase of V0 makes the phase slips more often, which
develops the chaos.

IV. BROADBAND GENERATION

Next, we consider a wide region of chaos, which can be
found in Fig. 2(a) for V0 > 820 mV. Our analysis showed
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that the transition to chaos in this range of V0 is realized
according to the same intermittent scenario as described
above. However, this region of chaos is characterized by more
powerful oscillations of V1(t) and has much less prominent
periodic windows, which alternates with chaos with variation
of V0.

The evolution of the spectrum of the Lyapunov exponents
corresponding to this transition is shown in Fig. 7. The
figure demonstrates the dependence of four largest Lyapunov
exponents 	1–	4 upon V0 calculated by method discussed
in Refs. [58,59]. For V0 < 841 mV the largest Lyapunov
exponent is 	1 = 0, whereas 	2, 	3, 	4 < 0. Such a spectrum
of the Lyapunov exponent evidences generation of regular
periodic current and voltage oscillations in the system. With
an increase of V0, exponent 	1 becomes positive, 	2 grows
to be zero, and 	3 together with 	4 remain negative.
Appearance of a positive Lyapunov exponent corresponds
to the onset of chaos. Remarkably, the positive Lyapunov
exponent, which measures the level of unpredictability of the
generated dynamics, varies only slightly within a considerable
range of V0 ∈ [850,900] mV.

Figure 8 presents typical time realizations of voltage V1(t)
[(a), (d), (g), (j)], the current generated by SL I (t) [(b), (e),
(h), (k)], and charge concentration n(x,t) [(c), (f), (i), (l)]
for different V0 from the range of V0 > 820 mV. For lower
voltage V0 = 830 mV V1(t) [Fig. 8(a)] demonstrates regular
period-four oscillations, which are coordinated in time with
oscillations of I (t) [Fig. 8(b)]. Once a charge domain arrives
to the SL collector [Fig. 8(c)], it creates a massive peak in the
current I (t) [Fig. 8(b)]. Each such current peak corresponds to
two successive oscillations of V1(t) [Fig. 8(a)]. The regularity
of these oscillations is confirmed by zero values of the largest
Lyapunov exponent shown in Fig. 7. For larger value of
V0 = 852 mV the oscillations in the resonator V1(t) [Fig. 8(d)]
start to demonstrate intermittent behavior, where regular and
turbulent phases alternate. In this regime the motion of the
charge domains becomes irregular [Fig. 8(f)], which generates
quite erratic peaks in the current I (t) [Fig. 8(e)]. As Fig. 7
shows, this dynamics is characterized by a positive largest
Lyapunov exponent, which confirms the appearance of chaos
in the system. Further increase of V0 up to 858 mV makes
the generated chaos even more complex by producing a new
phase of intermittent behavior associated with small amplitude
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FIG. 8. (Color online) Time series of voltage (a), (d), (g), (j), and
current (b), (e), (h), (k) oscillations, and spatiotemporal distributions
of charge in SL illustrated domain transport (c), (f), (i), (l) for different
bias voltage: (a), (b), (c) 830 mV, (d), (e), (f) 852 mV, (g), (h),
(i) 858 mV, (j), (k), (l) 863 mV. Parameters of external resonator:
frequency fQ = 13.81 GHz, quality factor Q = 150.

oscillations of V1(t) [see, e.g., the time interval 1.2–1.6 ns
in Fig. 8(g)]. These oscillations correspond to generation of
a series of fast-moving charge domains [Fig. 8(i)], which
produce high-frequency current oscillations [Fig. 8(h)]. This
phase of chaotic oscillations becomes even more prominent for
higher voltage V0 = 863 mV, as one can see in Figs. 8(j)–8(l)]
within the time interval 0–0.5 ns.

In order to study the spectral characteristics of the generated
signals, we calculate power spectral density S(f ) of the voltage
oscillations in the resonator V1(t). Figures 9(a)–9(d) illustrate
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FIG. 9. (Color online) (a) Power spectral density of voltage
oscillations before the transition to chaos for (a) V0 = 830 mV; and
after transition to chaos for (b) V0 = 852 mV, (c) V0 = 858 mV, and
(d) V0 = 863 mV. (e) Bandwidth vs the bias voltage V0. Parameters
of external resonator are fQ = 13.81 GHz and Q = 150.

evolution of S(f ) with variation of the bias voltage V0. For
V0 = 830 mV [Fig. 9(a)] the oscillations of V1 have a discrete
spectrum S(f ) with the dominant peak at f ≈ 12.72 GHz
corresponding to the basic frequency of oscillations. The
peak is surrounded by harmonics and subharmonics delimited
by frequency interval �f ≈ 3.18 GHz. This structure of
the spectral power density reflects the period-four regular
oscillations, presented in Fig. 8(a). For larger voltages V0 =
852 mV [Fig. 9(b)], V0 = 858 mV [Fig. 9(c)], and V0 =
863 mV [Fig. 9(d)], the position of the dominant peak in
the spectra remains almost the same. However, these spectra
become broadband and continuous, confirming generation of
developed chaos for larger values of V0. Notably, spectra
of chaotic oscillations S(f ) presented in Figs. 9(b)–9(d)
have quite a similar shape. We quantitatively characterize
the bandwidth of the generated signal using the conventional
“−3 dB” definition [60–62]. In this case the bandwidth �f is
defined as the difference �f = fb2 − fb1 between the upper
(fb2) and lower (fb1) boundary of the frequency range, within
which the power density exceeds half of the maximum spectral
density, which is observed for the frequency fm.

The relative bandwidth is then calculated as � = �f /fm ×
100%. The dependence of �(V0) for V0 > 820 mV, fQ =
13.81, and Q = 150 is presented in Fig. 9(e). Arrows (a)–(d)

point the values of V0 corresponding to the Figs. 9(a)–9(d),
respectively. For V0 between 0.820 and 0.841 mV the relative
bandwidth of V1 is practically zero reflecting the periodicity
of V1(t) oscillations. However, when V0 exceeds 0.841 mV the
bandwidth of V1(t) becomes finite, implicating the onset of
chaos. Interestingly, despite the close values of the largest
Lyapunov exponents [see Fig. 7] for chaos, whose power
spectral density are shown in Figs. 9(b)–9(d), the bandwidth of
the corresponding oscillations changes significantly between
∼650 MHz (� ≈ 4.2%) for V0 = 858 mV [Fig. 9(c)] and
∼3 GHz (� ≈ 28.1%) for V0 = 863 mV [Fig. 9(d)]. This
fact proposes that V0 can be used for effectively controlling
the bandwidth of the signal generated in the SL coupled to a
resonator.

V. CONCLUSION

In conclusion, we demonstrated theoretically that an SL
coupled to a resonator can generate chaotic high-frequency
oscillations of current and voltage. This chaos is developed by
following the intermittency scenario, which is characterized
by alternating laminar and turbulent phases of the oscillations.
With change of the bias voltage V0 the turbulent phases
occur more often, thus developing chaos in the generated
oscillations. Appearance of chaos was confirmed by calcu-
lation of spectra and the Laypunov exponents. The analysis
of the laminar phase length for different bias voltage and
of the topology of Poincaré maps revealed that chaos is
developed via type I intermittency [35]. We found out that
intermittency is generated when the resonant frequency of
the resonator is detuned from the frequency of the current
oscillations generated by an isolated SL. In this case, for certain
ranges of V0 response oscillations in the resonator become
uncoordinated with the driving current oscillations generated
by the SL. This leads to formation of the turbulent phase and
development of chaos in the system.

Our results suggest that SLs coupled to a single-mode
resonator can be used as a tunable broadband generator, whose
relative bandwidth can be controlled by voltage within a
significant range 0%–28%, which for the SL model we used
corresponds to 0–3.6 GHz. These characteristics match or even
exceed similar parameters of other solid-state and vacuum
sources of chaotic signals [25,63–68]. The latter makes the SL
coupled to a resonator promising for using it as a key element
in broadband sources of chaotic microwaves or fast random
number generators [20,27,43,69], which could have appli-
cations in high-speed chaotic communications and spread-
spectrum spectroscopy. In addition, previous works [24,28]
have shown theoretically and experimentally that noise can
significantly enhance the chaos generated in weakly coupled
SLs. Taking into account these results we can assume that
the inclusion of the noise in our model should lead to more
developed chaos in charge dynamics in the SL under study
and, thus, to the increase of bandwidth of microwave output.
We believe that our findings can also be relevant to other
devices, demonstrating space charge dynamics, e.g., Gunn
diodes [70,71], and vacuum microwave devices with a virtual
cathode [72,73]. However, this requires further investigations.

In obtaining the presented results we made at least three
significant simplifications, namely, we neglected intermini-
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band tunneling, assumed adiabatic change of vd for a time-
dependent electric field applied, and substituted a resonator
with an lumped equivalent circuit. Although all are reasonable
approximations, and can be valid for a certain class of
devices [20,46,47], from the viewpoint of applications it
would be useful to study more general cases, when one
or more simplifications made are invalid. It is especially
interesting to consider the case of a generic resonator, which
cannot be described in terms of equivalent lumped parameters.
Such resonators allow modes of complicated shapes or even

multimode competition. All those factors cold dramatically
affect spectral content of the generated signal and thus its
bandwidth.
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