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Dissipative dynamics in a finite chaotic environment: Relationship between damping rate
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We consider the energy flow between a classical one-dimensional harmonic oscillator and a set of N two-
dimensional chaotic oscillators, which represents the finite environment. Using linear response theory we obtain
an analytical effective equation for the system harmonic oscillator, which includes a frequency dependent
dissipation, a shift, and memory effects. The damping rate is expressed in terms of the environment mean
Lyapunov exponent. A good agreement is shown by comparing theoretical and numerical results, even for
environments with mixed (regular and chaotic) motion. Resonance between system and environment frequencies
is shown to be more efficient to generate dissipation than larger mean Lyapunov exponents or a larger number of
bath chaotic oscillators.
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I. INTRODUCTION

Realistic physical systems are usually not isolated but
they continuously interact with their surroundings (the envi-
ronment). The kind of interaction between the system and
environment, and the dynamics of the environment itself,
determine the dissipative dynamics of the open system. In
fact, the Brownian motion, which is the motion of a free
particle coupled to an environment, is a first example of
such open systems and was described a long time ago [1–4].
Indeed, Langevin [4] described the Brownian motion by using
the stochastic differential equation (the Uhlenbeck-Ornstein
process)

dv

dt
= −γ v + ξ (t), (1)

where v is the velocity of the particle in a fluid. The first term
on the right side is the friction with damping rate γ , ξ (t) is a
rapidly varying force due to the collisions of the surrounding
fluid molecules. The force ξ (t) can be conveniently considered
as a Gaussian noise with vanishing mean value and correlation
function that obeys

〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′). (2)

The brackets represent an average over the distribution of an
ensemble of realizations of the fluctuating force and D is
the diffusion coefficient. The temperature of the Brownian
particle is defined by the fluctuation-dissipation relation, such
that D = γ kBT /m (m is the mass of the particle) provides
a way to introduce both fluctuations and irreversibility in a
simple form. In this case the averaged initial energy of the
Brownian particle decays exponentially in time with 2γ .

When more complicated systems are considered, the
specific choice of the environment (or bath) is certainly
of most relevance for the system dissipation process. One
often uses a model where dissipation in quantum systems
is described by a system of interest coupled bilinearly to
a set of noninteracting harmonic oscillators (HOs) with a
continuous linear frequency distribution [5]. It can be shown,
that for such a model the motion of the system is governed

by generalized Langevin equations (classical and quantum)
in the limit case of an infinite-size heat bath [6]. The word
generalized refers to the explicit appearance of the memory
integral involving a non-Markovian dynamics. In the classical
case the usual fluctuation-dissipation relation is obtained.
Thus, the presumption of an infinite number of linear HOs
in the heat bath permits irreversible energy flow into the bath,
and leads to solutions with Boltzmann energy distribution for
the central system, i.e., thermalization at the bath temperature.
However, the presence of an infinite number of a continuous
distribution of frequencies of the oscillators may not always
be justified. There are many physical situations where the
environment is composed by a finite number of constituents.
In such cases the bath itself can be highly structured, containing
specific modes which strongly influence the system dynamics.
As examples of finite baths we mention nanoscale devices [7],
single localized spin 1/2 coupled to a finite spin-polarized
environment [8], superconducting quantum bit coupled to
an environment composed of a single electromagnetic mode
of the cavity [9], and the energy transfer between a light-
harvesting protein and a reaction center protein [10]. The
first attempt to theoretically describe a finite environment
composed of HOs was realized by [11]. In general the
behavior of the main system due to the finite bath may change
drastically [7,12–16]. Moreover, when kicked HOs are used
for the bath, the usual fluctuation-dissipation relation is not
valid anymore, memory effects are present and the dissipation
process can be very complex [17].

Another way to describe the interaction of the system
and environment is to consider the bath composed by a
low-dimensional chaotic system [18]. This was first analyzed
by Wilkinson [19] and Berry and Robbins [20], showing
that the rate of energy exchange between the slow system
and the fast chaotic bath in a microcanonical ensemble of
realizations, drastically depends on the classical motion of
the bath constituents. The rate of energy exchange increases
when the environment exhibits chaotic motion. In these works
they use the notion of adiabatic invariants of the chaotic
energy shell, proposed by Ott [21] and Brown et al. [22].
This formalism gives in first order a Born-Oppenheimer
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reaction force, followed by a force proportional to the system
velocity [20]. The velocity dependent force splits into a
“magnetic” and a “deterministic” friction which produces
energy flow from the system to the bath, hereafter named
dissipation. The friction force evolves the slow degrees of
freedom towards a state of statistical equilibrium with the
fast degrees [23,24], but these distributions may not be of
Boltzmann-like type. This occurs because the systems are
small and they may depend on the density of states of the
involved systems and initial conditions (ICs) [25–27]. The
Boltzmann-like distribution only occurs when the number of
chaotic degrees of freedom in the bath is increased (but still
finite), such that even for a single realization it is possible to
see irreversible processes [28].

The purpose of the present work is to study dissipation
of a HO coupled to a finite number of chaotic environments,
modeled by two-dimensional quartic oscillators (QOs). The
main idea is to write down an effective equation of motion
for the HO which includes analytical expressions containing
information from the bath. Our goal is not to discuss ther-
mostatting mechanisms, which could be somehow related to
the present work. We use the Linear Response Theory (LRT)
to evaluate the nonequilibrium distribution function following
the approach presented in Ref. [28]. We show that the effective
damping rate depends on the HO and QOs frequencies,
Lyapunov exponent (LE) from the QOs, and time-dependent
memory effects which disappear for larger times. In addition,
we make a direct connection of the damping rate obtained
for a collection of QOs with the spectral density obtained
for one QO [18]. Even though larger LEs from the bath tend
to increase the damping rates, a resonance between the HO
effective frequency and bath frequency are more effective to
generate larger dissipation.

Our work is presented in the following manner. In Sec. II
we describe the system-environment model and discuss its
relevant dynamics. In Sec. III our results are shown and
discussed. This includes the use of the LRT to derive the
effective system equation, and the numerical and analytical
determination of the damping rate. Section IV summarizes
our main results.

II. THE MODEL

The starting point for our analysis is the classical Hamilto-
nian

H = HS + HB + HI , (3)

which consists of three parts HS, HB , and HI , which corre-
spond to the system, environment (or bath), and the interaction,
respectively. The Hamiltonians are described by [28]

HS = p2

2m
+ mω2

0q
2

2
, (4)

HB =
N∑

i=0

p2
xi

+ p2
yi

2
+ a

(
x4

i + y4
i

)
4

+ x2
i y

2
i

2
, (5)

HI =
N∑

i=0

λNxiq. (6)

The system, with generalized coordinates (q,p), describes a
particle of mass m subjected to a one-dimensional HO with
angular frequency ω0. The bath is composed of a finite sum of
two-dimensional QO, and the ith particle in the environment
is characterized by the generalized coordinates ( �qi = xi ı̂ +
yi ĵ , �pi = pxi

ı̂ + pyi
ĵ ). The interaction between the bath and

the system is described by a bilinear coupling, where λN =
λ/

√
N is a measure of the effective coupling, allowing the

comparison of results obtained for different values of N [28].
Some words about the properties of the model are in

order. The total Hamiltonian (3) is conservative, but due
to energy exchanges between system and environment, the
system behaves dissipatively [24,28]. The nonlinear dynamics
of the bath is independent of the QOs energy HB = EB , but
is completely controlled by the parameter a. It is integrable
for a = 1.0, strongly chaotic for a = 10−3, and mixed for
intermediate values of a. While we focus our analytical results
on the system dynamics, we compare them with the results
obtained by solving numerically the 4N + 2 equations of
motion related to the Hamiltonians (4), (5), and (6). For the
case N = 1 and a = 0.1, it is possible to show [24] that, in
an ensemble of realizations, the fast low-dimensional chaotic
dynamics of the environment acts as a sink of energy for the
system. System and bath reach an equilibrium state which is
not necessarily a Boltzmann-like distribution. A temperature
for this case can only be defined by modifying the definition
of entropy [29,30]. A theoretical description based on the
LRT [31] allows for a description of the system energy decay
for short times, and does not give information about long time
behaviors. It only provides, based on the initial system and bath
energy, some necessary conditions to promote dissipation.

The QOs are not directly coupled to each other, but are
indirectly coupled via the system. When the number of QOs
increases [28], the indirect and weak interaction between the
QOs plays a fundamental role in the system dynamics. It allows
for the observation of equilibration and dissipation. Fixing
the number of QOs, it is possible to study the influence of
the chaotic motion to promote dissipation. For N = 100, for
example, the time dependence of the energy of the system
ES(t) changes qualitatively for distinct values of a. In the
integrable regime, a = 1.0, ES(t) decreases a small amount
from its initial value ES(0), and tiny oscillations around its
mean value are observed. Similar results are obtained in
the mixed regime, but in this case the mean value of the
energy [ES(t)] is lower, and the oscillations slightly larger.
For the strongly chaotic case, a = 0.01, the energy decay is
exponential, ES(t) = ES(0)e−γ t , with γ being a function of
the bath properties and the frequency of the system. These
results remain valid for a single realization, as long as N is
large [28]. This strongly differs from the case N = 1, where
103 trajectories are necessary [24]. The number of degrees of
freedom in the chaotic bath is important as well. When N

is small (N � 100), ES(t) fluctuates and it is not possible to
see the exponential decay mentioned above. For larger values
of N (�100), ES(t) continues to decay exponentially and γ

becomes independent of N [28]. Another important feature
observed for large values of N , is that the system thermalizes
with the environment and it is possible to define a temperature
since the equilibrium energy distribution is a Boltzmann-like
distribution. This property has not been observed when the

022908-2



DISSIPATIVE DYNAMICS IN A FINITE CHAOTIC . . . PHYSICAL REVIEW E 92, 022908 (2015)

bath is in a regular or mixed regime, independently of N .
Therefore, irreversible processes may occur when the bath is
composed by large values of N (�100) and the QOs having a
chaotic dynamics.

In this context, up to now the theoretical description
developed for system interacting with a finite number (N > 1)
of chaotic baths [28] only considers the effects of the initial
bath temperature, and does not include the system frequency.
In all simulations in this paper we will use for the system
m = 1, q(0) = 0, p(0) = √

2mES(0), ES(0) = 10.0, and λ =
0.01. The equations of motions are solved numerically using
a fourth-order Runge-Kutta integrator [32] with fixed step
�t = 10−3.

III. RESULTS

A. Equation of motion for the system

Hamilton’s equation of motion for the system is

q̈ + ω2
0q = −λN

m
X(t), (7)

where

X(t) =
N∑

i=1

xi. (8)

Supposing that the environment oscillators behave chaotically,
we may replace X(t) by its average 〈X(t)〉, so that Eq. (7) can
be rewritten as

q̈ + ω2
0q ≈ −λN

m
〈X(t)〉. (9)

In order to evaluate the average 〈X(t)〉, we use the LRT [31]
following the steps and arguments proposed in Ref. [28], where
more details about this subsection can be found. The key idea
in this procedure is to consider the response of the bath due to
a perturbation of the system.

The next step is to define a temperature for the environment
before coupling it to the system, and for this we chose
a Boltzmann-like distribution. It was observed numerically
that after coupling the bath to the system we still have a
Boltzmann-like distribution. Therefore

p
(
E

(i)
B

) = 1

ĒB

e−E
(i)
B /ĒB (10)

is valid for long times. Here E
(i)
B is the energy from Eq. (5),

and ĒB is the average energy of the bath which, after using
the equipartition theorem, is given by ĒB = H̄B = T̄ + V̄ =
kBT + kBT /2 = 3kBT /2 [28]. It was considered that the
distribution from Eq. (10) is obtained before the system-bath
coupling is turned on. After straightforward calculation we get

〈X(t)〉 = 〈X(t)〉e − λN

∫ t

0
φXX(t − s)q(s)ds, (11)

where the index e indicates that the average is taken over a
canonical distribution of energy given by Eq. (10). We note
that 〈X(t)〉e = 〈ξ (t)〉e represents the stochastic contribution
which appears in Eq. (1). In this approach we assume that
the environmental energy is very small compared to the initial
HO’s energy. In other words, we consider a cold environment
where thermal fluctuations after equilibration are negligible.

Due to the parity of HB we have 〈X(t)〉e = 0, so that Eq. (11)
results in

〈X(t)〉 = −λN

∫ t

0
φXX(t − s)q(s)ds. (12)

The average 〈X(t)〉 is a function of φXX(t − s), which is
the response function of the bath due the system perturbation,
and is given by

φXX(t − s) =
〈

N∑
i=1

(t − s)

4H
(i)
B

pxi
(t)pxi

(s)

〉
e

+
〈

N∑
i=1

5

4H
(i)
B

xi(t)pxi
(s)

〉
e

, (13)

or

φXX(t − s) = 5

4

d

ds
CN (t − s) + (t − s)

4

d2

dsdt
CN (t − s)

(14)

with the correlation function

CN (t − s) =
〈

N∑
i=1

xi(t)xi(s)

E
(i)
B

〉
e

. (15)

Thus, the system’s equation of motion becomes

q̈ + ω2
0q = λ2

N

m

∫ t

0
φXX(t − s)q(s)ds (16)

which gives us the information about the harmonic motion of
the system when it is coupled to a bath of N chaotic systems
obeying the initial energy distribution. All relevant information
about the bath is contained in the response function (14). As we
will see, this function is responsible for the dissipative effects
and gives rise to the damping rate, so that the right-hand side
of Eq. (16) can be written as a velocity dependent friction,
turning the system’s equation of motion into an equation for
the damped HO.

B. The response function and the energy decay

As pointed out before, numerical simulations show that the
energy distribution of the bath, at equilibrium, is a Boltzmann-
like distribution and it does not change so much from the
initial distribution. When ĒB(0) � E(0) (around 10% or less),
the system energy decay is exponential and goes to zero for
long times [28]. This allows us to interpret the system motion
as a damped harmonic oscillator and to describe its motion
based on this idea. Thus, we have to find a velocity dependent
term in Eq. (16), whose coefficient will be responsible for the
dissipative process. In order to do this, we write

φXX(t − s) = 5

4

d

ds
CN (t − s) + (t − s)

4

d2

dsdt
CN (t − s),

(17)
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where the second term on the right-hand side can be rewritten
as

(t − s)

4

d2

dsdt
CN (t − s)

= d

ds

(
(t − s)

4

d

dt
CN (t − s) − 1

4
CN (t − s)

)
, (18)

and we have used d CN

ds
= − d CN

dt
. Thus, Eq. (17) becomes

φXX(t − s) = d

ds

(
CN (t − s) + (t − s)

4

d

dt
CN (t − s)

)
,

and defining

α(t − s) = CN (t − s) + (t − s)

4

d

dt
CN (t − s), (19)

we finally have

φXX(t − s) = d

ds
α(t − s). (20)

Substituting Eq. (20) into Eq. (16), and doing the integral by
parts, yields

q̈ + ω2q = −λ2
N

m

∫ t

0
α(t − s)q̇(s)ds, (21)

where we used q(0) = 0 and defined ω2 = ω2
0 − λ2

N

m
α(0).

The right-hand side of Eq. (21) is now a dissipative term
proportional to the velocity of the system, and α(t − s) is
the memory kernel. In this way, memory properties which
include information about the whole history of the trajectory
until time t , are contained in the function α(t − s). We note
that in the right-hand side of Eq. (21) a term proportional to
q(0) α(t) was neglected by choosing q(0) = 0. This avoids an
initial energy arising from the interaction. A first attempt to
solve the integral on the right-hand side of Eq. (21), would be
to consider a Markovian environment (no memory terms), for
which we use the approximation α(t − s) ≈ Cδ(t − s) [28].
However, such approximation leads to a dissipation constant
which is independent of the system’s frequency, which is not
our case. To show this we display in Fig. 1 the system’s energy
decay dependence on the frequency. Thus, we expect that the
memory term α(t − s) may also depend in some way on the
frequency. In addition, the δ-function approximation assumes
that α(t − s) does not change too much in the interval of time
when the peak occurs. To check this in more details, the time
behavior of α(t − s), which only depends on environmental
variables, was obtained numerically from Eq. (19) and is
plotted in Fig. 2. It is possible to see that it is a well-localized
function around s, and that asymptotically the amplitude of this
function is constant. The s < 150 values can be interpreted as
a transient and will be neglected. In addition, it is visible that
we can consider the same shape for α(t − s), independently of
s. In our problem the velocity of the system oscillates many
times while α(t − s) is relevant. Thereby, we need to transform
variables in such a way that the system coordinates become
practically constant in the interval of time for which α(t − s) is
different from zero. Such new coordinates are named as slow
coordinates, and the old ones as fast coordinates. Therefore,

0 10 20 30 40 50 60
t/103

0

2

4

6

8

10

E 0(t)

ω0 = 0.3
ω0 = 0.5
ω0 = 0.7
ω0 = 0.9

FIG. 1. (Color online) Average system energy decay for four
realizations and different values of ω0. The number of QOs in the
bath is N = 2000 and a = 10−3. The ICs for the QOs are chosen
using the parametrization given in Ref. [24]. The small average is
only to avoid fluctuations due the choice of ICs.

we write Eq. (21) as a matrix,(
q̇(t)
ṗ(t)

)
= �

(
q(t)
p(t)

)
− λ2

N

m

∫ t

0
α(t − s)

(
q(s)
p(s)

)
ds (22)

with

α(t − s) =
(

0 0
0 α(t − s)

)
, (23)

FIG. 2. (Color online) Plotted is the memory kernel, α(t − s),
from Eq. (19), as a function of time for different values of s. The
average in Eq. (19) is over 105 realizations with an initial energy
distribution given by Eq. (10), a = 0.01 and ĒB = 0.1. The ICs and
energy distribution are the same as used in Fig. 1.
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and

� =
(

0 1
m

−mω2 0

)
. (24)

Now we introduce the slow coordinates(
q̃(t)

p̃(t)

)
= e−�t

(
q(t)

p(t)

)
, (25)

and Eq. (22) becomes(
˙̃q(t)
˙̃p(t)

)
= −λ2

N

m

∫ t

0
e−�tα(t − s)e�s

(
q̃(s)
p̃(s)

)
ds, (26)

where e−�t is the solution of the uncoupled HOs, given by

e−�t =
(

cos (ωt) − sin (ωt)
mω

mω sin (ωt) cos (ωt)

)
,

with e�t = (e−�t )−1. The slow variables are almost constant
compared to the product e−�tα(t − s)e�s and it is possible to

write Eq. (26) as(
˙̃q(t)
˙̃p(t)

)
= −λ2

N

m2

(
q̃(t)

p̃(t)

)∫ t

0
e−�tα(t − s)e�sds, (27)

where the slow variables are now only dependent on t .
Therefore (

˙̃q(t)
˙̃p(t)

)
= γT (ω,t)

(
q̃(t)
p̃(t)

)
, (28)

with

γ (ω,t) = −λ2
N

m

∫ t

0
e−�tα(t − s)e�sds. (29)

We are looking for a damped harmonic oscillator equation
of motion and Eq. (29) is now responsible for the dissipation
process. It includes the frequency of the system through the
exponential terms containing the uncoupled harmonic oscilla-
tor solution. The integrals will provide us the relationship of
the dissipation with the system and bath properties. Our next
step is to use the transformation u = t − s and write down
Eq. (29) in matrix form:

γ (ω,t) = λ2
N

m

(
sin2 (ω t)c1(ω,t) − c2(ω,t) sin (ω t) cos (ω t) − c1(ω,t) sin (ω t) cos (ω t)

mω
− c2(ω,t) sin2(ω t)

mω

−c1(ω,t) mω sin(ω t) cos(ω t) + c2(ω,t) mω cos2 (ω t) c1(ω,t) cos2 (ω t) + c2(ω,t) sin (ω t) cos (ω t)

)
,

with

c1(ω,t) = −
∫ t

0
du α(u) cos(ωu), (30)

and

c2(ω,t) = −
∫ t

0
du α(u) sin(ωu), (31)

Using Eqs. (28) and (25), it is now possible to go back to the
fast coordinates, and write the system’s equation of motion as

q̈ − γT q̇ + �2
T q = 0, (32)

where

γT (ω,t) = λ2
N |c1(ω,t)|

m
(33)

is the theoretical damping rate which depends, via Eq. (30),
on the history of the trajectory from time t = 0 to time t . In
addition we have the theoretical effective system frequency

�2
T = ω2 + |c2(ω,t)|ωλ2

N

m
. (34)

The extra term inside �2
T , proportional to c2(ω,t), is an

additional shift in the system energy due the bilinear coupling.
However, in our case this term has frequency and also mem-
ory dependences via c2(ω,t). The numerical and analytical
determination of γT (ω,t) will be performed in the next two
subsections.

C. The numerical solution for γT (ω)

The integral (30) can be solved numerically if we consider
the symmetry properties and the general behavior of α(t − s).

The shape of α(t − s) from Fig. 2 is independent if we use s or
t fixed. In fact, we can write α(t − s) = f (t) g(t − s), where
f (t) describes the peak of α(t − s) and tends to a constant for
large times. On the other hand, g(t − s) is a function which
always has the same behavior, independent of the chosen t

value. This can be observed in Fig. 2, where α(t − s) keeps
its shape for t > 150. Times t < 150 are called transient
times and are not considered here. Changing u = t − s in
Eq. (30) and doing the integral in s, the part responsible for
the asymptotic behavior goes out of the integration and we
only have one integral from zero to t , of the t independent
part. The result of the integral will be the area under the
integrating function. Thus, our results are valid for long
times.

Now we are able to compute numerically the integral (30).
Using t = 300, a = 10−3, and an initial energy distribution
given by Eq. (10), with ĒB(0) = 0.1 we compute the α(t − s)
function over 105 realizations and a bath of N = 2000 QOs.
This result is multiplied by cos[ω(t − s)] and the area below
the curve calculated when s goes from 0 to 300. This
allows us to compute γT (ω,t) from Eq. (33). This is shown
in Fig. 3(a) and is compared to γn from the exponential
fit

ĒS(t) = [ĒS(0) − ĒS(50000)]e−γnt + ĒS(50000), (35)

where ĒS(50000) ∼ 0.07. Equation (35) is the system en-
ergy decay obtained from the numerical integration of
the full problem. Both results are in good agreement.
The total mean energy after equilibrium is shared be-
tween the system and bath degrees of freedom, namely
Ētot(50000) = ĒS(50000) + NĒB(50000). Since the whole
problem is conservative, we have Ētot(0) = Ētot(50000),
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FIG. 3. (Color online) (a) Theoretical [γ = γT (ω,t = 300)] and
numerical (γ = γn) damping rates as a function of ω2

0. (b) Numerical
and exponential energy decays for ω0 = 0.3. The numerical values
were obtained using an average over ten realizations.

and using the energy equipartition theorem we can write
ĒS(0) + NĒB(0) = kBT + 3

2NkBT , which allows us to de-
termine the equilibrium temperature from kBT = 2[ĒS(0) +
NĒB(0)]/(2 + 3N ). Using ĒS(0) = 10.0,ĒB = 0.1, and N =
2000 we obtain kBT = 0.07. From this we can also calculate
ĒS(50000) = kBT = 0.07 and ĒB(50000) = 3

2kBT = 0.105,
which is nicely rewritten as ĒB(50000) = ĒB(0) + ĒS(0)/
2000.

Figure 3(b) shows the system energy decay obtained from
the numerical solution of the Hamiltonian (3), compared
to an exponential decay using Eq. (33). From Figs. 3(a)
and 3(b) we see that the analytical solution γT is in complete
agreement with the numerical damping rate γn. This allows us
to conclude that the transient behavior of the α(t − s) function
is really not relevant to study energy decays, justifying the
used approximation.

0 100 200 300 400 500 600
s

-1000

0

1000

2000

3000

α(
t-s

)

Numerics
Fitting

(a)

(b)

γ n
,γ

T

FIG. 4. (Color online) (a) Function α(t − s) obtained using
Eq. (19) and the curve (36). (b) Theoretical [γ = γT (ω)] and
numerical (γ = γn) as a function of ω2

0 for N = 2000 and a =
10−3. For the fitting curve we used μ = 3.009, ωB = 0.115, and
σ = 0.0470597.

D. The analytical solution for γT (ω)

The well-defined shape of α(t − s) in Fig. 2, and its
independence on s, motivated us to find an approximated
analytical function to describe it. This function is given
by

α(t − s) = μe−|t−s|/σ cos [ωB(t − s)], (36)

where μ,σ , and ωB are fit parameters to be determined. To
check the validity of this function, Fig. 4(a) compares one
specific example of both, α(t − s) obtained numerically from
Eq. (19), and the adjusting curve (36). Thus, substituting
Eq. (36) into Eq. (30), and calculating the integral, Eq. (33)
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becomes

γT (ω,t) ∼ − λ2
Nμ

2σ m

(
1

1
σ 2 + �ω2−

+ 1
1
σ 2 + �ω2+

)
+ λ2

Nμe− t
σ

2 m

×
{

1
1
σ 2 + �ω2−

(
cos(�ω−)t

σ
− �ω− sin(�ω−)t

)

+ 1
1
σ 2 + �ω2+

(
cos(�ω+)t

σ
− �ω+ sin(�ω+)t

)}
,

where �ω− = ω − ωB and �ω+ = ω + ωB . Interesting to
observe here is that the time dependence of γT (ω,t) decays
as fast as the memory kernel from Eq. (36). Therefore the
initial time oscillations of the damping rate are related to
non-Markovian properties of the chaotic environment. Here
ωB gives the fastness of the chaotic motion. For larger times
we obtain

γT (ω) ≈ −λ2
Nμ

2σm

(
1

1
σ 2 + �ω2−

+ 1
1
σ 2 + �ω2+

)
. (37)

Figure 4(b) shows the asymptotic theoretical damping rate,
Eq. (37), and the damping rate γn from the numerical simula-
tions, as a function of the system’s frequency. Disagreements
are only observed for higher frequencies. This fact is related
to the shape of the function chosen for the fitting curve,
and its precision to describe the numerical function α(t − s).
For times t � 1/γT (ω), thermal equilibrium is reached with
a small temperature (kBT ∼ 0.07). This small temperature
also explains why the fluctuations in Fig. 1 are small after
equilibrium.

Interesting to note is that expression (37) is, besides some
constants, equal to the spectral density S(ω) obtained by fitting
the correlation function for one chaotic environment [18].
While in that case it was not possible to give a closed
expression for the damping rate, our procedure allows to obtain
the dissipation coefficient for the HO coupled to N chaotic
baths as

γT (ω) = − λ2
N

4 m
S(ω). (38)

This gives a direct connection between the spectral density of
the chaotic environment and the damping rate. In a similar way
it is possible to determine

c2(ω,t) ∼ −μ

2

(
�ω−

1
σ 2 + �ω2−

+ �ω+
1
σ 2 + �ω2+

)
+ μe− t

σ

2

×
{

1
1
σ 2 + �ω2−

(
�ω− cos(�ω−)t + sin(�ω−)

σ
t

)

+ 1
1
σ 2 + �ω2+

(
�ω2

+ cos(�ω+)t + sin(�ω+)t

σ

)}

which for long times results in

c2(ω) ≈ −μ

2

(
�ω−

1
σ 2 + �ω2−

+ �ω+
1
σ 2 + �ω2+

)
.

When this solution is substituted in Eq. (34) we obtain the
frequency dependent shift.

E. Dissipation and the environment Lyapunov exponent

In Hamiltonian systems like Eq. (3), Lyapunov exponents
(LEs) come in pairs and the sum of them must be zero [33].
Each environment QO has four LEs and, in the chaotic
case, only one of them is positive. The goal of the present
subsection is to understand how the damping rate from Eq. (37)
depends on the positive LE from the environment (or on the
parameter a). This brings us to an additional description of
the dissipation, which includes an environment with mixed
dynamics.

To do so, we first have to determine the a and N dependence
of the three parameters μ,σ , and ωB which appear in Eq. (37).
This is shown in Fig. 5. The only parameter which changes
with the N elements is μ. Thus, we can write

μ = Nμ1, (39)

where μ1 is the amplitude of α(t − s) for N = 1. Figure 5(b)
shows the dependence of μ1, σ , and ωB as a function of the
parameter a. It is therefore possible to use a power law fit for
these curves, namely

μ1(a) = ρμa−φμ, (40)

σ (a) = ρσa−φσ , (41)

ωB(a) = ρωB
aφωB , (42)

where ρμ = 3.265, φμ = 0.3266, ρσ = 3.670, φσ = 0.2326,
ρωB

= 0.6485, and φωB
= 0.2612. Now, using Eqs. (40)–(42),

it is possible to write Eq. (37) as

γT (a) = − λ2ρμ

2m2ρσa(φμ−φσ )

×
(

1
a2φσ

ρ2
σ

+(ω − ρωB
aφωB )2

+ 1
a2φσ

ρ2
σ

+(ω+ρωB
aφωB )2

)
,

(43)

which gives the relation of the damping rate with the chaoticity
parameter a.

The next step is to write the parameter a as a function
of the LEs from the environment. To simplify our analysis
we consider the LEs from one uncoupled QO from the
environment. It is obvious that for the whole coupled system
and environment the LEs may change a small amount. We start
computing the average LEs spectrum as a function of a using
the Gram-Schmidt reorthonormalization procedure [34]. The
result is shown in Fig. 6(a). We notice here that the energy
flow from the system to the environment only occurs when the
bath is in a chaotic regime, that is, when 0.0 � a � 0.3. As
already mentioned, we have at least one positive LE. Thus, we
will focus in this range of a, describing a fitting for the mean
positive LE, (〈�〉). Using a piecewise function for the range of
interest, we obtained four regimes Ri (i = 1, . . . ,4) with the
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FIG. 5. (Color online) The fitting parameters μ, σ , and ωB as a
function of (a) N for a = 10−3 and (b) a for N = 1. The black circles
are the data from the fitting curve (36) for α(t − s), and the red (gray)
line a power-law fit for the parameters. The initial energy distribution
is given by Eq. (10) with Ē = 0.1.

corresponding fitting curves

〈�〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ1 − η1 aδ1 , R1 : 10−3 < a � 0.007

ξ2 − η2 aδ2 , R2 : 0.007 < a � 0.11

ξ3 − η3 aδ3 , R3 : 0.11 < a � 0.27

η4 eδ4a, R4 : 0.27 < a � 0.32

, (44)

where ξ1 = 0,η1 = −0.2982, δ1 = 0.007734, ξ2 = 0.2924,
η2 = 0.7516,δ2 = 1, ξ3 = 0.3514, η3 = 0.1265,δ3 = 1, η4 =
2.08838 × 1012, and δ4 = 122.4. These fitting curves repro-
duce quite well the behavior of the mean LE, as can be checked
in Fig. 6(b). Finally, inverting Eqs. (44) and substituting the
result in γT (a), we obtain the relation between the dissipation

0 0.2 0.4 0.6 0.8 1
a

-0.4

-0.2

0

0.2

0.4

<Λ
>

(a)

.

.

. . .

FIG. 6. (Color online) (a) Lyapunov spectrum for the QO as a
function of a. The initial energy distribution is the same as used in
Fig. 5. (b) Mean largest Lyapunov exponent (black square) and the
corresponding fits from Eq. (44) (continuous lines).

and the mean largest LE. For the regimes Ri Eq. (37) becomes

γ
(i)
T (〈�〉) ≈ Ai

(
1

Bi + (ω − Ci)2
+ 1

Bi + (ω + Ci)2

)
,

(45)

where

Ai = − λ2ρμ

2mρσ

(
ηi

ξi − 〈�〉
)(

φμ−φσ

δi
)

,

Bi = 1

ρ2
σ

(
ξi − 〈�〉

ηi

) 2φσ
δi

,

Ci = ρωB

(
ξi − 〈�〉

ηi

) φωB
δi

,
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FIG. 7. (Color online) Comparison of the theoretical expression
for the damping rates γ

(i)
T with the damping rate γn. The numerical

values were obtained using an average over ten realizations.

for i = 1,2,3, and

Ai = − λ2ρμ

2mρσ

[
δ4

ln
(

η4

〈�〉
)
](φμ−φσ )

,

Bi = 1

ρ2
σ

[
ln

(
η4

〈�〉
)

δ4

]2φσ

,

Ci = ρωB

δ
φωB

4

[
ln

(
η4

〈�〉
)]φωB

,

for i = 4.
Figure 7 compares numerical and analytical results for the

damping rates. Results are in remarkable agreement for larger
values of the mean LE (strongly chaotic), where in general
larger dissipation is observed. In this limit, we also observe a
maximum of the dissipation coefficient which does not occur
for the maximum LEs, but when the effective system frequency
ω approaches the environment frequency ωB . Close to the
regular motion, where the LE approached zero, the dissipation
decreases. From the analytical expressions for γ

(4)
T (〈�〉) we

see that when 〈�〉 → 0, implies in γ
(4)
T (〈�〉) → 0. With our

results, similar relations can be obtained between 〈�〉 and the
spectral density S(ω) [18].

Additional simulations, not shown here, reveal that for
larger a values, where a regular motion is obtained for the
QOs, the fitting curve (36) still oscillates with frequency ωB ,

but does not decays in time. In other words, σ becomes small
and the damping rate γT (ω,t) oscillates for very long times.

IV. CONCLUSIONS

In this work we considered a one system harmonic oscillator
coupled to an environment composed of a finite number N

of quartic oscillators. By changing the control parameter, the
dynamics of the quartic oscillators can be tuned from regular,
mixed (coexistence of regular and chaotic) to chaotic motion.
Using linear response theory and an appropriate description in
terms of slow and fast coordinates, we were able to derive an
effective equation for the system, Eq. (32), which includes shift
and damping terms, both being time and frequency dependent.
The time dependence of these quantities decays exponentially
with the same rate as the memory kernel, and shows that,
even for the strongly chaotic environment, a non-Markovian
dynamics appears for short times. For a mixed environment,
such non-Markovian effects tend to increase. In fact, this
shows that even for a large number (N ∼ 2000) of chaotic
oscillators, some finite time memory effects are present. Our
main result is an approximated analytical expression for the
damping rate as a function of the system and environment
frequencies, the environment nonlinear parameter a, and the
mean positive Lyapunov exponent from the quartic oscillator.
Extensive numerical simulations for the total system plus
environment show a good agreement with our analytical
results. The overall expected tendency is that the damping rate
increases with the mean positive Lyapunov exponent from
the environment. However, our analytical results show that
the resonance between the system and environment is more
efficient in generating larger damping rates. In addition, we
found that the damping rate frequency dependence is identical
to the spectral density obtained by fitting the correlation
function for one chaotic environment [18].

Even though the analytical results of the present work can
be used to see the effects for a bath with mixed (regular and
chaotic) dynamics, a more precise description must be realized.
Future investigations in this context will consider explicitly
the effects of environments with a mixed dynamics. In such
cases long time correlation due to sticky effects close to the
invariant structures become important. It has been shown that
such sticky effects lead to recurrence times statistics which
obey a power-law decay [35].
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