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Laser diode nonlinear dynamics from a filtered phase-conjugate optical feedback
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The rate equations for a laser diode subject to a filtered phase-conjugate optical feedback are studied
both analytically and numerically. We determine the Hopf bifurcation conditions, which we explore by using
asymptotic methods. Numerical simulations of the laser rate equations indicate that different pulsating intensity
regimes observed for a wide filter progressively disappear as the filter width increases. We explain this
phenomenon by studying the coalescence of Hopf bifurcation points as the filter width increases. Specifically, we
observe a restabilization of the steady-state solution for moderate width of the filter. Above a critical width, an
isolated bubble of time-periodic intensity solutions bounded by two successive Hopf bifurcation points appears
in the bifurcation diagram. In the limit of a narrow filter, we then demonstrate that only two Hopf bifurcations
from a stable steady state are possible. These two Hopf bifurcations are the Hopf bifurcations of a laser subject
to an injected signal and for zero detuning.
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I. INTRODUCTION

Semiconductor lasers subject to different optical feedbacks
have attracted much interest during the last 40 years. First as
a laboratory tool to explore nonlinear dynamics of systems
with time delay [1], and second for their potential to drive
applications based on chaos [2]. Such feedbacks can be
achieved, for example, from an external mirror [3–5], from
an optoelectronic feedback [6–8], from polarization-rotated
optical feedback [9–13], or from phase-conjugate feedback
(PCF) [14–18]. As the light is reflected back to the laser cavity,
it modifies drastically the laser output. In order to investigate
theoretically the different behaviors, the starting point is
often based on modified Lang-Kobayashi equations [3]. These
equations are delay differential equations (DDEs) and the
resulting dynamics depends on several parameters, such as the
laser injection current, the reflectivity of the external mirror,
and the length of the external cavity.

Recently, PCF has attracted a lot of attention. Dedicated
new experiments identified several features not present in
conventional optical feedback, including superharmonic self-
pulsating solutions and high-frequency harmonic pulsing
dynamics underlying chaotic low-frequency fluctuations. Sim-
ulations of the PCF laser equations have shown a rich variety
of dynamics. Depending on the feedback strength, steady-
state solution [19], external-cavity-modes (ECMs) [19,20],
chaos [21], low-frequency fluctuation (LFF) [22,23], extreme
events [24], and undamped oscillations with frequency close
to the laser relaxation frequency [25] can be observed. Of
particular physical interest are the ECMs that have been inves-
tigated both theoretically [17,19,20] and experimentally [26].
In the PCF configuration, ECMs are defined as self-pulsating
intensity solutions with a period close to an integer multiple
of the external-cavity round-trip time. It has been shown that
ECMs emerge from Hopf bifurcations [19,20]. From the ECM
limit-cycle solutions, LFFs emerge through secondary bifur-
cations [23]. Whereas in general the finite-penetration-depth

*lionel.weicker@centralesupelec.fr

phase-conjugate mirror (PCM) is neglected, few studies take
it into account. In 1998, a rate equation model was proposed
in order to explore its effect [27]. The authors observed that a
long PCM tends to filter out high frequencies. This suggests
that the ECMs might disappear for long PCMs. Among the
different investigations of this model, a theoretical study on
the stability of the steady states has been realized for discrete
values of the finite-penetration depth [28]. The authors have
shown that for finite values of the depth PCM, restabilization
of the steady-state solution is possible. On the other hand,
Green et al. [29,30] studied numerically this problem using
a continuation method. They proposed different bifurcation
scenarios as function of the pump parameter and the feedback
strength for discrete values of the finite-penetration-depth. The
system is described mathematically as a laser diode subject to
a delayed filtered phase-conjugate feedback (FPCF).

In this paper, we formulate dimensionless equations for
the FPCF. We determine analytic expressions of the Hopf
bifurcation conditions. Based on numerical simulations, we
show that the different ECMs observed for a zero-penetration-
depth PCM disappear as the penetration depth increases. Using
the Hopf bifurcation conditions, we explain this phenomenon
by noting successive coalescence of Hopf bifurcation points
as the depth increases. Another phenomenon is also observed:
for a range of finite penetration depth, a restabilization of
the steady-state solution can be achieved between two critical
values of the feedback strength. A further increase of the
feedback strength above the second critical value leads to
successively destabilizing and stabilizing Hopf bifurcations of
our basic steady state, hence forming a bubble of time-periodic
oscillating intensity dynamics. This bubble is explained by
our analysis of the Hopf bifurcation points. It leads to a
range of the feedback strength where the response of the laser
is steady between different oscillatory regimes. This range
depends on the finite penetration depth. We also demonstrate
that for a narrow filter (or very long PCM), only three Hopf
bifurcations exist. The first and the last ones are responsible
for the destabilization and restabilization of the steady state.
These bifurcations are reachable experimentally for low and
moderate feedbacks and are matching the Hopf bifurcation
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points of a laser subject to an injected signal and for zero
detuning.

The organization of the paper is as follows. In Sec. II, we
introduce a dimensionless model describing a semiconductor
laser subject to a feedback from a finite-penetration-depth
phase-conjugate mirror. In Sec. III, we investigate numerically
different bifurcation diagrams for different values of the
penetration time τr . In Sec. IV, we study the seven first Hopf
bifurcations in order to explain the disappearance of the ECMs
when the finite depth increases. From this analysis, we also
identify the bifurcation mechanism leading to the bubble of
periodic oscillations. We then provide asymptotic expressions
for the different Hopf bifurcations for large finite-depth PCM
in Sec. V. Finally, we summarize our main results in Sec. VI.

II. FORMULATION

A semiconductor laser subject to a feedback from a finite-
interaction-depth PCM can be described by the following
dimensionless rate equations

dY

dt
= (1 + iα)YZ + γU, (1)

T
dZ

dt
= P − Z − (1 + 2Z)|Y |2, (2)

dU

dt
= 1

τr

[Y ∗(t − τ ) − U ], (3)

where Y (t) corresponds to the complex electric field, U (t) is
the complex feedback field, and Z(t) represents the carrier den-
sity. In order to obtain these equations, we have followed the
approximations of Ref. [27] where the frequency dependence
of the PCM reflectivity has been neglected. See Appendix A for
details about the formulation of these equations. γ represents
the dimensionless feedback rate and is mathematically defined
as

γ = τ ′
pκ = τ ′

p

(1 − Rm)

τ ′

√
ηcRPCM

Rm

, (4)

where ηc is the coupling efficiency, Rm the laser facet reflectiv-
ity, RPCM the reflectivity of the PCM, τ ′

p the photon lifetime,
and τ ′ the external cavity round-trip time. α corresponds to
the linewidth enhancement factor, τ is the external cavity
round-trip time normalized by the photon lifetime, T is defined
as the ratio of the carrier and photon lifetimes, τr corresponds
approximately to the time the light takes to penetrate the PCM
normalized by the photon lifetime, P is the pump parameter
above threshold, and t is the dimensionless time. In several
previous theoretical studies [19,20,29], the following set of
parameter values is considered

α = 3, τ = 476, T = 1428, P = 0.0417. (5)

These values are typical of a semiconductor laser subject
to a 10-cm-distant mirror feedback and working close to
threshold. The multiple delayed round trips in the extended
cavity are not taken into account in this model since we are
interested in relatively low reflectivities of the external mirror.
If τr → 0, Eqs. (1)–(3) reduce to the equations of a PCF with
a zero-penetration-depth PCM. We note that this model also
corresponds mathematically to a semiconductor laser subject

FIG. 1. Bifurcation diagrams corresponding to the extrema of the
output intensity R2

1 with γ as the bifurcation parameter. The different
bifurcation diagrams have been obtained from Eqs. (B1)–(B5).
(a) for τr = 1, (b) for τr = 100, (c) for τr = 115, (d) for τr = 1000.
The values of the parameters are fixed to P = 0.0417, τ = 476,
T = 1428, and α = 3. The time series at the letters a-f are represented
in Figs. 2(a)–2(f), respectively.

to a filtered phase-conjugate feedback in which the mirror
penetration time τr would play the role of the inverse of the
filter bandwidth. In this context, we are interested to study the
case of a narrow filter (τr → ∞).

III. NUMERICAL RESULTS

In order to explore the effects of the penetration-depth
PCM (or equivalently the effects of the filter width of a
FPCF) on the dynamics of the laser, we propose different
bifurcation diagrams for different values of τr with γ as
the bifurcation parameter, see Fig. 1. γ has been chosen as
our bifurcation parameter because it is experimentally tunable
through a variable attenuator.

For low values of τr , we observe similar behaviors as in
the case of a zero-depth PCM. See Fig. 1(a) for the case
τr = 1. For low feedback rate, a Hopf bifurcation leading to
relaxation oscillations of frequency close to the laser relaxation
frequency emerges from the steady-state solution. Increasing
the feedback leads to a cascade of different oscillatory
regimes (period-doubling, chaos, etc.). For higher values of
the feedback rate, different external cavity modes (ECMs) are
observed.

If we increase τr by two orders of magnitude, the dynamics
is very different. No more ECMs are observed and the range
of feedback strength corresponding to chaos decreases. See
Fig. 1(b) for τr = 100. Of particular interest is the bubble of
oscillatory dynamics that appears between γ � 0.0172 and
γ � 0.0215, and the steady state, which restabilizes at H6r .

Increasing slightly τr leads to a region of restabilization of
the steady state between two oscillatory states. See Fig. 1(c) for
τr = 115. We observe the destabilizations and restabilizations
of the steady state at γ � 3 × 10−4 (which corresponds to
H1 in the next section), γ � 0.0167 (HR), γ � 0.0184 (H6),
and γ � 0.0208 (H6r ). The resulting bubble of time-periodic
dynamics exists for a smaller range of the feedback strength
but is isolated between two stable steady states. Increasing τr
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FIG. 2. Different time series of the output intensity. (a)–(f)
correspond to the letters a–f in Figs. 1(a) and 1(b). (a) γ = 0.000438,
τr = 115, (b) γ = 0.00356, τr = 115, (c) γ = 0.006688, τr = 115,
(d) γ = 0.015, τr = 115, (e) γ = 0.02, τr = 115, and (f) γ = 0.02,
τr = 1. The values of the other parameters are the same as in Fig. 1.

reduces the interval of feedback strength values that separates
H6 and H6r . When τr � 121, this bubble disappears.

Figure 1(d) corresponds to τr = 1000. The bifurcation
diagram again changes drastically. There is no bubble of
time-periodic oscillations anymore and the interval of feed-
back strength leading to chaotic dynamics is again smaller.
Moreover, the system exhibits a stable steady state for either
low or high feedback rate, i.e., when the feedback rate is
set outside two values. As τr increases, we note that the
destabilization and restabilization of the steady state tend to
occur at approximately fixed values of γ , i.e., γ � 3 × 10−4

(which corresponds to H1 in the next section) and γ � 0.0157
(HR).

Different time series corresponding to different periodic
regimes are represented in Fig. 2. Figures 2(a)–2(e) are
obtained for γ = 0.000438, γ = 0.00356, γ = 0.006688,
γ = 0.015, and γ = 0.02, respectively, when τr = 115. For
Figs. 2(a)–2(d), we note that the shape and the period of the
solutions change with the feedback strength. From previous
studies on the PCF system, we know that the frequencies of
the dynamics, Figs. 2(a)–2(c), are related to the laser relaxation
frequency.

Figure 2(e) corresponds to a periodic solution in the bubble
of oscillatory dynamics. The period is close to 280. In order
to know if the period in this area is related to the external
cavity round trip, we tried to find the bubble of oscillations
for very different values of the delay. We noted that changing
the delay modifies both the range of feedback strength and the
range of τr where the bubble of oscillations can be observed.
However, it does not significantly influence the frequency
of the oscillations inside the bubble. For example, if we fix
τ = 800, the bubble exists between τr � 134 and τr � 163.

For τr = 150, the period of the oscillations is close to 299. In
all cases, this dynamics disappears for large τr as evidenced in
Fig. 1(d). Indeed, as it will be described in detail in Sec. V, this
limit corresponds to a system with optical injection with zero
detuning—a situation in which the steady state destabilizes
and restabilizes through undamped relaxation oscillations.

ECMs in the PCF laser system are defined as oscillations
of the intensity at frequency being a harmonic of the external
cavity frequency. Figure 2(f) is an example of ECM observed
in our system for τr = 1. The period of the solution is
close to τ/4, which typically corresponds to an ECM (fourth
harmonic).

As seen in Ref. [28], restabilization of the steady state can be
obtained when the penetration depth is not zero. However, the
bubble of periodic oscillations between two stable steady states
was not identified. In Sec. IV, we explore this phenomenon by
investigating the seven first Hopf bifurcations as functions of
τr and γ . From this analysis, we also explain the disappearance
of the ECMs as τr increases.

IV. HOPF BIFURCATIONS

Equations (1)–(3) admit three steady-state solutions:
the trivial steady state (Y,Z,U ) = (0,P ,0), and two dis-
tinct branches of nonsymmetric steady states given by
Eqs. (B6)–(B8) in Appendix B.

The conditions for a Hopf bifurcation are given by
Eqs. (B10) and (B11) where C and σ represent the amplitude of
Z and the frequency of the oscillations at the Hopf bifurcation
point, respectively. If we consider a zero-penetration-depth
PCM (τr = 0), these conditions reduce to the one derived in
Ref. [19].

Based on the numerical observations, we study the first
Hopf bifurcations when τr increases. To this end, we use the
Newton-Raphson method applied to the Hopf conditions (B10)
and (B11) in order to find the different Hopf branches. As
initial values of C and σ , we consider the values referenced
in Ref. [19] for τr = 0. We then follow the different solutions
by increasing τr , see Fig. 3(a). Figure 3(b) is a blow up of
Fig. 3(a) for low values of τr .

From the seven first Hopf bifurcations, only two (H1

and H4) exist for τr � 121. The other bifurcations coalesce
with other Hopf bifurcations at critical values of τr . See, for
example, H6, which coalesces with H6r at τr � 121. HR is
another Hopf bifurcation that also exists for higher values of
the penetration-depth PCM. This Hopf bifurcation has been
obtained with the help of the asymptotic analysis developed
in Sec. V. Previous studies have shown that the ECMs emerge
from Hopf bifurcations but, as it will be demonstrated in
Sec. V, only three Hopf bifurcations (H1, H4, and HR) exist
for high values of τr . Specifically, we note that the Hopf
bifurcation points γ corresponding to H1, H4, and HR tend
to three distinct values as τr increases. They do not depend
on the delay, which implies that they cannot lead to ECMs.
The Hopf bifurcation frequencies are represented in Fig. 3(c).
Figure 3(d) is a blow up of Fig. 3(c) for low values of τr . We
note that H1 always destabilizes the steady state and if τr is
large, the steady state is restabilized through HR .

For intermediate values of τr (between τr = 100 and 121),
the situation is slightly different. HR still restabilizes the steady
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FIG. 3. Different Hopf bifurcations in the parameter plans (γ,τr )
[(a) and (b)], and (σ,τr ) [(c) and (d)]. The different branches of Hopf
bifurcations have been obtained using the Newton-Raphson method
applied to the Hopf conditions (B10) and (B11). For the Hi where
i = 1, . . . ,7, we used the values of C and σ found in Ref. [19] as our
initial conditions and followed the different branches by increasing τr .
HR has been obtained using the approximations (10) and (11) obtained
in Sec. V as initial conditions for τr = 2500 and then decreasing τr to
zero. (b) and (d) are blow ups of (a) and (c), respectively. The values
of the parameters are P = 0.0417, α = 3, T = 1428, and τ = 476.

state but it becomes again unstable at H6. It leads to a range
of γ where the steady state is stable between HR and H6.
The bubble of oscillations observed in Figs. 1(b) and 1(c)
for τr = 100 and 115 emerges from H6 and ends at H6r . The
steady state then restabilizes at H6r . These results are in perfect
agreement with numerical simulations. Since H6 and H6r

exist up to τr � 121, the bubble of oscillations exists between
τr � 100 and 121 for our values of parameters.

V. ASYMPTOTIC ANALYSIS OF THE HOPF
BIFURCATIONS FOR LARGE VALUES OF τr

If τr is large, we can simplify Eqs. (B10) and (B11).
Assuming all other parameters fixed, the leading contributions
of Eqs. (B10) and (B11) are O(τ 2

r ) and are given by

σ 2 = C2(1 + α2) − ε
1 + 2P

1 + 2C
2C + 2ε(P − C), (6)

0 = C3(1 + α2) − ε
1 + 2P

1 + 2C
2C2 + ε(P − C)C(1 − α2)

+ ε2 1 + 2P

1 + 2C

[
1 + 2P

1 + 2C
C − (P − C)

]
, (7)

where ε ≡ 1/T . Equations (6) and (7) admit three solutions
for P = 0.0417:

C = −9.5183 × 10−5; σ = 7.6663 × 10−3;

γ = 3.0099 × 10−4,

C = 4.6699 × 10−3; σ = 1.6215 × 10−2;

γ = 1.4768 × 10−2,

TABLE I. Hopf bifurcations points and frequencies for large τr

γanalytic γnumeric σanalytic σnumeric

2.9990 × 10−4 3.0099 × 10−4 7.6422 × 10−3 7.6663 × 10−3

1.5284 × 10−2 1.5757 × 10−2 1.7088 × 10−2 1.7925 × 10−2

C = −4.9827 × 10−3; σ = 1.7925 × 10−2;

γ = 1.5757 × 10−2,

where γ = |C|√1 + α2. This relation has been obtained from
Eqs. (B6) and (B7). The first and the last Hopf bifurcations
are listed in Table I. From Eqs. (6) and (7), we note that the
Hopf bifurcations for τr large do not depend on the delay.
We next look for asymptotic solutions of the first and last
Hopf bifurcations in the limit ε → 0 and for α > 1. We first
consider the low feedback case corresponding to the first
Hopf bifurcation. From our numerical results, we assume the
following scalings

P = O(1), C = O(ε), τ = O(ε−1),

τr � O
(
ε−2), σ = O(ε1/2).

We then collect the leading terms in Eqs. (B10) and (B11) and
obtain

σ =
√

2εP , (8)

C = ε(1 + 2P )

1 − α2
. (9)

The values of γ and σ with P = 0.0417 are listed in Table I.
Second, we consider the moderate feedback case, which

corresponds to the last Hopf bifurcation. From our numerical
results, we assume the following approximations

P = O(1), C = O(ε1/2), τ = O(ε−1),

τr � O(ε−2), σ = O(ε1/2),

and obtain from Eqs. (B10) and (B11) the leading approxima-
tions

C2 = εP (α2 − 1)

1 + α2
, (10)

σ 2 = εP (1 + α2). (11)

The values of γ and σ with P = 0.0417 are listed in Table I.
The expressions of the two Hopf bifurcation points and

their frequencies are exactly matching the expressions found
for the two Hopf bifurcations of the laser subject to an injected
signal with zero detuning [31]. Physically, the relaxation of
the filter feedback field becomes extremely slow in the limit
of a narrow filter (τr/τ → ∞). Its evolution on the long time
then depends on the fast time average of the laser field as

dU

dt
= 1

τr

[
−U + lim

t→∞
1

t

∫ t

0
Y ∗(t ′ − τ )dt ′

]
.

See Appendix C for details.
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VI. CONCLUSIONS

In this paper, we explore the bifurcation possibilities of
a semiconductor laser subject to a feedback from a finite-
penetration-depth phase-conjugate mirror (PCM). The laser is
described mathematically by the equations of a semiconductor
laser subject to a filtered phase-conjugate feedback (FPCF).
Few theoretical studies have been done and, to the best of
our knowledge, no experimental investigations have been
realized to account for the impact of the filter width on the
laser dynamics. Depending on the filter width and using the
feedback strength as bifurcation parameter, we predict three
very different dynamical scenarios.

At low penetration depth of the PCM, or equivalently for
an unbound filter width, the system acts like a laser subject
to a feedback from a zero-penetration-depth PCM. ECMs are
observed but disappear progressively as the penetration depth
of the PCM increases. We explain this phenomenon by the
coalescence of different Hopf bifurcations at critical values of
the penetration depth of the PCM.

At moderate penetration depth of the PCM, or moderate
filter width, the steady-state solution can be found as stable
for up to three different ranges of the feedback strength.
Particularly interesting is an isolated bubble of periodic
solutions, which appears in the bifurcation diagram. This
bubble exists in a range of feedback strength where the steady
state is unstable and emerges from two stable steady states
through two Hopf bifurcations. The range of feedback strength
of the bubble can be increased or decreased by varying the
penetration depth of the PCM.

For a narrow filter, or equivalently very large (up to
infinite) penetration-depth PCM, the system admits three Hopf
bifurcations. The first and the last ones are responsible for the
destabilization and restabilization of the steady-state solution.
We show that these two bifurcations are the Hopf bifurcation
points of a laser subject to injection and for zero detuning. The
problem in the limit of a narrow filter is similar to an injection
laser problem where the effect of the delayed feedback is
averaged on the long time scale of the relaxation.

The transition from a delayed-feedback regime to an injec-
tion regime occurs roughly when τr > 150. The penetration
time relates to the interaction length L ∼= τr τpc

n
where n is

the medium refractive index. If, for example, we consider
a PR crystal for building the PCM through a transmission
grating [26], this means a crystal length of approximatively
L/2 = 1.16cm (n = 2.7). This is therefore a physically at-
tainable value close to the one of the experimental setup in
Ref. [26]. It also means that the observation of the bubble of
oscillations is experimentally possible for realistic values of
the interaction length.
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APPENDIX A: DIMENSIONLESS EQUATIONS

The rate equations describing a laser diode subject to a
feedback from a finite-penetration-depth PCM referenced in
Ref. [27] can be rewritten as

dE

dt ′
= 1

2

[
GN (N − N0) − 1

τ ′
p

]
(1 + iα)E + κF, (A1)

dN

dt ′
= I

q
− N

τ ′
e

− GN (N − N0)|E|2, (A2)

dF

dt ′
= 1

τ ′
r

[E∗(t ′ − τ ′) − F ], (A3)

where we assumed no nonlinear gain saturation and the phase
detuning δ0 = 0. E(t ′) corresponds to the slowly varying
complex electric field, N (t ′) is the population inversion
number, and F (t ′) corresponds to the complex feedback field.
The meaning of the different parameters is listed in Table II.
We introduce the following new variables

t ≡ t ′/τ ′
p,Y ≡

√
τ ′
eGN

2
E,

Z ≡ GNτ ′
p

2

(
N − N0 − 1

GNτ ′
p

)
, U ≡

√
τ ′
eGN

2
F

into Eqs. (A1)–(A3) and obtain

dY

dt
= (1 + iα)YZ + γU, (A4)

T
dZ

dt
= P − Z − (1 + 2Z)|Y |2, (A5)

dU

dt
= 1

τr

[Y ∗(t − τ ) − U ], (A6)

where

γ = κτ ′
p, τ = τ ′/τ ′

p, τr = τ ′
r/τ

′
p, T = τ ′

e/τ
′
p,

Ith = Nsolq

τ ′
e

, Nsol = N0 + 1

GNτ ′
p

,

P = GNτ ′
pNsol

2

(
I − Ith

Ith

)
.

TABLE II. Meaning of the parameters of the model equa-
tions (A1)–(A3).

Parameter Meaning

GN Optical gain
N0 Transparency electron number
τ ′
p Photon lifetime

α Linewidth enhancement factor
κ Feedback rate
I Pump current
q Electron charge
τ ′
e Electron lifetime

τ ′
r Time the light takes to penetrate the PCM

τ ′ External cavity round-trip time
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APPENDIX B: STEADY STATES AND HOPF
BIFURCATION CONDITIONS

The trivial steady state is (Y,Z,U ) = (0,P ,0). In order to
find the other steady states, we introduce the phase-amplitude
decompositions

Y = R1 exp (iϕ1), U = R2 exp (iϕ2)

into Eqs. (A4)–(A6), we obtain

dR1

dt
= R1Z + γR2 cos (ϕ2 − ϕ1), (B1)

dϕ1

dt
= αZ + γ

R2

R1
sin (ϕ2 − ϕ1), (B2)

T
dZ

dt
= P − Z − (1 + 2Z)R2

1, (B3)

dR2

dt
= 1

τr

{R1(t − τ ) cos [ϕ1(t − τ ) + ϕ2] − R2}, (B4)

dϕ2

dt
= − 1

τr

R1(t − τ )

R2
sin [ϕ1(t − τ ) + ϕ2]. (B5)

The conditions R′
1 = R′

2 = ϕ′
1 = ϕ′

2 = Z′ = 0 lead to the
steady-state solutions, i.e., two branches of solutions for Z

given by

2ϕ1 = − arctan (α), Z = C = −γ√
1 + α2

, (B6)

2ϕ1 = π − arctan (α), Z = C = γ√
1 + α2

, (B7)

where

ϕ1 = −ϕ2, R2
1 = P − C

1 + 2C
> 0, R1 = R2. (B8)

The steady-state solutions are the same as in the case of a zero-
depth PCM [19] except that ϕ1 = −ϕ2 and R1 = R2. From the
linearized equations, we determine the characteristic equation
for the growth rate λ of a small perturbation

0 = (1 + τrλ)(P − C)2ε

×{C(1 + α2)[(1 + τrλ) + exp(−λτ )] − λ(1 + τrλ)}

+ [exp(−2λτ ) − (1 + τrλ)2]

(
1 + 2P

1 + 2C
ε + λ

)
C2(1 + α2)

+ (2Cλ − λ2)(1 + τrλ)2

(
1 + 2P

1 + 2C
ε + λ

)
, (B9)

where ε ≡ 1/T . Looking for real eigenvalues and assuming
λ = O(|C|) → 0 as |C| → 0, we find λ = 2C(1 + α2) in first
approximation. Therefore only the branch C < 0 is stable as
γ increases from zero. We then wonder if a Hopf bifurcation
may destabilize the steady state. To this end, we introduce
λ = iσ into Eq. (B9). Separating the real and imaginary parts,
we obtain the following two equations for C and σ

0 =2ε(P − C)
{
C(1 + α2)

[
1 + cos (στ ) − τ 2

r σ 2 + τrσ sin (στ )
] + 2τrσ

2
}

+ ε
1 + 2P

1 + 2C

{[
cos (2στ ) − 1 + τ 2

r σ 2
]
C2(1 + α2) + σ 2 − τ 2

r σ 4 − 4σ 2Cτr

}
+ σ

{
C2(1 + α2)[sin (2στ ) + 2τrσ ] − 2τrσ

3 − 2Cσ
(
1 − τ 2

r σ 2)}, (B10)

0 =2ε(P − C)
{
C(1 + α2)[2τrσ − sin (στ ) + τrσ cos (στ )] − σ + τ 2

r σ 3
}

+ ε
1 + 2P

1 + 2C

{−C2(1 + α2)[sin (2στ ) + 2τrσ ] + 2Cσ − 2Cτ 2
r σ 3 + σ 32τr

}
+ σ

{
C2(1 + α2)

[
cos (2στ ) − 1 + τ 2

r σ 2
] + σ 2(1 − 4Cτr ) − τ 2

r σ 4
}
. (B11)

APPENDIX C: ANALYSIS IN THE LIMIT τr/τ → ∞
We introduce

s = t/τ, Z = τ−1z, γ = τ−1η

into Eqs. (A4)–(A6), which leads to

dY

ds
= (1 + iα)Yz + ηU, (C1)

T τ−2 dz

ds
= P − |Y |2 − τ−1z(1 + 2|Y |2), (C2)

dU

ds
= ε′[Y ∗(s − 1) − U ], (C3)

where ε′ ≡ τ/τr . We now consider U as slowly relaxing, which
leads us to develop Y , z, and U as

Y = Y0(s,υ) + ε′Y1(s,υ) + . . . , (C4)

z = z0(s,υ) + ε′z1(s,υ) + . . . , (C5)

U = U0(s,υ) + ε′U1(s,υ) + . . . , (C6)

where υ ≡ ε′s = t/τr . The leading problem if ε′ → 0 is given
by

Y0s = (1 + iα)Y0z0 + ηU0,

T τ−2z0s = P − |Y0|2 − τ−1z0(1 + 2|Y0|2),

U0s = 0,
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which implies

U0 = U0(υ).

The O(ε′) problem for U1 reads as

U1s = −U0υ + [Y ∗
0 (s − 1) − U0],

which requires the following solvability condition

dU0

dυ
= −U0 + lim

s→∞
1

s

∫ s

0
Y ∗

0 (s ′ − 1)ds ′.

The problem then becomes similar to an injection laser
problem where the effect of the delayed feedback is averaged
on the long time scale of the relaxation.
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