
PHYSICAL REVIEW E 92, 022907 (2015)

Comparison of winding-number sequences for symmetric and asymmetric oscillatory systems

Volker Englisch
17712 Crystal Spring Terrace, Ashton, Maryland 20861, USA

Ulrich Parlitz*

Biomedical Physics Group, Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany
and Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Am Faßberg 17, 37077 Göttingen, Germany

Werner Lauterborn
Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany

(Received 4 June 2014; revised manuscript received 22 December 2014; published 14 August 2015)

The bifurcation sets of symmetric and asymmetric periodically driven oscillators are investigated and classified
by means of winding numbers. It is shown that periodic windows within chaotic regions are forming winding-
number sequences on different levels. These sequences can be described by a simple formula that makes it
possible to predict winding numbers at bifurcation points. Symmetric and asymmetric systems follow similar
rules for the development of winding numbers within different sequences and these sequences can be combined
into a single general rule. The role of the two distinct period-doubling cascades is investigated in the light of the
winding-number sequences discovered. Examples are taken from the double-well Duffing oscillator, a special
two-parameter Duffing oscillator, and a bubble oscillator.
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I. INTRODUCTION

Nonlinear dynamical systems generically reveal a com-
plexity in their response to periodic excitation beyond any
expectation. Even the simplest nonlinear extension of the har-
monic oscillator, the single-well Duffing oscillator ẍ + dẋ +
x + x3 = 0, a passive system with just one fixed point, shows a
response behavior to periodic driving only marginally explored
because of its incredible complexity; see, for instance, the
early studies on the subject [1–4], as well as the more recent
ones [5,6] that are, however, for large driving only. Despite
continued efforts (see, for example, the topological approach
by Gilmore and Lefranc [7]), the state of knowledge still leaves
much space for further investigations inasmuch as nonlinear
systems and periodic driving are ubiquitous in nature, as daily,
monthly, and annual periods show.

Among those systems to be investigated first on the way
to improving our understanding, nonlinear oscillators form
an important class, displaying coherent behavior. Different
oscillators as the just mentioned simple Duffing oscillator, a
bubble in a liquid set into oscillation by a sound field [8,9] and
a pump-modulated laser oscillator [10] exhibit topologically
similar bifurcation sets in parameter space [11]. A recurrent
structure made up of repeated, complex units that can be traced
back to the resonances of the system is consistently found
for the bifurcation set. This means that a single resonance
and its inner structure can be considered as a building block
for other resonances of the system. This inner structure has
only partially been explored because it shows an infinity of
bifurcation sequences that could not yet been delineated.

In this article, the role of winding numbers for describing
the bifurcation set of nonlinear oscillators is further explored,
in particular, the fine structure inside a single resonance, as
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an extension of previous work on the sinusoidally driven
double-well Duffing oscillator [12]. This Duffing system can
be described in normalized form (i.e., with dimensionless
quantities) by the three-parameter equation,

ẍ + dẋ − x + x3 = f cos(ωt), (1)

where d is the damping parameter, and f and ω represent the
amplitude and the angular frequency of an external driving
force, respectively. Because of the “−” sign in front of x and
the “+” sign in front of x3, this system is called the (−,+)-
Duffing oscillator. Correspondingly, the first mentioned type
of Duffing oscillator is called the (+,+)-Duffing oscillator and
the type investigated by Bonatto et al. [5] and Stefanescu [6],
where the linear term in the restoring force is missing, gets the
name (0,+)-Duffing oscillator. The (0,+)-Duffing oscillator
can be regarded as the limiting form of the (+,+)- and (−,+)-
Duffing oscillators in the case of large driving [13,14].

The (−,+)-Duffing oscillator also shows a recurrent struc-
ture in the bifurcation set. This structure is, however, more
involved than in the (+,+)-Duffing system mentioned above,
because the free system ẍ + dẋ − x + x3 = 0 has three fixed
points. Two of them are stable; one is unstable. The repeating
structures, i.e., building blocks, are first noticed in the more
accessible bifurcation diagrams, where one variable of the
system (x or v = ẋ) is plotted against a parameter of the
system in a Poincaré section plane (mostly ω here). Figure 1
presents one such diagram of Eq. (1) for the fixed parameters
f = 10 and d = 0.2. Up to 16 different initial conditions
have been taken for each frequency not to miss (the most
prominent) coexisting attractors. Four of the higher harmonic
resonances are shown and labeled R10,1, R12,1, R14,1, and
R16,1. The second index of these labels is the period number
that indicates the period of the response in relation to the
driving period. Thus, “1” means the same period as the driving.
The first index denotes the torsion number l, which has been
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FIG. 1. Bifurcation diagrams of the (−,+)-Duffing oscillator for
f = 10 and d = 0.2 that show the recurrent structure of resonances
and their bifurcational evolution for x and v = ẋ. Four resonances
with their four pairs of symmetry-breaking (sb) bifurcations are
covered. Additionally, the resonances labeled R12,1 and R10,1 show
period-doubling (pd) bifurcations. In the resonance R10,1 a complete
period-doubling cascade to chaos including a period-3 window and
two saddle-node (sn) bifurcations show up (see [12] for further
details).

found useful in classifying the individual nonlinear resonances
(building blocks of the bifurcation set). The torsion number
gives the number of torsions, in units of 2π , of an orbit that
is infinitesimally near to a periodic one around that orbit;
see [15–17]. Four cross sections through resonances with
increasing complexity are present within this figure with four
pairs of symmetry-breaking (sb) bifurcations, an additional
pair of period-doubling (pd) bifurcations in the resonance R12,1

and a complex bifurcation structure in the resonance R10,1

including chaotic bands with periodic windows, and a pair of
saddle-node (sn) bifurcations. These four cross sections also
give an impression of the evolution of a single resonance when
the driving force f is increased or the damping d is decreased,
starting from Fig. 1.

When a single bifurcation, for instance a period-doubling
bifurcation, is followed in the three-dimensional parameter
space {(d,f,ω)}, it forms a distinct structure often called
“resonance horn” because of its characteristic shape. As an
example, the horn associated with the period-2 bifurcation in
the main resonance R1,1 of the (−,+)-Duffing system [Eq. (1)]
is shown in Fig. 2.

The horn represents a period-doubling bifurcation surface
that occurs for small driving amplitudes only, when the motion
of a particle is restricted to one side of the potential well
and its behavior can be described by that of an asymmetric
system. The interior of such a resonance horn may be filled
with chaotic regions which themselves are interrupted by a

FIG. 2. The bifurcation surface of the first period-doubling
bifurcation in the main resonance (R1,1) in the three-dimensional
parameter space of the (−,+)-Duffing oscillator [Eq. (1)]. Outside
of this bifurcation horn a stable period-one orbit exists, whereas
the period-one orbit is unstable within the horn. Immediately below
the surface of the horn, in its interior, a period-doubled oscillation
exists. For increasing values of the damping coefficient d the horn is
getting smaller in cross section and vanishes above a critical value of
d∗ ≈ 1.871.

large number of periodic windows. Specific regularities in
the occurrence of the periodic windows exist for the (−,+)-
Duffing system [12]. These regularities suggest (among others,
e.g., period-doubling cascades) an increase of the period of
periodic windows up to infinity, called period adding [18,19],
when increasing (or decreasing) some bifurcation parameter.
This goes along with a distinct regularity of winding numbers
for sn bifurcations forming winding-number sequences.

Figure 3 shows the ω-bifurcation diagram for the x

coordinate in a Poincaré section plane of the resonance R6,1 for
f = 1 and d = 0.2: the full resonance is essentially covered
in the top diagram, while the bottom diagram shows the
phenomenon of period adding from period 3 onwards for
decreasing ω towards the limit ωmin for the resonance R6,1

denoted by ω6
min, where the oscillation returns to a simple

oscillation with the period of the excitation.
Throughout this paper, this sequence will serve as one

example for the winding-number sequence investigation
including the first level of subwindows. Furthermore, its
connection with period-doubling cascades is investigated.
Fixed-point diagrams and phase diagrams in parameter space
are used to complete the view. Additional examples are
drawn from the Duffing oscillator ẍ + cωẋ + x3 = cos(ωt),
called (cω)-Duffing oscillator, due to its two-dimensional
parameter space {(c,ω)} and easier handling of resonances.
The bubble oscillator (see [9]) is used as a typical example of an
asymmetric oscillator. It has recently found strong interest (see,
for instance, [9,20–23]) both experimentally and theoretically
because of the unique single bubble measurement technique in
an acoustic bubble trap found by Gaitan et al. [24]. From the
results of symmetric and asymmetric oscillators a general rule
is derived for winding-number sequences inside resonances.
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FIG. 3. Bifurcation diagrams (x coordinate in a Poincaré section

plane versus ω) for the resonance R6,1 with f = 1 and d = 0.2. (Top)
Essentially full view of the resonance. (Bottom) Magnification of the
lower-frequency part of the top diagram to highlight the period-adding
phenomenon. The period-adding sequence runs to the left and starts
with a window of period 3.

II. WINDING-NUMBER SEQUENCES OF SYMMETRIC
SYSTEMS

Englisch and Lauterborn [12] have shown that certain
periodic windows can be grouped together when investigating
the fixed-point loops of the most prominent windows to
compose winding-number sequences. For the windows with
low periods, it has been found that the ω-parameter intervals,
where a period-(q + 1) orbit exists, are always subsets of the
interval of the q window. Here, q is the symmetry period
number defined as

q =
{
m0 if the orbit is symmetric,
2m0 if the orbit is asymmetric, (2)

where m0 is the basic period number (oscillation period T =
m0 2π/ω) and symmetric (or asymmetric) refers to the shape
of the orbit in the x-ẋ plane. This definition implies that q

is odd for symmetric orbits and even for asymmetric orbits.
The fixed-point loops are frequency interlocked and it holds
[ωq+1, min,ωq+1, max] ⊂ [ωq, min,ωq, max] ∀ q ∈ IN0.

The symmetry torsion number p is defined similarly to the
symmetry period number q,

p =
{
n0 if the orbit is symmetric (q odd),
2n0 if the orbit is asymmetric (q even), (3)

FIG. 4. Bifurcation diagram for the (−,+)-Duffing oscillator
from inside the resonance R6,1 (f = 1,d = 0.2) for the x coordinate
in a Poincaré section plane versus 1/(ω − 0.205) instead of ω to
emphasize the period-adding window structure. Some windows are
labeled by their symmetry period number q.

where n0 is the ordinary torsion number [15–17]. These
definitions have been introduced to assist in the formulation of
laws for the bifurcation sequences inside resonance horns.

The winding number is then defined as

w = p

q
. (4)

The winding numbers wl
k = pl

k/q
l
k for the sn bifurcations

with symmetry period number ql
k and symmetry torsion num-

ber pl
k (k = 1,2,3, . . .; l = torsion number of the resonance)

have been found to obey the law [12]

wl
k = pl

k

ql
k

= (l − 1) + (l + 1)(k − 1)

k
, k = 1,2,3,. . .. (5)

To arrive at Eq. (5), the relative width of a window has been
used as the deciding factor for building bifurcation sequences.
The width has been compared with neighboring windows in
order to make a decision as to whether that window belongs
to the given sequence of “main” windows. The selection can
be made intuitively convincing when looking at Fig. 4. For
clarity of representation, we choose to plot data as a function
of 1/(ω − 0.205). The convergence point ω6

min is located near
ω = 0.205, which therefore moves to near infinity in Fig. 4
when the quantity 1/(ω − 0.205) is plotted along the abscissa.
In this diagram it can clearly be seen that the widths of the
periodic windows are comparable in size and therefore are the
natural choice to form a sequence. The sizes of the windows
are still visibly shrinking for very high periodic windows,
i.e., periods q > 30. This can be explained with the point of
convergence that is obviously off by a small amount from the
chosen value of ω = 0.205.

A. Subwindows within the main chaotic bands

As mentioned above and seen in Fig. 4, a chaotic band exists
between each two main windows with their symmetry period
numbers q and q + 1. These bands contain a large number
of periodic windows within, whose ordering is investigated
in this paragraph. The following bifurcation diagrams of
the (−,+)-Duffing system [Eq. (1)], given in Fig. 5, are
magnifications of the first three main chaotic bands from the
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FIG. 5. Bifurcation diagram for the (−,+)-Duffing oscillator
from inside the resonance R6,1 (f = 1, d = 0.2) for the v coordinate
in a Poincaré section plane versus ω with subwindows between the
main windows of symmetry period number q = 3 and 4 (top), q = 4
and 5 (middle), and q = 5 and 6 (bottom).

period-adding sequence whose higher-order periods are given
in Fig. 4. They are bound by the main windows with the
symmetry period numbers q = 3 and 4, q = 4 and 5, and
q = 5 and 6, respectively.

In Fig. 5, top diagram, several periodic windows are seen
within the first chaotic band which exists between the main
windows q = 3 and q = 4. The bounding symmetry period
numbers q are shown encircled in this and the following
figures. Note that the first pd bifurcation for the q = 3 window
lies outside the depicted area at larger ω (compare Fig. 3).
One periodic window dominates and is roughly located in the
middle of the chaotic region: It is marked by its symmetry
period number qs = 5 and is framed by a square to visually
distinguish it from all others. Whereas the circle around
the symmetry period numbers denotes the main windows,
the square represents a first generation of subwindows. The
symmetry period numbers of these subwindows are distin-
guished from the other windows of the main period-adding
sequence by the subscript “s”. The subwindow qs = 5 in

(a)

isn isn

(b)

esn isn isn esn

FIG. 6. Pictograms of an interior saddle-node (isn) bifurcation
pair and an exterior saddle-node (esn) bifurcation pair. (a) Hysteresis
region of a nonlinear oscillator resonance with two stable branches
(solid lines) between the two saddle-node bifurcations denoted by isn
and one unstable branch (dashed line) that connects the two stable
branches. Outside the two isn bifurcations only one stable solution
of the same period exists. (b) An isn-bifurcation pair can only occur
after generation of an orbit of period m0 > 1 by an esn bifurcation.
Outside the parameter values of the esn bifurcation no solution with
period m0 exists. (Only one branch of the m0 coexistent fixed-point
branches is shown.)

Fig. 5, top diagram, comes into existence by a sn bifurcation
of a symmetric period-5 solution and arises by an exterior
saddle-node bifurcation [25] that generates a period-5 attractor.

A distinction is made between the interior saddle-node (isn)
bifurcations and the exterior saddle-node (esn) bifurcations
[25]. Saddle-node bifurcation points that belong to resonance
curves that turn over and give rise to the phenomenon of
hysteresis are called isn bifurcations. This type of bifurcation
leads to coexisting attractors of the same period and evolves
from an existing period [Fig. 6(a)]. Conversely, for an esn
bifurcation only one stable and one unstable orbit exist that
are connected at the bifurcation point ω [Fig. 6(b)]. The
orbit is born without the prior existence of another orbit of
the same period. Locally, there are no differences between
an exterior and an interior saddle-node bifurcation. It is
therefore necessary to include additional global information
to identify whether a given sn bifurcation is of the type esn
or isn. Throughout this work, fixed-point diagrams have been
calculated to obtain this additional global information. These
fixed-point diagrams show a specific loop structure, as well
as sequences of stable and unstable sections of the fixed-
point curve. This additional information assists in selecting
windows and helps to classify isn and esn bifurcations. Exterior
saddle-node bifurcations give rise to a closed loop structure in
fixed-point diagrams; interior ones can only be connected via
exterior ones in order to close a loop (Fig. 6).

There are other periodic windows inside the chaotic bands
to the left and to the right of the subwindow qs = 5 in
Fig. 5, top diagram. These are not considered for this
particular investigation because either their size is much
smaller compared to the one of the period-5 subwindow or
these windows are not formed by an esn bifurcation. This
procedure—the selection of periodic windows by determining
their relationship with each other and some of their specific
properties—has already been used to successfully identify the
main windows and therefore has been applied to identify these
subwindows as well.

Within the second chaotic band shown in Fig. 5, middle
diagram, there are two dominant windows marked with their
symmetry period number qs = 6 and qs = 7. Again these
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FIG. 7. (a) Fixed-point curves of the two main and the one
dominant subwindows that correspond to the subwindows with the
same numbers in the bifurcation diagram given in Fig. 5, top diagram.
(b) Enlargement of the low-frequency end to show the interleaving
sequence connected with the different windows. Solid line, stable
solutions; dashed line, unstable solution by a sn bifurcation; dotted
line, unstable solution by a pd bifurcation.

windows originate from an esn bifurcation. The window
qs = 6 consists of two coexisting asymmetric attractors of
period m0 = 3, the window qs = 7 consists of one symmetric
attractor of period m0 = 7.

The next chaotic band of this series exists between the two
main windows with symmetry period numbers q = 5 and q =
6 (Fig. 5, bottom diagram). Within this chaotic region there
are six periodic subwindows of recognizable size. Only three
of these windows—those labeled with their symmetry period
number qs = 7,8,9—fulfill the criteria to be generated by an
esn bifurcation. These are considered for further investigation.
The other three windows are found to arise by regular isn
bifurcations. Looking at the symmetry period numbers qs of
these three chaotic bands shown, a period-adding sequence
for the qs within each of the following chaotic bands can be
expected.

As already discussed in [12], the fixed-point curves of the
subwindows within a chaotic band show different patterns
compared to those found for the main windows (which
are frequency interlocked). Fixed-point curves for the main
windows and the subwindows of first order are given in Figs. 7
to 9. These figures correspond to the bifurcation diagrams in
Fig. 5. For better visualization, just one of the q or qs coexisting
fixed-point loops are shown in these figures. These loops have
been picked such that all the loops for the different symmetry
period numbers are shown for corresponding fixed points of
their cycle.

4 5 67

(b)

ω

x

5 6 7 4
(a)

ω

x

FIG. 8. (a) Fixed-point curves of the two main windows and the
two subwindows corresponding to the two subwindows with the same
numbers in the middle bifurcation diagram of Fig. 5. (b) Enlargement
of the low-frequency end to better show the interleaving sequence
connected with the different windows. Note how the parameter range
of the periodic windows that exist on the ω-frequency axis is always
confined by the frequency range of its successor within its sequence.
Line style as in Fig. 7.

For the subwindows it may be seen that the parameter range
of their existence on the ω-frequency axis is not restricted
by the frequency range of the main windows. Although the
high frequency end of the subwindows lies in between two
of the main windows, this does not completely hold for the
low-frequency ends. However, it is true for the subwindows
among one another and it holds that [ωqs−1, min,ωqs−1, max] ⊂
[ωqs, min,ωqs , max] ∀ qs ∈ IN, which can be seen from Figs. 8 and
9. This characteristic has been found for all investigated sets
of subwindows and is similar to the frequency-interlocking
phenomena of the main windows. However, there is the
difference in that the periodic subwindows of higher symmetry
period number qs are confining the sequences of lower
symmetry period number. In other words, a fixed-point loop
of symmetry period number q can only be found where a
fixed-point loop of symmetry period number q − 1 already
exists. In contrast, a subwindow qs − 1 can only be found
where a fixed-point loop of symmetry period number qs

already exists. These subwindows themselves can only be
found where a main window of symmetry period number
q > (qs/2) already exists.

Figure 9(c) shows an enlargement of the high-frequency
range of Fig. 9(a). Comparing Fig. 9 with the bottom
bifurcation diagram in Fig. 5, it becomes apparent why three of
the six windows seen inside the chaotic band were neglected.
The neglected windows do not directly fit into the series of
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FIG. 9. (a) Fixed-point curves of the two main and the three
subwindows that correspond to the subwindows with the same
numbers in the bifurcation diagram given in Fig. 5, bottom diagram.
(b) Enlargement of the low-frequency end to better show the
interleaving sequence connected with the different windows. Again,
the ω-frequency limits of one fixed-point curve is roughly determined
by those of its successor. (c) Enlargement of the upper frequency part
of the fixed-point diagram. It can easily be noticed that three of the six
periodic windows shown in the bottom diagram of Fig. 5 are created
by an isn bifurcation. Line style as in Fig. 7.

periodic windows because the windows are formed due to a
hysteresis of the fixed-point loops (i.e., the tips of the loops)
and are therefore isn bifurcations. This example shows why
fixed-point curves are essential for these investigations: Only
with the information provided by the fixed-point loops is it
possible to objectively classify subwindows originating by an
isn or esn bifurcation.

For clarification of the organization of the periodic win-
dows, these are now arranged in a schematic diagram (Fig. 10).
Each window is shown and represented by its symmetry period
number q for the main windows or qs for the subwindows,
respectively. As already shown in Fig. 5, the symmetry period
numbers of the main windows are encircled, whereas the
symmetry period numbers of the subwindows are each framed

q  : ... 6 5 4 3
+  a _  s +  a _  s

q  :s ... 7 8 9 6 7 5
+  s _  a +  s _  a +  s +  s

FIG. 10. Symbolic arrangement of the windows and subwindows.
The letters “a” and “s” denote asymmetric and symmetric oscillations,
respectively. The symbols ⊕ and � indicate the type of winding-
number sequence according to the two types of pd-bifurcation
sequences [15–17]. They are discussed in the next section, where the
connection of winding number and period doubling is investigated.

by a square. The “a” in this scheme indicates a sn bifurcation
of two asymmetric orbits. The “s” stands for the occurrence of
a single symmetric orbit. The ⊕ and � signs are discussed in
the next section in connection with the two different types of
period-doubling cascades.

From this diagram we can infer the following.
(1) The number of subwindows of the first level, Ns , within

the parameter range bordered by two sn bifurcations of the
main window sequence with symmetry period number q and
q + 1 is given as

Nq
s = q − 2, (6)

which implies that the number of subwindows within consec-
utive chaotic bands increases by one:

Nq+1
s = (q + 1) − 2 = (q − 2) + 1 = Nq

s + 1. (7)

(2) The symmetry period numbers of the N
q
s subwindows

are given as

qs = q + 2, . . . ,2q − 1, (8)

where the windows with the higher symmetry period number
are ordered in such a way that they appear at higher driving
frequencies when looking at the maximum of the fixed-point
loops (or vice versa at the minimum end).

In the same way that the periods m of the subwindows
are governed by the ones of the main windows, this is
also true for the winding numbers of the corresponding esn
bifurcations. The winding numbers for the q = 5 and q = 6
main windows are given as w6

5 = 33/5 and w6
6 = 40/6. The

corresponding chaotic region contains the subwindows with
the winding numbers at the esn bifurcations as w(qs = 7) =
47/7, w(qs = 8) = 54/8, and w(qs = 9) = 61/9. This shows
that the winding numbers of the subwindows are the same
as the winding numbers of the main windows with the same
symmetry period number. It also proves to be true for the
other subwindow sequences investigated and it is reasonable
to derive the winding numbers wl

q,j of the subwindows from
those of the main windows wl

q in the following way:

wl
q,j = wl

(q+1)+j , j = 0, . . . ,q − 2 = Nq. (9)

Here the notation wl
q,j is describing the winding number of

the j th subwindow of the resonance Rl,1, which follows the
main window with symmetry period number q. According to
Eq. (6), exactly q − 2 subwindows exist within each chaotic
band. However, the index j in Eq. (9) starts at j = 0, therefore
leading to one more window. This additional window has
been included in the sequence to characterize the fact that
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the “subwindow” for j = 0 is equivalent to the main window
q + 1. The winding-number sequence can thus be considered
as starting from that value.

B. Winding-number sequences and period-doubling cascades

Up to this point the winding numbers of esn bifurcations
have been investigated. In this paragraph, the winding numbers
along pd cascades that lead to chaotic bands are considered
instead.

It is known from various studies [15–17] that the develop-
ment of the winding numbers along a pd cascade is governed
by the torsion of the local flow in units of 2π for the closed
orbit and that the winding number of the kth pd bifurcation
can be written as

wk = w∞ ± (−1)k

3m02k
, k = 0,1,2,3, . . . , (10)

with m0 being the basic period of the orbit, i.e., the period from
where a pd cascade starts. The value of the limiting winding
number w∞ is given by

w∞ = w0 ∓ 1

3m0
. (11)

As these two equations indicate, there are two kinds of
pd sequences: one with the winding number decreasing at
the transition from w0 to w1—according to the + sign in
Eq. (10)—and one with the winding number increasing from
w0 to w1 according to the − sign. In Fig. 10, these two types
of cascades are marked as ⊕- and �-type cascades according
to the sign in Eq. (10).

When comparing the cascades of the main windows with
those for the subwindows, it may be seen that both types
show slightly different behavior. For the main windows a pd
cascade of the � type can be found for every window with
an odd symmetry period number (q = m0) and thus the orbit
is symmetrically born. On the other hand, the ⊕ type can be
found for all even symmetry period numbers. The behavior of
the pd cascades of the subwindows has been found to behave
the other way around.

We now concentrate on the winding numbers along the pd
cascade of the sequence of main windows and subwindows
to compare these two types. We use the resonance R6,1 again
as an example like we did in our previous investigations. In
Fig. 11, the winding numbers along the periodic windows are
written horizontally and the occurring pd cascades of these
windows are listed in a vertical manner (also compare the first
two rows of the figure with Fig. 10).

The top row of Fig. 11 indicates the type of the pd cascade
that can be found within that particular window, e.g., a ⊕- or
�-cascade according to Eq. (10). Although a fully developed
pd cascade could not be found for every periodic window
before the chaotic band sets in, it should be possible to always
find such a cascade for a suitable path through the parameter
space.

As an example of how this diagram should be interpreted,
the second column that represents the pd cascade of the main
window with the symmetry period number q = 6 is explained
in detail below as it is followed downwards. This main window
comes into being by a sn bifurcation—marked in the third

q : ...

p
q

n
m

w∞

+ + _ + _ _ + + + _

6 7 8 9 5 6 7 4 5 3
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FIG. 11. Scheme that shows the arrangement for the main
and subwindows of the resonance R6,1 and their pd sequences.
Horizontally, the sequence of the windows are given; vertically, the
winding numbers of the pd sequences belonging to them are given.
For more details, see the text.

row—with the symmetry period number of w6
6 = 40/6 at that

bifurcation. Since two asymmetric orbits occur simultaneously
(q is even), the winding number w, written as a fraction of the
torsion number n and the period m0, is given as w6

6 = 20/3.
This value is shown in parentheses with an even torsion
number. Therefore, the following pd cascade of a main window
must be one of the ⊕ type (� if it were a subwindow). The
first bifurcation of an asymmetric orbit within the cascade
must then be a pd bifurcation (marked as pd in the fifth
row) with a winding number w1 = 41/6 at the bifurcation.
For the winding numbers along a pd cascade, the notation w

is used instead of w. The notation w describes the winding
number defined by Eq. (10), whereas w describes the winding
number just for the sn bifurcations along a window sequence
described by Eq. (5). As can be seen from the diagram of
Fig. 11, both sequences are intertwined because the winding
number at the window sequence represents the first element of
winding numbers along a pd cascade: w6 = w0.

Another pd bifurcation follows w1 = 41/6, which leads
to the winding number w2 = 81/12 and so on. The winding
numbers of the pd cascade converge towards the limiting
value w∞ = 244/36 [Eq. (11), third last row indicated by
w∞] [15,17,26]. The resulting fraction for w∞ is an expanded
fraction to show the relation to the corresponding values of
neighboring periodic windows. Where it applies, the reduced
fraction is written in the last row of the diagram.

Each row of this diagram can be read in the same way.
The type of the bifurcation occurring in each case is listed
between each two rows of winding numbers. Below the row,
marked as n/m, only pd bifurcations occur. Above it, the
type of bifurcation depends on whether the orbit is born as
a symmetric or an asymmetric solution and whether the pd
cascade occurs within a main window or a subwindow.
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It should be noticed that it is possible to group blocks
of pd cascades which are marked by vertical dashed lines.
Within these blocks small subsequences of winding numbers
exist. These subsequences have already been identified in
Fig. 10. Each block, i.e., subsequence, is built by the N

q
s

existing subwindows along with one of the two confining
main windows, i.e., the one with the smaller symmetry period
number q.

The winding numbers wl
q,j of the subwindows of the rows

marked as p/q correspond to the ones described by Eq. (9).
A possible explanation for the number N

q
s of subwindows

given by Eq. (6) can now be guessed. Looking at the left block
and starting with the subwindow that has a symmetry period
number qs = 7 (second column, row p/q, in Fig. 11) and
proceeding to the right towards the main window q = 5, the
symmetry torsion number ps increases for every subwindow
by �p = 7 as already has been found for the main windows.
Similarly the symmetry period number increases by �qs = 1.
Assuming a hypothetical fourth subwindow within this chaotic
band following the window with qs = 9, the corresponding
winding number had to be wl

q,j = w6
5,4 = 68/10. This, how-

ever, is the winding number of the first bifurcation (a sb
bifurcation) of the main window q = 5 (written as w = p/q).
Therefore, it is possible to include the main window and its
pd cascade into this subsequence. The same behavior can be
found for all the other blocks of subsequences and, naturally,
it can be found on every level of pd bifurcations, bearing in
mind that �p and �q have to be multiplied by two for every
additional level of pd bifurcations viewed.

It is now possible to write down the winding number of the
subwindows at the sn bifurcation from Eq. (9) in a modified
form:

pl
q,0 = pl

q, ql
q,0 = ql

q, l = 0,2,4,6, . . . ,

wl
q,j = pl

q,j

ql
q,j

= pl
q+1 + j (l + 1)

qq+1 + j
(12)

= (l − 1) + (l + 1)(q + j )

q + j + 1
, j = 1,2, . . . ,q − 2.

The equation describes the winding number of the j th
subwindow within a chaotic band that is following the qth
main window of the resonance l.

Also, the limiting values w∞ for all the cascades can be
calculated, when the value of one cascade is known, or from
the torsion number n0 and its period m0. For the former,
it yields that the value w∞ increases its symmetry torsion
number by �p = 3(l + 1) for neighboring subwindows while
the symmetry period number increases by �q = 3:

w∞(qs+1) = p∞(qs) + 3(l + 1)

q∞(qs) + 3

= 3[n0(qs) + (l + 1)] ∓ 1

3[m0(qs) + 1]
, (13)

with p∞(qs), q∞(qs) denoting the numerator and denominator
of the fraction w∞(qs).

s

sb(20,1)
sb(18,1)

sb(16,1)
sn(15,1)

sb(14,1)

sn(13,1)
sb(12,1)

sn(11,1)
sb(10,1)

ω

f

FIG. 12. Phase diagram for the resonance horns R10,1 to R20,1 of
the (−,+)-Duffing oscillator for d = 0.2. The horizontal line with
the label “s” indicates the parameter range for which the bifurcation
diagram has been given in Fig. 1.

III. WINDING-NUMBER SEQUENCES IN THE
PARAMETER SPACE

Until now, only one-dimensional cross sections of the three-
dimensional parameter space have been investigated by means
of bifurcation diagrams and fixed-point curves. In this section it
is shown that the findings of the previous chapters are not due to
a particular path through the parameter space but will also hold
on a more general level. For this purpose, two-dimensional
phase diagrams are investigated.

A phase diagram is a condensed or two-dimensional
bifurcation diagram [2,3,11]. As an example for a simple phase
diagram, we consider Fig. 12. The figure shows the global
structure of the resonances Rn,1, n = 10,11, . . . ,20, for the
(−,+)-Duffing oscillator [Eq. (1)] in parameter space. Each
resonance shown, from R10,1 to R20,1, is marked by its type of
bifurcation (sn or sb), as well as the torsion number n and the
period number m (first and second numbers in parentheses).
The bifurcation lines belonging to the resonances R17,1 and
R19,1 do not reach all the way down into the plot range chosen
and are therefore not visible. The thick line at f = 10 parallel
to the ω axis and marked by the letter “s” represents a cross
section for which the bifurcation diagram has been given in
Fig. 1.

As an example, one of the sb resonances—choosing again
the resonance R6,1—is shown in more detail. In Fig. 13 the
inner structure of the sb resonance is shown, also reflecting the
behavior of the winding-number sequences in the parameter
space.

The sb bifurcation sb(6,1) is shown with a dotted line style.
Within the line of the sb bifurcation the bifurcation curves of
the esn bifurcations for the windows q = 3,4, . . . ,8 are noted.
The right borders of these resonances are marked with their
respective torsion number and period number. The left parts
of the bifurcation lines are lying so close to each other that
they appear to be just one single thick line. It has already
been emphasized that the fixed-point curves of windows with
high symmetry period number are bordered by those of smaller
periodic windows. Since none of the corresponding bifurcation
curves are crossing each other (within the investigated area),
we surmise that this behavior also holds within a large range
in the parameter space. However, it should be noted that for
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FIG. 13. (a) Phase diagram for the resonance horn R6,1 of the
(−,+)-Duffing oscillator for d = 0.2. The horizontal line with the
label “s” indicates the parameter range for which the bifurcation
diagram has been given in Fig. 3. The resonances are marked with
their respective period and torsion number. (b) The same as (a) with
the parameter range greatly extended.

much higher driving amplitudes, f � 40 [Fig. 13(b)], the line
of the sb(6,1) bifurcation is crossing the sn-bifurcation lines
of the periodic windows.

From Figs. 12 and 13 it can be seen that the resonances of
the (−,+)-Duffing oscillator are represented by very narrow,
stretched objects. Because the resonance curves become
very narrow and stretched at low frequency, which makes
their numerical and graphical resolution hard, we consider
a modified Duffing system. This modified Duffing system
shows approximately the same behavior as that of Eq. (1)
but its resonances in parameter space appear to be more
conveniently arranged. The system has been called the (cω)-
Duffing oscillator [27] and reads

ẍ + cωẋ + x3 = cos(ωt). (14)

This system can be derived from Eq. (1) in the limit of large
amplitudes and by introducing a constant damping d per
driving period such as d = cω. The transformation also leads
to a two-parameter system with the parameters now being the
angular driving frequency ω and the dissipation parameter c.
To compare the phase diagrams of both systems, the resonance
R6,1 of the (cω)-Duffing system is presented in Fig. 14.

The bifurcation curve for the sb bifurcation is plotted as a
dotted line; the sn-bifurcation curves for the periodic windows
are shown as solid lines. For the four sn bifurcations in this
figure their corresponding torsion and period numbers are
used to label the curves. It may be seen that the winding
numbers for these bifurcation curves are the same as the

R6,1 sb(6,1)

sn(20,3)
sn(33,5)

sn(13,2)
sn(19,3)

ω

c

FIG. 14. Phase diagram for the resonance horn R6,1 of the
(cω)-Duffing system that gives the sn-bifurcation curves of the first
periodic windows with period number m = 3,2,5,3 corresponding to
the symmetry period number q = 3,4,5,6.

winding numbers of the resonance R6,1 of the (−,+)-Duffing
system. These bifurcation curves—in contrast to the ones of
the (−,+)-Duffing oscillator—have a global maximum, which
can be explained by the transformation of the parameters [28].

However, despite its advantages with respect to the presen-
tation, some disadvantages occur when using this transforma-
tion of the Duffing system. In particular, the bifurcation curves
for the higher periodic sn bifurcations of the (cω)-Duffing are
not located completely inside one another, i.e., the ones with
a lower period. This phenomenon is getting more obvious the
smaller the value of the dissipation parameter c is chosen. Two
possible reasons could lead to this result. The first one is due
to the choice of parametrization. For two different points in
the parameter space with a constant value of dissipation c,
the damping d of the original system [Eq. (1)] differs. This
difference could lead to the observed “deformation” of the
bifurcation structure compared to the one of the (−,+)-Duffing
system. The second reason could be of principle interest.
As shown in Fig. 13, the bifurcation curve sb(6,1) of the
symmetry-breaking bifurcation is crossing the bifurcation
curves of the periodic windows for high driving amplitude
f . The sb curve is crossing the sn curves at lower c values
for higher resonances. Since a low dissipation constant for the
(cω)-Duffing system corresponds to a high driving amplitude
of the (−,+)-Duffing system, it could be expected that for very
high amplitudes f of the (−,+)-Duffing system the bifurcation
curves of the sn bifurcations will also cross each other, or, for
very high resonances (ω → 0) for which the systems approach
the same behavior, only the sb curve will cross the sn curve.
This will need further investigation elsewhere.

The interpretation of bifurcation curves of the (cω)-Duffing
oscillator should be done carefully, however. It is not always
obvious whether a bifurcation curve can be evaluated as an
inner or exterior bifurcation curve. Although for the bifurcation
points of a fixed-point curve the definition is straightforward
for what could be called an esn or an isn, a bifurcation curve
with a self-crossing region can belong to an esn as well as an
isn bifurcation. Therefore, other criteria must be called upon
with the different types of sn bifurcations.
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FIG. 15. Phase diagram for the first few harmonic resonances of
the (cω)-Duffing system. Given are the sb-bifurcation lines (dotted)
and the sn-bifurcation lines (solid) for q = 3,4,5,6 inside each
resonance (marked in R2,1).

IV. EXTENSION OF WINDING-NUMBER SEQUENCES

In the previous section, as well as in [4,11,25,29–31] (see
also the experiments by Klinker et al. [32]), it has been
shown that a resonance can be divided approximately into two
halves with an isn bifurcation that separates these two parts
[for a resonance R2n,1, these two parts would be separated
by a sn(2n,1) curve]. In Fig. 15, all of the sb resonances
R2,1 to R12,1 are shown, including sn bifurcations building
the winding-number sequences wl

k, l = 0,2,4, . . . ,10. The
x axis in this diagram is chosen as 1/ω, because the
resulting harmonic resonances occur in almost equidistant
steps. Again, the sb curves are shown as dotted lines in
order to distinguish them from the sn-bifurcation curves. In
this figure, the winding-number sequence for each resonance
resides within one “half” (on the right hand side) of that
resonance. This might suggest that there is still “space” in
between every two winding-number sequences for another
sequence within the left “half” of every sb resonance. We thus
question whether it might be possible to find a second window
sequence with bifurcation curves that are located between the
ones already found. This is investigated for the rest of this
section.

When the sn-bifurcation curves of Fig. 15 are arranged
according to periods and size of the denominator, the following
sequence of winding numbers representing all period-3 curves
occurs:

1
3 → 2

3 → 7
3 → 8

3 → 13
3 → 14

3 → 19
3 → 20

3 →
→ 25

3 → 26
3 → 31

3 → 32
3 → · · ·. (15)

The integer part for all these fractions (when written
as a decimal number) is even and the winding number is
always a reduced fraction. The fractions with even torsion
numbers represent the bifurcations, for which asymmetric
trajectories come into existence and symbolize the windows
whose symmetry period number is q = 6. The fractions with
odd torsion numbers represent the bifurcations, where a single
symmetric orbit is born and whose symmetry period number
is q = 3. Because bifurcations for which the nominator of a
winding number w = n/m is a multiple of the denominator
(e.g., 0/3,3/3,6/3, . . .) were never found in our investigations,

it is assumed hereafter that such bifurcations cannot exist (also
see Discussion). Again, when using this type of presentation
for the bifurcation curves it is assumed that there is still “space
available” between each two existing winding numbers of
period-3 orbits for another set of winding numbers possibly
building a second winding-number sequence within each
resonance. These “missing” winding numbers would include
the fractions 4/3,5/3,10/3,11/3, . . ..

Whether the assumption that esn-bifurcation curves with
integer winding numbers exist as expanded fractions remains
an open question. It is not known yet if their existence can
entirely be ruled out or if they are only difficult to find
numerically because their basins of attraction in phase space
are too tiny. Assuming this type of winding number does
exist, it must also be possible to find an esn bifurcation of
period 1.

In correspondence to Eq. (15) a winding-number sequence
for the bifurcation curves built by the period-2 orbits can be
written as

1
2 → 5

2 → 9
2 → 13

2 → 17
2 → 21

2 → · · · (16)

and similarly for the bifurcation curves of period 5:

3
5 → 13

5 → 23
5 → 33

5 → 43
5 → 53

5 → · · ·. (17)

None of the winding-number sequences that have been found
up to now contain a symmetric orbit of period 2. Therefore,
all the fractions in Eq. (16) represent bifurcation curves that
belong to windows with symmetry period number q = 4.
Again, assuming bifurcations with integer winding numbers
do not exist (e.g., 0/2,2/2,4/2, . . .), this would leave “space”
for one winding number between every two elements of
the sequence noted in Eq. (16) (e.g., 3/2,7/2,11/2, . . .).
Similar arguments can be found for Eq. (17) when keeping in
mind that only the winding number for the symmetry period
number q = 5 (symmetric orbit) has been calculated and the
ones for q = 10 (asymmetric orbit) are missing here, e.g.,
4/5,14/5,24/5 . . ..

From the reasoning above, there are strong indications that
for every resonance R2n,1 a second, not yet observed winding-
number sequence should be able to be calculated. The winding
numbers of this second “missing” sequences should be such
that the sequences Eqs. (15)–(17) of the two winding-number
sequences combined contain every possible fraction of the
given period (denominator).

Indeed, these bifurcation curves have also been found
numerically and their winding numbers can be arranged in the
same regular manner as their counterpart. For every resonance
R2,1, . . . ,R12,1, a second sequence of periodic windows exists.
The bifurcation curves for the symmetry period number
q = 3, . . . ,7 are all shown in Fig. 16, which is being given
with the same parameter area as has been used for Fig. 15.
All the winding numbers of these bifurcation curves were
missing within the respective sequences of Eqs. (15)–(17).
The corresponding bifurcation lines are shown in Figs. 17 and
18, respectively.

In the same way as found earlier—for the first type
of winding-number sequences—the odd symmetry period
number indicates the existence of one single symmetric orbit
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FIG. 16. Phase diagram for the first few resonances of the
(cω)-Duffing system. Given are the sb-bifurcation lines (dotted)
and the second winding-number sequence of sn-bifurcation lines
(solid) for q = 3,4,5,6,7 inside each resonance (marked for the main
resonance and in R2,1).

and the even symmetry period number points to two coexisting
orbits.

When forming a winding-number sequence out of these
bifurcations just found—in the same manner as has been done

1

5
9

13 17 21 25

3

7
11 15 19 23 27

m0 = 2
Δn = 4

1/ω

c
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20 26 32
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17
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m0 = 3
Δn = 6

1/ω
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FIG. 17. (Top) The first 14 bifurcation lines generated by an esn
bifurcation of period 2 for the (cω)-Duffing oscillator. There exist
two classes of period-2 bifurcations, the one with winding numbers
given in Eq. (16) (solid line) and the second class with the “missing”
winding numbers (dotted line). (Bottom) The first bifurcation lines
generated by an esn bifurcation of period 3 for the (cω)-Duffing
oscillator. There exist four classes of period-3 bifurcations when
looking at the maxima of the horns. They define a virtual line
that grows monotonously in the parameter space. The numbers
that characterize the lines are given by the torsion numbers of the
bifurcations.
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FIG. 18. The first few bifurcation lines generated by an esn
bifurcation of period 5 for the (cω)-Duffing oscillator. Seven of
the presumably eight existing classes are given, distributed on two
diagrams for better readability. The individual eight (displayed seven)
classes all have torsion numbers with the same last digit.

in Eq. (5)—one obtains

w� p
q

: 17
3

22
4

27
5

32
6

37
7

42
8

...

+1 +1 +1 +1 +1 +1

+5 +5 +5 +5 +5 +5

(18)

which again leads to a formula for the sequence of winding
numbers

pl
1 = l + 1, ql

1 = 1, l = 2,4,6, . . . ,

wl
k = pl

k

ql
k

= (l + 1) + (l − 1)(k − 1)

k
, (19)

k = 1,2,3, . . . ,

with the limit value

wl
∞ = lim

k→∞
wl

k = l − 1. (20)

This sequence slightly differs from the one found in [Eq. (5)],
but the two sequences can be converted into each other simply
by changing signs. Note that for the “resonance R0,1” only one
sequence has been found and therefore the sequence Eq. (19)
starts at l = 2 instead of l = 0.

It is now possible to calculate the kth main window
appearing through an esn bifurcation for every even-numbered
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resonance l of the Duffing oscillator via the formula

pl
1 = l ± 1, ql

1 = 1, l = 2,4,6, . . . ,

wl
k = pl

k

ql
k

= (l ± 1) + (l ∓ 1)(k − 1)

k
, (21)

k = 1,2,3, . . . ,

and the limit of either one sequence is given as

wl
∞ = lim

k→∞
wl

k = l ∓ 1. (22)

Empirically, it has been found that every resonance with
even torsion number bears two distinct winding-number
sequences. The only exception is the resonance R0,1 where
only one sequence has been found. The winding number of
one of these sequences begins at wl

1 = l + 1 and converges to
wl

∞ = l − 1, and vice versa for the second winding-number
sequence: wl

1 = l − 1 and wl
∞ = l + 1.

For the (cω)-Duffing oscillator we attempted to calculate
all the bifurcation curves of period 3 that represent
esn bifurcations. All these curves (Fig. 17, bottom
diagram) are sn(n,3) curves. The torsion number n is
marked near the tip of each curve. The figure suggests to
classify all of the period-3 curves shown into four distinct
classes (na = 1,7,13,19, . . . ; nb = 2,8,14,20, . . . ; nc =
4,10,16,22, . . . ; nd = 5,11,17,23, . . .). Each of those four
classes are arranged along an imaginary curve in the parameter
space that connects the tip of the members of each class
(compare with [11]) with torsion numbers that differ from
their neighbors within each group by �n = 6.

The two classes that are shown with a solid line style
represent the elements of period-m0 = 3 bifurcation curves
(for q = 3 and q = 6) that obey the winding-number sequence
of Eq. (5). At the bifurcation curves with odd torsion
numbers, a periodic window arises by a sn bifurcation of a
symmetric orbit. Two coexisting asymmetric orbits occur at
the bifurcation points with even torsion numbers. In the same
manner, the curves shown in the dotted line style are related.
However, these two classes represent the periodic windows
with the symmetry period numbers q = 3 and q = 6 that obey
the sequence given by Eq. (19). No other bifurcation curves of
period 3 that could be considered esn-bifurcation curves have
been found during our investigations.

The periodic windows with symmetry period number q = 4
are found as windows with two coexisting period-2 orbits. All
the bifurcation curves of period 2 with odd torsion number—
windows with even torsion number could not been found—are
shown in the top diagram of Fig. 17. These curves can again
be divided into two classes: those that belong to the q = 4
window obeying Eq. (5) (solid lines) and those in the q = 4
window obeying Eq. (19) (dotted lines). In both cases it is
�n = 4.

Similarly, the number of different classes of period-5 esn
bifurcations could be expected as N = 2m − 2 = 8. The “−2”
indicates the forbidden fractions 5/5 and 10/5 between two
even numbers. Seven of these expected eight classes have been
found and are shown in Fig. 18. Not every element of every
class had been observed, though. The curves with the last digit
being 3 represent the q = 5 windows of the sequence Eq. (5).
The ones with the last digit being 4 represent the q = 10

windows of that same sequence. The ones with the last digit
being 7 represent the q = 5 windows of the sequence Eq. (19).
The corresponding curves for the q = 10 windows—torsion
numbers ending in 6—could not be found, but a comparison
with the q = 5 and q = 10 curves of sequence Eq. (5) suggests
that these sn curves should be likely to be found for higher
resonances (torsion numbers). Also, the last-digit-4 curves
have not been found for the lower torsion numbers n = 4 and
n = 14. For all sequences it is �n = 10.

Each of the classes found for the m0 = 2 and m0 = 3
esn-bifurcation curves can be described with the help of the
two winding-number sequences Eqs. (5) and (19). They are
found to serve a particular role within the two winding-number
sequences. For the m0 = 5 curves, however, only four of
the eight classes appear within these two sequences. This
leads to the assumption that other winding-number sequences,
similar in construction but likely more complex than the ones
already found, may exist whereby the remaining four classes
of bifurcation curves might be classified.

V. WINDOW SEQUENCES OF ASYMMETRIC
OSCILLATORS

Winding-number sequences of the symmetric Duffing-
type oscillator have been found. Together with the work by
Scheffczyk et al. [11], we expect that our hitherto analysis
could be generalized to a large class of different systems. Since
it is known that many features of symmetric systems have their
counterpart within asymmetric systems and vice versa, an open
question is whether similar winding-number sequences can be
found for asymmetric systems. With this regard, the bubble
oscillator [8,9,29] has been adopted as an example for the
class of asymmetric, strictly dissipative systems. A model for
a spherical bubble in water with damping by sound radiation
and viscosity of the liquid is chosen,(

1 − Ṙ

c

)
RR̈ + 3

2
Ṙ2

(
1 − Ṙ

3c

)
= P

ρ
+ 1

ρc

d(RP )

dt
, (23)

where

P (R,Ṙ,t) =
(

pstat − pv + 2σ

Rn

)(
Rn

R

)3κ

− pstat

+pv − 2σ

R
− 4μ

R
Ṙ − p(t), (24)

p(t) = pa sin (2πνat). (25)

The variables and parameters are the bubble radius R as
a function of time t , its time derivative Ṙ, its second time
derivative R̈, the bubble radius at rest Rn, the frequency of the
driving sound field νa, the amplitude of the driving sound
field pa, the static (ambient) pressure pstat = 100 kPa, the
vapor pressure of the liquid (water) pv = 2.33 kPa, the surface
tension σ = 0.0725 N/m, the ratio of the specific heats of the
gas inside the bubble κ = 1.67 (noble gas), the viscosity of
the liquid μ = 0.001 Pa s, the sound velocity of the liquid
c = 1500 m/s, and the density of the liquid ρ = 998 kg/m3.

A typical bifurcation diagram for the system is shown in
Fig. 19 with the frequency νa of the sound field as control
parameter. The remaining not yet specified parameters were
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FIG. 19. Bifurcation diagram for the bubble oscillator in a
Poincaré section plane. Depicted is the diagram for Rn = 10 μm,
pa = 160 kPa. This is an asymmetric system showing a sequence of
periodic windows in the resonance R5,2.

chosen to be Rn = 10 μm and pa = 160 kPa. The resonance
R5,2 is shown in this diagram and periodic windows with
increasing period can be detected up to a small window
of period 6. For asymmetric systems the symmetry period
number q is always q = m0, since for these systems only
asymmetric orbits can occur. The bifurcation diagram looks
similar to the one presented earlier for the Duffing oscillator
(Fig. 3) and therefore a similar winding-number sequence of
sn bifurcations can be expected.

Writing down the winding numbers of the sn-bifurcation
points in the same way as has been done for the Duffing
oscillator, the following sequence for the resonance R5,2 is
obtained:

w� n
m

: 3
1

5
2

7
3

9
4

11
5

13
6

...

+1 +1 +1 +1 +1 +1

+2 +2 +2 +2 +2 +2

(26)

This sequence can be written as a formula similar to Eqs. (5)
and (19), but the interpretation of the different terms differs
slightly due to the asymmetry:

nl
1 = l, ml

1 = 1, l = 1,2,3,4, . . . ,

wl
k = nl

k

ml
k

= l + (l − 1)(k − 1)

k
, k = 1,2,3,4, . . . .

(27)

For asymmetric systems all resonances with period m0 = 1
are isn bifurcations. Within these resonances there are no pd
bifurcations and therefore no window sequences can be found.
Consequently, the index l does not indicate all of the occurring
resonances but only the ones within which period-doubling
cascades can be found. This is the case for all resonances Rn,2

and the index l can be obtained as l = �n/2, i.e., the next
integer larger than n/2 (e.g., R5,2 → �2.5 = 3).

The sequence starts for k = 1 with the winding number
wl

1 = nl
1/ml

1 = 3/1. This is the winding number of the sn
bifurcation of the following resonance with period 1 (R3,1) to
be found towards the lower frequencies νa in this example.

sn(17,6)
sn(14,5)

sn(11,4)
sn(8,3)

pd(5,2) sn(5,2)

sn(7,3)
sn(9,4)

sn(11,5)
sn(13,6)

R5,2

p a
[k

P
a]

νa[kHz]

FIG. 20. The first four bifurcation curves of the two different
winding-number sequences of the resonance R5,2 of the bubble
oscillator. The dotted lines have winding number w = 5/2. The pd
curve embraces both sequences; the sn curve dissects them.

The winding number for k = 2 corresponds to the first pd
bifurcation (wl

2 = 5/2) of the resonance. In comparison, the
winding number for symmetric systems at k = 2 corresponds
to a sb bifurcation. As known from [33] the sb bifurcation
of a symmetric system is just the first pd bifurcation of
a corresponding asymmetric system with half the period.
Therefore, the first two winding numbers of the sequences for
symmetric and asymmetric systems correspond and represent
exemptions to the sequences in the same sense as explained
above, since they do not represent the occurrence of periodic
windows.

The winding numbers for k = 3,4,5, . . . are found again at
the bifurcation points, where periodic orbits arise out of the
chaotic region.

The limiting value of the sequence Eq. (27) is given as

wl
∞ = lim

k→∞
wl

k = l − 1. (28)

The bifurcation curves belonging to the periodic windows in
Fig. 19 and formed by sn bifurcation are shown in Fig. 20.

The curve for the pd bifurcation, pd(5,2), is shown as a
dotted line that acts, in some sense, as an envelope of the
esn curves of the winding-number sequence. A second dotted
line shows the sn(5,2) curve which separates the pd(5,2)
resonance into two parts. As has been found for the symmetric
systems, the asymmetric systems also show a second set of
sn-bifurcation curves [left side of of the sn(5,2) resonance in
Fig. 20]. The respective winding numbers can be ordered in
the following way, representing a different winding-number
sequence:

w� n
m

: 2
1

5
2

8
3

11
4

14
5

17
6

...

+1 +1 +1 +1 +1 +1

+3 +3 +3 +3 +3 +3

(29)
This sequence can be written as

nl
1 = l − 1, ml

1 = 1, l = 1,2,3,4, . . . ,

wl
k = nl

k

ml
k

= (l − 1) + l(k − 1)

k
, k = 1,2,3,4, . . . , (30)
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with the limit

wl
∞ = lim

k→∞
wl

k = l. (31)

Comparing Eqs. (27) and (30), their difference is given by just
changing the term (l − 1) to l and vice versa.

VI. UNIFYING ASYMMETRIC AND SYMMETRIC
SYSTEMS

Our numerical investigations suggest that one-dimensional,
strictly dissipative oscillators show the existence of two
regular winding-number sequences within every resonance
that exhibits chaos. Chaos can be found at resonances R2n,1

of period 1 and even torsion number in the case of symmetric
systems and at resonances R2n−1,2 of period 2 with odd torsion
number in the case of asymmetric systems.

The common behavior of both types of systems in regard to
their winding-number sequences can be merged into a single
formula that combines Eqs. (5), (19), (27), and (30) as

wl
k = (l ± 1) + (l ∓ 1)(k − 1)

k
, (32)

with k = 1,2,3, . . . and

l = 2,4,6, . . . if symmetric,
l = 1,2,3, . . .

(l + 1) → l

}
if asymmetric.

The limiting value of Eq. (32) is given by

wl
∞ = (l ∓ 1) with (l + 1) → l if asymmetric. (33)

The meaning of this equation for both types of nonlinear
systems is shown in a schematic manner in Fig. 21.

For symmetric systems (bottom diagram of Fig. 21)
the winding-number sequences can be found between the
resonances R2n−1,1 and R2n+1,1. The curve of the sb(2n,1) bi-
furcation is divided into two parts by the sn(2n,1) bifurcation.
On both sides of the sn(2n,1) bifurcation one winding-number
sequence can be found. The winding numbers of these esn
bifurcations are governed by Eq. (27). On the side of the
sb curve facing the resonance R1,1 (e.g., the resonance with
lower torsion number R2n−1,1), the first element wl

1 of the
sequence is equal to the torsion number of the higher resonance
R2n+1,1 of period 1 [wl

1 = (l + 1)]. The limit of that sequence
equals the odd torsion number of the lower resonance R2n−1,1

[wl
∞ = (l − 1)]. The transition from (l + 1) to (l − 1) is

marked at the bottom of the diagram. A cross section, for which
this transition of the winding numbers at esn bifurcations can
be observed, is suggested by a big arrow. The sequence on the
right side of resonance R2n,1 shows the reversed behavior and
the terms (l + 1) and (l − 1) have to be interchanged.

For the asymmetric systems an analogous behavior can
be found (see the top diagram of Fig. 21). The window
sequences can only be found in resonances R2n−1,2. As a
result, the index l is not limited to even numbers. Therefore,
the window sequence on the left hand side of the asymmetric
diagram shows the transition wl

1 = l ⇒ wl
∞ = (l − 1). Again,

the sequence to the right of the bifurcation sn(2n − 1,2) has
interchanged (l) with (l − 1).

For all systems and resonances that we have investigated,
one of the two window sequences seem to be dominant and

f

1/ω

asymmetric, l = n

sn(n-1,1) sn(2n-1,2) sn(n,1)
pd(2n-1,2)

(l-1)←(l) (l-1)→(l)

f

1/ω

symmetric, l = 2n

sn(2n-1,1) sn(2n,1) sn(2n+1,1)
sb(2n,1)

(l-1)←(l+1) (l-1)→(l+1)

FIG. 21. Topological sketch of the two winding-number se-
quences as they occur in asymmetric and symmetric systems. The
arrows indicate the paths in the parameter space along which periodic
windows with increasing period can be found.

concealing the other sequence. Those concealed sequences
were only found by calculating the bifurcation curves after
their existence had been suspected from the respective for-
mulas rather than being suggested by looking at bifurcation
diagrams. For the symmetric systems this was true for the
sequences with the transition from (l − 1) to (l + 1) (bottom
diagram in Fig. 21) and again the other way round for the
asymmetric systems with the transition (l) to (l − 1) (top
diagram of Fig. 21).

It has not further been investigated, whether this is a
common feature for these types of systems or if it would also
be possible to investigate the minor sequences by means of
bifurcation diagrams.

Looking at the individual elements of Eq. (21) it should
be noted that for both sequences the value of the element wl

2
is identical. In some sense, this element can be regarded as
the crossing point of both coexisting sequences within one
resonance. This has been indicated with the help of Fig. 22
describing the sequences of an asymmetric system. In both the
top and the bottom diagrams the elements of the two sequences
are marked with the dark and light gray circles, respectively.
In the top part of Fig. 22 the sequences are embedded within a
Farey tree [31,34,35]. The periodic windows for a self-excited
oscillator are ordered by means of the Farey tree, and as
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FIG. 22. Winding-number sequence for an asymmetric system
for l = 2 in the graph of the Farey tree (top) and in the graph of all
fractions with the period number increasing from row to row by one
(bottom).

can be seen here, this is also the case (at least for the main
windows) for strictly dissipative systems. The sequences of
winding numbers build the outside borders of the Farey tree.
This follows from the principle of the construction of the Farey
tree, because, as the periodic windows increase, the period
increases by one, just by definition of the outside elements
of the Farey tree. However, trying to fit subsequences or pd
sequences into this scheme of fractions was not successful.
Obviously, the Farey tree construction must be extended for
the inclusion of all the winding-number sequences found so
far.

The bottom part of Fig. 22 shows every possible fraction
with positive sign between (l − 1) = 1 and (l) = 2. This is
in analogy to the sequences shown in Eqs. (15)–(17). Every
row in this diagram lists the fractions within the interval [1,2]
according to the denominator which increases by one for every
row. All expanded fractions are crossed out to indicate that

those winding numbers have never been found numerically
during our investigations when calculating bifurcation curves.
Naturally, the remaining fractions can also be found within
the Farey tree but ordered differently. The members of the
two winding-number sequences can then be found as the
outside elements of the remaining fractions. In this diagram,
the transition from wl

1 = 1 towards wl
∞ = 2 (and vice versa)

is obvious and it can be expected that the remaining fractions
within this diagram will play an important role for further sub-
and subsubsequences yet to be explored.

In addition, this diagram underlines the existence of
different classes of period-m0 bifurcation curves mentioned
above. There are one class of period 2, two classes of period 3,
four of period 5, etc., as has been demonstrated in Figs. 17 and
18. Note that for symmetric systems the number of classes for
every period m0 has to be doubled compared to the asymmetric
systems, because of the transition (l − 1) → (l + 1) instead of
(l − 1) → (l).

VII. DISCUSSION

Periodically driven nonlinear oscillators show a multitude
of resonances (large excursions of a dependent variable, e.g.,
an elongation and compression of a spring), when the driving
frequency is altered. Every resonance can be assigned a
rational number n/m that denotes its order [8]: 1/1 is the
main resonance (the only one in a linear oscillator), 2/1, 3/1,
4/1, . . . , are the harmonic resonances (appearing at driving
frequencies below the main resonance), 1/2, 1/3, 1/4, . . . , are
the subharmonic resonances (appearing at frequencies above
the main resonance) and the remaining rational numbers are
subsumed under the name of ultrasubharmonic resonances.

The complete diagram of the resonance system of an
asymmetric oscillator, called the superstructure, is given in
Fig. 23. In this diagram, the numbers in the circles and
ovals n/m denote the order of the respective resonance Rn,m.
The top row shows the first four of the harmonic resonances
Rn,1, n ∈ IN0, which are all of period 1: R0,1,R1,1,R2,1,R3,1.
For insertion of the resonance R0,1, see Sec. IV. The second
row shows the resonances of period 2, the third row those of
period 3, etc., whereby the Farey ordering is indicated by the
network of solid lines. The vertical dashed lines are the loci of
all expanded fractions nr/mr , r ∈ IN \ 1, that can be derived
from the fraction n/m, wherefrom a dashed line originates.
Because none of the resonances corresponding to expanded
fractions have been found (see Fig. 22, bottom), they cannot
serve as connecting resonances to cross a dashed line. The
shortest way to reach the other side of a dashed line is via the
resonance at the top of the respective dashed line.

The following resonances have been found for the bubble
oscillator: the harmonic resonances of order 1/1, 2/1, 3/1
and additionally (beyond the diagram given in Fig. 23) up to
order ∼20/1 [36]; the subharmonic resonances 1/2 and 1/3
[8]; the ultrasubharmonic resonances of order 3/2, 5/2 and
additionally (beyond the diagram given in Fig. 23) 7/2, 9/2,
11/2, 13/2, and 15/2 [37], as well as 2/3, 4/3, 5/3, 7/3, and
2/5 (see [8,36,38]). These resonances obey the Farey ordering,
because the ultrasubharmonic resonances 3/2, 5/2, 7/2, 9/2,
. . . are located between the harmonic resonances 1/1, 2/1,
3/1, 4/1, 5/1, . . . in the ordering 1/1, 3/2, 2/1, 5/2, 3/1,
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FIG. 23. Superstructure of an asymmetric oscillator. The Farey tree system extends further to the left, with the next harmonic resonances
4/1, 5/1, . . ., the ultrasubharmonic resonances 7/2, 9/2, . . ., and the higher periods. The diagram also extends further down to period numbers
m = 9, 10, . . ., with torsion numbers n selected according to the Farey tree construction.

7/2, 4/1, 9/2, 5/1, . . ., as in the diagram of Fig. 23. The
ultrasubharmonic resonances 2/3, 4/3, 5/3, and 7/3 appear at
the second level and are found between the resonances 1/2 and
1/1, 1/1 and 3/2, 3/2 and 2/1, and 2/1 and 5/2, respectively
[38]. The resonance 2/5 appears and has been found between
the resonances 1/3 and 1/2 [8]. A similar set of resonances
has been found in the pump modulated laser oscillator [10]
obeying the superstructure as given in Fig. 23.

This ordering most completely appears at low damping
and can be understood by the nonlinearity term in the
differential equation that mixes the frequency components of
the resulting oscillation, thereby transferring energy from the
main resonance along a cascade of further resonances down to
the resonances of higher order (larger n and m). Subharmonic
[39] and ultrasubharmonic resonances have driving-amplitude
onset thresholds that depend on the damping of the oscillator.
Higher order resonances have higher thresholds and thus may
be suppressed. In that case, the superstructure terminates in
a specific way before the respective Farey sequences are
complete. This gives each resonance horn its specific structure.

The ultrasubharmonic resonances may be captured by a
neighboring resonance of lower order inside its hysteresis
region at higher driving (see [9], Fig. 12). Due to the Farey
ordering of the resonances, the higher Farey resonances in
between lower ones are then generically included in the cap-
turing process giving rise to the inner structure of the respective
resonance (depending on the damping that may suppress
higher order resonances). The interior of the resonances thus
shows an involved structure, each resonance with its specific
properties. This structure has been investigated here in more
detail for the resonance R6,1 of the (−,+)-Duffing oscillator
(see also [12]), the resonance R5,2 of a bubble oscillator [27],
and the first few harmonic resonances of the (cω)-Duffing
oscillator by concentrating on the periodic windows and their
winding numbers.

For the case of the resonance R6,1 Gilmore and McCallum
[40] have constructed a geometric abstract of a chaotic
attractor, called a template. The mathematical operation they
use, however, is not equivalent to increasing the damping
of the oscillator. Increased damping also operates on the
window structure in the sense of suppressing resonances and
the associated window sequences. With the help of the template
they could develop a symbolic dynamics for the ordering
of the most prominent periodic windows. Opposite to their
assumption, however, it is shown here that it is not always the
largest windows in width that have to be accumulated into a
sequence (see Fig. 5, bottom diagram).

The first approach of ordering by a Farey tree can be found
in [29], Fig. 25. It has a quite different ordering from that
in [40] in that it has the same period numbers on the same
level. This ordering has not been discussed in [40]. Instead,
two small asymmetric parts of the full Farey tree are given.
Figure 23, moreover, has a quantitative parameter axis (ω) for
showing the clustering of winding numbers.

As an extension to the investigation of harmonic resonances
the window structure inside an ultrasubharmonic resonance
(5/2) of the superstructure has been investigated for its
winding-number sequences. It again shows period adding
(Fig. 22) and an accompanying window structure. This
structure additionally is buried in resonances of lower order
(here between R3,1 and R2,1) in a nested way. The nesting of
resonances gives rise to a proliferation of periodic windows.
Once the period-adding sequences in each resonance are
complete, infinitely many windows multiplied by infinitely
many windows are present in each resonance. The ordering
of these windows may be impossible to formulate in terms
of simple laws. Perhaps special routes through the parameter
space may facilitate an ordering.

It is the Farey ordering from the energy transfer cascade that
determines the features of the superstructure. The universality
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of the bifurcation structure for different nonlinear oscillators
then is of physically determined origin (frequency mixing).
Special details are nevertheless present because of the shape
(hard or soft spring behavior) and strength of the nonlinearity
and, of course, symmetry properties.

Another approach to finding periodic windows for their
classification is via determination of the Lyapunov spectrum
of the dynamical system in question. Period-adding sequences
have been found by Bonatto et al. [5] for the (0,+)-Duffing
oscillator with a period-adding number of 3 given explicitly.
No torsion or winding numbers have been calculated, however.
This has been done by Medeiros et al. [41] and the authors
suggest torsion adding in addition to period adding to group
windows into sequences, as has been done here as well; see
Eqs. (16)–(18). Medeiros et al. suggest a general formula
where both sequences are combined and test it for the Morse
oscillator, an asymmetrical oscillator; see also [25] and the
topological equivalence of nonlinear oscillators in [11]. They
rely on the skeleton construction for the circle map of degree
1 [42,43] (see also Ref. [44] for a two-dimensional map)
and find skeleton sequences for the Morse oscillator in the
two-parameter space of driving frequency and damping for
one constant driving amplitude. The sequences have been
constructed by period adding and torsion adding with a
constant value, each leaving many skeletons in between. Their
ordering (regular or chaotic) is still an open question as
it is for the many subsubwindows encountered here in the
one-dimensional cuts along the frequency axis for the case of
the (−,+)-Duffing oscillator.

Parameter-plane plots of periodic windows may help to
construct ordered sequences when combined with bifurcation
diagrams along selected lines through a parameter plane.
This concept has been followed by Rech [45] for a much
more complicated problem, the periodically forced KdV-
Burgers equation, a nonlinear partial differential equation
of third order. It is transformed to a nonlinear autonomous
system of three first order ordinary differential equations by
looking for traveling wave solutions that eliminate the partial
time derivative. Interestingly, the result is a special type of
asymmetric double-well Duffing oscillator:

ẍ + μẋ − αx + βx2 + δx3 = g cos(ωt). (34)

This type of Duffing oscillator seems to belong to the class
of oscillators investigated here, because a complex network
of windows of similar structure is found that reveals involved
sequences similar to the ones found in Fig. 5. The sequences
can be arranged in a very complex ordering of periods [45].
However, at least some of them can also be considered as being
composed of interlaced series with just period-adding proper-
ties (compare Figs. 17 and 18). As Lyapunov calculations

do not supply connectivity information, the calculation of
fixed-point curves together with torsion and winding numbers
for grouping of windows into sequences, as done here, would
solve questions of ordering.

VIII. CONCLUSIONS

Periodic windows inside resonances of driven nonlinear
oscillators have been investigated. Each resonance is charac-
terized by its own hierarchy of winding-number sequences for
its periodic windows. Some empirical laws for the first two
hierarchy levels have been found. At the first level, a series
of windows, called main windows, with period adding can
be constructed, whose winding numbers obey Eq. (5) or (19)
for symmetric systems and Eq. (27) or (30) for asymmetric
systems. A sketch of the topology of the phase diagram
connected to these series of bifurcations is given in Fig. 21. The
period adding implies that there are as many main windows as
there are natural numbers. This holds for every resonance.

At the second level, a series of windows, called subwin-
dows, can be constructed which also shows period adding.
The subwindows reside within the chaotic band that exists
between each two adjacent main windows and each chaotic
band contains a finite number of them. This number increases
by one for consecutive chaotic bands. Thus, there are as many
subwindows as the sum of the natural numbers. A formula for
the winding numbers of the subwindows is given in Eq. (12).

A deeper investigation of the window hierarchy is limited by
the proliferation of very small windows that are hard to identify
precisely. Surely, there will be more than the sum of the natural
numbers on the proposed third level of subsubwindows.

Finally, our study shows that the periodic solutions of
different types of oscillators that occur as windows in bifur-
cation diagrams can be subject to an ordering scheme whose
first elements could be given here. These elements can be
considered as the first steps for a description of the bifurcation
set of a certain class of driven nonlinear oscillators.
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oscillators and their reduction to circle maps: I. Analytic results,
J. Phys. A: Math. Gen. 25, 6335 (1992).

[14] K. Schmidt and G. Eilenberger, Poincaré maps of Duffing type
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