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Cross-section fluctuations in open microwave billiards and quantum graphs:
The counting-of-maxima method revisited
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The fluctuations exhibited by the cross sections generated in a compound-nucleus reaction or, more generally,
in a quantum-chaotic scattering process, when varying the excitation energy or another external parameter, are
characterized by the width �corr of the cross-section correlation function. Brink and Stephen [Phys. Lett. 5, 77
(1963)] proposed a method for its determination by simply counting the number of maxima featured by the cross
sections as a function of the parameter under consideration. They stated that the product of the average number of
maxima per unit energy range and �corr is constant in the Ercison region of strongly overlapping resonances. We
use the analogy between the scattering formalism for compound-nucleus reactions and for microwave resonators
to test this method experimentally with unprecedented accuracy using large data sets and propose an analytical
description for the regions of isolated and overlapping resonances.
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I. INTRODUCTION

The ubiquity of quantum chaotic scattering is well rec-
ognized owing to its fingerprints in diverse fields ranging
from compound-nucleus scattering [1–3] to electron transport
through disordered mesoscopic samples [4,5]. Owing to the
quasibound states of an open system that manifest themselves
as resonances in the associated scattering processes, the cross
sections evince random fluctuations with respect to the energy
E or some other generic parameter that are characterized in
terms of the cross-section correlation functions. According
to the statistical theory of compound-nucleus reactions [6]
the coherence width �corr of the fluctuations is determined
by the resonance widths. However, an alternative approach to
effectively determine it from the number of maxima exhibited
by the cross sections as a function of the excitation energy was
introduced in Ref. [7]. It was proposed that the product of the
number of maxima per unit resonance energy KN and the width
�corr is constant, KN�corr = 0.5 bN , where N is the number of
statistically independent channels participating in the reaction
and bN is a constant. Taking into account the finite range of
data effects [8] yielded b∞ = 2

√
3/π � 1.1 for a system with

a large number of reaction channels. For two reaction channels
a value of b2 = 0.78 was obtained [7]. The dependence of
bN on the experimental energy resolution of the excitation
functions was demonstrated in Refs. [9,10] for a single channel
as well as many open channels. The counting-of-maxima
method was believed to provide more accurate results than the
determination of �corr from the autocorrelation functions [11].
Applications to numerical examples have been presented in
Refs. [12,13].

The main ingredient of all these findings was that one
can infer the cross-section correlation width associated with
a compound-nucleus reaction by simply counting the maxima
emerging when plotting the cross sections versus the excitation
energy. This procedure was proposed at the time [7] as an
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add-on to the standard analysis of the cross-section fluctua-
tions [6] and was restricted to the Ericson region of strongly
overlapping resonances. Recently the counting-of-maxima
method was extended to the regions of isolated and overlapping
resonances [14–16]. There, an analytical expression for the
dependence of the product of the number of maxima and the
width of the associated cross-section correlation function as a
function of the energy, or, more generally, of some parameter,
on the tunneling probability was derived for the cases that
the latter has a Lorentzian and a squared Lorentzian shape,
respectively. The findings of Refs. [14,15] actually inspired
the investigations described in the present article.

Based on the premise that the S-matrix formalism for
microwave resonators [17] is equivalent to that originally
derived for compound-nucleus reactions [18], we examined
the relation of the mean density of maxima in the cross-
section fluctuations to the correlation width �corr in chaotic
scattering experiments with unprecedented accuracy. The
experimental data, obtained from measurements documented
in Refs. [19,20] in the regions of isolated and overlapping
resonances, illustrate parallels with studies conducted in
Refs. [21,22] in the context of nuclear physics [3,23,24]. In
addition, the effect of time-reversal invariance (T ) violation,
which has been tested in nuclear spectra [25] and for the
Ericson region in compound-nucleus reactions [26–31], is
inspected in this regard. From a theoretical perspective, simula-
tions are performed using random matrix theory (RMT) and the
Verbaarschot-Weidenmüller-Zirnbauer (VWZ) approach [1],
accompanied by a formal appraisal of chaotic scattering
on networks of quantum wires [32], so-called quantum
graphs [33–37]. In light of recent studies of the statistical
properties of electronic transport in ballistic open quantum
dots [14], we take cognizance of the analogy between universal
conductance fluctuations described by Gaussian processes in
quantum dots and compound-nucleus fluctuations [2]. This
enables us to analyze and extend the main results of Ref. [15],
which were originally gleaned from the S-matrix describing
electron flow in quantum dots, and exhibit their applicability in
the wider context of microwave billiards, thereby underlining
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the subtle interconnections between these seemingly unrelated
fields.

We applied the counting-of-maxima method to spectra that
were measured with a flat microwave resonator with the shape
of a chaotic tilted-stadium billiard and at superconducting
conditions in a resonator with a parametric shape, respectively.
The aim was to verify the applicability of the method in
the region of strongly overlapping resonances [7,8] and to
verify the validity of the analytical results of Refs. [14–16]
experimentally in the regions of isolated and overlapping
resonances. Note that for the largest achieved ratios of the
resonance width and spacing, the fluctuation properties of
the S-matrix elements are already well described by the
predictions for the Ericson region [38]. The experimental
results are presented in Secs. II and V, respectively. In order
to corroborate our findings we performed RMT simulations,
which were based on the scattering formalism introduced in
Sec. III. Furthermore, we analyzed spectra computed for open
quantum graphs, as outlined in Sec. IV.

II. FLUCTUATIONS IN AN OPEN MICROWAVE BILLIARD
WITH AND WITHOUT T VIOLATION

To realize a chaotic scattering system, a flat microwave
resonator with the shape of a tilted-stadium billiard [19,20,38]
was chosen, which is shown schematically in the inset of Fig. 1.

The modes in the resonator were coupled to the exterior via
two antennas denoted by 1 and 2, which were attached to it
at the positions marked by crosses. For the determination of
the scattering (S)-matrix elements S21 describing the scattering
process from antenna 1 to antenna 2, a vector network analyzer
coupled microwave power into the resonator via antenna 1 and
determined the relative phase and amplitude of the transmitted
signal at antenna 2. The frequency range 1–25 GHz was chosen
such that only the component of the electric field strength
perpendicular to the top and the bottom plate was excited.
Then the Helmholtz equation is scalar and mathematically
equivalent to the Schrödinger equation of the corresponding
quantum billiard [39–41]. Therefore, such resonators are called
microwave billiards. The dynamics of the corresponding clas-
sical billiard is chaotic [42]. Thus, according to the Bohigas-
Giannoni-Schmit conjecture [43], the fluctuation properties
of the eigenvalues of the associated quantum billiard, i.e.,
of the resonance frequencies in the microwave billiard, are
described by random matrices from the Gaussian orthogonal
ensemble (GOE) [44]. We confirmed this by analyzing the
resonance spectra in the regions of isolated and overlapping
resonances [20]. An ensemble of several chaotic systems
was obtained by introducing a scatterer (gray disk in the
inset of Fig. 1) into the microwave billiard and moving it to
eight different positions [45]. We also investigated fluctuation
properties in chaotic scattering systems with partially broken
time-reversal symmetry. To induce T violation we inserted a
ferrite into the microwave billiard and magnetized it with an
external magnetic field.

In the upper panel of Fig. 1, a measured transmission
spectrum, i.e., the squared modulus of the S-matrix element
from antenna 1 to antenna 2, is plotted in the frequency range
19–20 GHz. The ratios of the widths and the spacings of the
resonances depend weakly on the excitation frequency. At

FIG. 1. (Color online) Upper panel: Transmission spectrum for
the frequency interval 19–20 GHz, where the resonances obviously
overlap. Lower panel: Cross-section autocorrelation function C21(ε)
for the same frequency interval (solid black line) and the interval of
13–14 GHz (dashed red line). Here ε gives the excitation frequency
increment in units of the mean resonance spacing. The secular
variation of the latter was negligible in a 1 GHz window. The
broadening of the correlation width with increase in frequency can
be seen. Inset: Tilted stadium billiard (schematic). The crosses mark
the positions of the antennas, 1 and 2. A movable scatterer (gray) was
utilized to obtain independent realizations.

low frequencies the resonances were isolated, that is, their
mean width was small as compared to their mean spacing.
However, on increasing it, the resonances started to overlap, as
is clearly visible in Fig. 1. The lower panel of Fig. 1 shows two
examples for the correlation function of the squared modulus
of the S-matrix element S21, which corresponds to the cross
section for the transition from channel 1 to channel 2 in nuclear
physics, σ21 = |S21|2. It is given by [6,13]

C21(ε) = 〈|S21(E)|2|S21(E + ε)|2〉 − 〈|S21|2〉2, (1)

where 〈. . .〉 denotes averaging over E. In nuclear physics E and
E + ε denote energies, whereas in the microwave experiments
they correspond to the rescaled frequencies f , obtained by
unfolding them to mean resonance spacing unity with the help
of Weyl’s formula for the smooth part of the resonance density
〈ρ〉 of microwave billiards [46], which increases linearly with
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the frequency f , 〈ρ〉 � Aπf/(2c2) with c the velocity of light
and A the area of the billiard. In the limit of a large number
of open channels the shape of the cross-section correlation
function C21(ε) is well described by a Lorentzian, C21(ε) =
C21(0)/(1 + (ε/�corr)2).

The averages of the resonance widths and spacings were
observed to be approximately constant in 1 GHz frequency in-
tervals. Consequently the correlation function was evaluated in
a frequency range 5–25 GHz in 1 GHz windows to ensure that
the secular variation of the resonance parameters is negligible,
yielding 104 data points each. As illustrated in Fig. 1, the width
of the cross-section function increases with the frequency; that
is, it is narrower in the frequency range 13–14 GHz (dashed
red line) than for 19–20 GHz (solid black line).

The number of maxima Nmax in the transmission spectra
was also counted in 1 GHz windows. One thereby obtains
the density of maxima, ρmax

ε , on simply dividing Nmax by
the corresponding interval length of the rescaled frequencies.
Furthermore, each of the 1 GHz windows was subdivided
into 10 intervals, and in each of them the width of the cross-
section autocorrelation function at half maximum, i.e., the
value of ε with C21(ε) = 0.5 C21(0), was determined in units of
the mean resonance spacing. To further increase the data sets,
transmission spectra were measured for eight positions of the
movable scatterer.

Figure 2 presents the thus obtained experimental results
for the product of the mean density of maxima and the
mean correlation width (turquoise dots). The largest value
of the latter achieved in the experiments was �corr � 1.7.

FIG. 2. (Color online) Product of the mean density of maxima
and the mean correlation width in the transmission spectra of the
tilted-stadium billiard shown in the inset (same as in Fig. 1) times
the mean correlation width evaluated in 1 GHz windows in the T
preserved case (turquoise dots). Statistical errors arise due to the
variability of the results within the eight realizations, i.e., positions
of the scatterers, and are at most of the size of the symbols.
Therefore, we omitted error bars. The red triangles obtained from
RMT simulations with an ensemble of scattering matrices of the form
Eq. (4) for the GOE case describe the experimental results well. The
value of 0.5b∞ = √

3/π ≈ 0.55 (dash-dotted line) approached above
�corr ≈ 1.5 is in good agreement with the result obtained in Ref. [7]
in the context of nuclear physics. The dashed curve illustrates the
analytical expression given in Eq. (2) with a0 = 1 and a1 = 1/3.

FIG. 3. (Color online) Same as Fig. 2 for the cases of T violation
in the experiment (turquoise dots) and the GUE in the RMT
simulations (red triangles). Inset: Same as in Fig. 1. In addition, a
magnetized ferrite (black disk) was inserted to enforce T violation.

We demonstrated in Ref. [38] that in the corresponding
frequency range the S-matrix correlation functions and the
distributions of the S-matrix elements are well described by
the predictions for the Ericson region. Similarly, the product of
the mean density of maxima and the mean correlation width
approaches the value predicted in that limit, 〈ρmax

ε 〉�corr �
0.5 b∞ = √

3/π , shown as a dash-dotted line in Fig. 2. Note
that 〈ρmax

ε 〉�corr does not depend on the frequency scale.
In order to obtain an analytical expression for the depen-

dence of the product 〈ρmax
ε 〉�corr on the correlation width �corr

we used the ansatz

〈
ρmax

ε

〉
�corr ≈

√
3

π
a0

�corr√
�2

corr + a1

, (2)

with a0 and a1 as fit parameters. The comparison of our
experimental data with the analytical expression Eq. (2)
revealed a very good agreement for a0 = 1 and a1 = 1/3.
Hence, like in the case of the experimental data, the analytical
expression saturates at the value predicted for the Ericson
region. It is shown as dashed line in Fig. 2 and in Fig. 3,
where the product 〈ρmax

ε 〉�corr is plotted for the case with T
violation, induced by inserting a ferrite into the microwave
billiard (black disk in the inset of Fig. 3) and magnetizing it
with an external magnetic field [19,47]. The agreement of the
analytical expression Eq. (2) and the experimental result for
〈ρmax

ε 〉�corr again is very good for a0 = 1 and a1 = 1/3.
No significant difference is noticeable between the cases of

T preservation and T violation, either in the saturation value
or in the general trend of the data points.

In Ref. [16] the conductance fluctuations where investigated
in quantum dots with chaotic behavior. There an analytical
expression was derived for the product of the mean density of
maxima 〈ρQD

ε 〉 and the width γ of the generalized conductance
correlation function, which, similar to C21(ε) in Eq. (1), takes
the shape of a Lorentzian in the Ericson region:

〈
ρQD

ε

〉
γ =

√
3

π

√
9�2 − 18� + 10

5�2 − a1� + 6
(3)
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FIG. 4. (Color online) Ratio χ (�) = 〈ρmax
ε 〉�corr/(〈ρQD

ε 〉γ ) of the
experimental result 〈ρmax

ε 〉�corr for the cases of T preservation and
T violation (turquoise dots and green squares, respectively) and
the analytical result for a quantum dot; see Eq. (3). Furthermore,
the ratio χ (�) = 〈ρmax

X 〉XC/(〈ρQD
X 〉XC) of the RMT simulation for

the parameter-dependent system 〈ρmax
X 〉XC and the analytical result

Eq. (12) for a quantum dot is plotted (red triangles). Here � denotes
the average of the transmission coefficients associated with the two
antennas 1 and 2, � = (T1 + T2)/2, in the case of the microwave
billiard and the tunneling probability in that of a quantum dot.

Here � denotes the tunneling probability, which corresponds
to the transmission coefficients Ta = 1 − |〈Saa〉|2 associated
with antennas a = 1,2 in our microwave experiments, � =
T1+T2

2 , where T1 � T2. In order to verify Eq. (3) we plotted
in Fig. 4 the ratios χ (�) of the experimental results for
〈ρmax

ε 〉�corr for the cases of preserved T (turquoise dots)
and of T violation (red triangles) and the prediction Eq. (3),
χ (�) = 〈ρmax

ε 〉�corr/(〈ρQD
ε 〉γ ).

For � � 0.4 the ratio takes the value χ (�) � 1; i.e.,
there the agreement between the experimental result and
the prediction Eq. (3) is very good. For small values of �,
deviations are clearly visible and are expected because for
� → 0 the product 〈ρmax

ε 〉�corr vanishes (see Figs. 2 and 3),
whereas the square-root function in Eq. (3) takes a nonzero
value for � → 0 [14].

III. FLUCTUATIONS IN A RANDOM S-MATRIX MODEL
FOR CHAOTIC SCATTERING PROCESSES

To corroborate our experimental findings we performed
RMT simulations similar to those presented in Refs. [19,20].
For this we used the S-matrix formalism developed in
Ref. [18] in the context of compound-nucleus reaction theory,
which, actually, also has been used in [14,15] for the RMT
simulations. The associated unitary S matrix has the general
form

S(f ) = 1 − 2π iW (f 1 − H + iπWT W )−1WT . (4)

The matrix elements of W describe the coupling of the
antennas to the resonator modes [47] and comprise the
fictitious channels that account for the Ohmic absorption in
the cavity [48]. They were chosen as real Gaussian distributed
random numbers with zero mean. As stated above, the

fluctuation properties of the resonance frequencies of the
resonator are well described by random GOE matrices in
the T -preserving case. Thus we inserted in Eq. (4) for the
matrix H , which actually stands for the Hamiltonian of the
closed resonator, a real and symmetric random matrix of
dimension N = 200 from the GOE [44]. In order to study
a chaotic scattering system with induced partial T violation
we proceeded as in Refs. [19,20] and inserted for H in Eq. (4) a
complex random matrix of the form H = HS + iπξ/

√
NHA,

with HS a member from the GOE, HA a real, antisymmetric
matrix with Gaussian-distributed entries, and ξ theT -breaking
parameter. The number of open channels M , that is, the
dimension of S(f ), was chosen equal to 32 which corresponds
to 30 fictitious ones. Furthermore, since in the experiments
the average S matrix was diagonal, we required that this
is also the case for the matrix WWT [1,18]. Its entries are
solely determined by the transmission coefficients Tc, with
c = 1, . . . ,M . For the RMT simulations we used the same
values of the transmission coefficients as in the experiments
within the 1 GHz frequency intervals; see Ref. [20].

The RMT results plotted as red triangles in Figs. 2 and 3
were obtained with an ensemble of 1000 random scattering
matrices of the form Eq. (4). The data presented in Fig. 3
were generated by choosing ξ as in the measurements [19,20],
where it varied with the excitation frequency. The RMT results
for ξ = 0 and ξ 	= 0 are indistinguishable. Thus, the value
of the product 〈ρmax

ε 〉�corr does not depend on whether T is
preserved or not, in agreement with the experimental results.
It saturates at 0.5 b∞ = √

3/π , i.e., at the value obtained in the
Ericson region in the context of nuclear physics for systems
with a large number of reaction channels or open channels [8].
Furthermore, the RMT results are again well described by the
formula Eq. (2) with a0 = 1 and a1 = 1/3.

IV. FLUCTUATIONS IN OPEN QUANTUM GRAPHS

As a second test system we analyzed the S matrix of open
quantum graphs, networks of one-dimensional wires (bonds)
joined at vertices [32] and opened by attaching leads that
extend to infinity at some of the vertices. An example is shown
in the inset of Fig. 5, where a so-called tetrahedral graph is
presented, which consists of six bonds B and four vertices V
and has a lead L attached to the lower left vertex and to the
center one, respectively.

Quantum graphs can be handled mathematically and at the
time serve as a simple model for chaotic scattering. They,
in fact, have the particular property that the semiclassical
approximation is exact [49], and, moreover, the S-matrix
correlation functions could be calculated explicitly and shown
to agree with the RMT result [1,35,37,50]. The mathematical
model for the S matrix of open quantum graphs has been
formulated in Refs. [33,51]. The component ψij of the graph
wave function ψ for the mode propagation in the bond from
vertex i to vertex j satisfies the one-dimensional Schrödinger
equation (

−i
d

dx
− Aij

)2

ψij (x) = k2ψij (x), (5)

where Aij = −Aji is a magnetic vector potential with a
nonvanishing real part introduced on the bonds to induce
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FIG. 5. (Color online) Product of the mean density of maxima
and the mean correlation width for a chaotic tetrahedral graph
shown schematically in the inset, which consists of six bonds B
and four vertices V and has two leads L attached, corresponding
to two open channels, obtained by varying the coupling w between
the leads and the vertices. Shown are the results for the case of
T preservation (turquoise dots) and for complete T violation (red
squares), where for all bonds Aij = 0.5, i < j was used. The data
are well described by Eq. (8) with d0 = 1, d1 = 1/3, and d2 = 1/6
(dashed line). For large �corr the product approaches the value
0.5 b2 = 0.39 (dash-dotted line) predicted for nuclear reactions with
two independent channels [7]. Note that the graph shown in the inset
is merely representational since the lengths do not reflect those used
in the actual simulations.

T violation. We set it to zero for the study of chaotic
scattering in T -preserved systems and chose it purely real
with |Aij | being the same on all bonds to induce T violation,
otherwise. Furthermore, we required that the wave functions
are continuous and satisfy Neumann boundary conditions
at the vertices in order to ensure current conservation. On
attaching a lead to M of the in total V vertices of a graph, the
S matrix can be expressed as

S(f ) = 1 − 2π iW (h(f ) + iπWT W )−1WT , (6)

with W being the M × V leads-vertices coupling matrix
introduced in Ref. [33] for a tunable coupling [52]; i.e.,
its matrix elements depend on a parameter w, 0 < WiL,j =
δiL,jw/

√
π � 1, where iL denotes the indices of the vertices

with leads. The term h(f ) is the Hamiltonian of the closed
graph with the matrix elements

hij (f ) =
{−
m	=i Cim cot

( 2πf

c
Lim

)
, i = j

Cij e−iAij Lij sin−1
( 2πf

c
Lij

)
, i 	= j

. (7)

Here C is the connectivity matrix with entries Cij = 1 if
the vertices i and j are connected, and zero otherwise.
Furthermore, L is the length matrix of the graph, where Lij

gives the length of the bond joining the vertices i and j . Note
the similarity of the form of the S matrix of an open graph,
Eq. (6), with that of a compound-nucleus scattering process
given in Eq. (4), the only difference being their dependence
on the frequency through the inverse operator. In the former
case it coincides with that of the graph Hamiltonian h(f ),

FIG. 6. (Color online) Product of the mean density of maxima
and the mean correlation width obtained from simulations performed
for a chaotic graph with V = 60, shown schematically in the inset
(figure by R. A. Nonenmacher, Wikimedia Commons, 2008), and a
varying number of open channels (2–15) and couplings w between
the leads and the vertices are illustrated as turquoise dots. The red
triangles are the same as those exhibited in Fig. 2. A saturation at
0.5 b∞ = 0.55 is observed, in agreement with the value cited in
Ref. [8]. Furthermore, the data are well described by Eq. (2) with
a0 = 1, a1 = 1/3. Note that the equality of the side lengths of the
graph shown in the inset is solely for representational convenience.

whereas in the latter case it depends linearly on the frequency,
while the Hamiltonian of the closed system is modeled by a
frequency-independent random matrix.

We considered in our numerical simulations tetrahedral
graphs consisting of four vertices and graphs that comprised
60 vertices, where in both cases the connectivity was three
(see insets of Figs. 5 and 6). The lengths of the bonds were
confirmed to be rationally independent by choosing values
which were the square roots of prime numbers. In addition,
the chaoticity of the scattering dynamics was independently
verified by the fluctuation properties of the eigenvalues of the
closed graphs. The S-matrix elements were computed over a
large frequency range, and the frequencies were again rescaled
to mean resonance spacing one using Weyl’s formula for
the mean resonance density 〈ρ〉 in quantum graphs, which
is frequency independent, 〈ρ〉 � L/(2π ), with L the total
length of the graph. Consequently the mean resonance spacing
is the same for the whole spectrum, in stark contrast to
the situation in quantum (microwave) billiards. The same
holds for the correlation width. Accordingly an ensemble of
statistically independent data sets was obtained by simply
dividing the spectrum into frequency windows containing a
sufficiently large number of resonances, determining in each
of them the number of maxima and the mean width of the
cross-section correlation function and then calculating their
arithmetic averages.

In the case of the tetrahedral graph shown schematically
in the inset of Fig. 5 we attached to two vertices a lead
and varied the size of �corr by altering the parameter w of
the entries of the W matrix, which physically corresponds
to changing the strength of the coupling between the leads
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and the vertices or that of the graph to its environment. In
Fig. 5 the quantity 〈ρmax

ε 〉�corr is plotted against �corr for
the T -preserving (turquoise diamonds) and the T -violated
(red squares) cases. Especially for the T -invariant graph its
saturation at 0.5 b2 ≈ 0.39 (dash-dotted line) is clearly visible.
This value was predicted for two reaction channels in nuclear
physics [7] and for two or three open channels in quantum
dots [14]. Again, the product is well described by an expression
similar to Eq. (2):

〈
ρmax

ε

〉
�corr ≈ 0.39d0

�corr√
�2

corr + d1�corr + d2

(8)

The fit of Eq. (8) to the numerical data yielded d0 = 1, d1 =
−1/3, d2 = 1/6 (dashed line). Thus, the analytical expression
saturates at the same value, 0.5b2, as the experimental data.

In order to attain higher values of �corr, we used the fact that
it increases with the number of vertices V [34]. Accordingly
we considered a graph with V = 60, which also accorded the
flexibility of increasing the number of open channels. The
product 〈ρmax

ε 〉�corr was calculated for different values of
the correlation width by attaching leads at random to a varying
number (2–15) of vertices and also altering the value of w in
the elements of the W matrix.

Figure 6, which compares the resulting values with the
RMT simulations already presented in Fig. 2, reiterates the
agreement with Eq. (2) with a0 = 1, a1 = 1/3 shown as
dashed line and, furthermore, with the results obtained in
nuclear physics a few decades earlier (dash-dotted line) for
�corr � 1.75 and highlights the analogy between open channels
in generic chaotic scattering systems and the reaction channels
in compound-nucleus scattering processes. The results pre-
sented in this section were obtained by analyzing numerically
obtained S-matrix elements. Currently, we are building up
an experimental setup for high-precision measurements of
the S-matrix elements of quantum graphs using networks of
superconducting wave guides.

In Secs. II, III, and IV we investigated the fluctuations
exhibited by the cross sections when varying the excitation
frequency. In the following section we study the counting-
of-maxima method in a system that depends on a geometric
parameter.

V. FLUCTUATIONS IN AN OPEN PARAMETRIC
MICROWAVE BILLIARD

The analysis of the fluctuation properties of the eigenvalues
of closed, parameter-dependent systems provided new insight
into the universal behavior of chaotic systems [2,53–56]. In
order to study cross-section fluctuations of an open system
with respect to a parameter, as opposed to the frequency,
we analyzed the spectra measured with a microwave billiard
having the shape of a desymmetrized straight-cut circle
presented in Ref. [57] and shown schematically in Fig. 7,
the classical dynamics of which is chaotic [57,58]. The
varying parameter, α, is concurring with the angle of rotation
of a dielectric wedge of Teflon inside the resonator and
assumed 37 equally spaced values in steps of 2.5◦. In order to
ensure a sufficiently high spectral resolution and to eliminate
dissipative processes, the experiment was performed at 4.2 K
with a superconducting microwave billiard manufactured from

FIG. 7. (Color online) Product of the mean density of maxima
and the mean correlation width obtained for the parameter-dependent
cut-circle system (turquoise dots) at 440 different frequencies. The
statistical errors are no larger than the size of the symbols. The dashed
curve illustrates the analytical expression Eq. (11) for the variation
of an external parameter, which describes the data well, with c0 = 1,
c1 = −1/2, and c2 = 1/3. Upper inset: Sketch of the billiard along
with the rotatable wedge-shaped piece of Teflon. The angle of
rotation of the wedge defines the parameter, but its initial orientation
is arbitrary. Lower inset: Zoom into the experimental data range
XC � 0.08.

lead-plated copper [17]. Thus, complete sequences of 440
eigenfrequencies could be identified for each value of α.
The fluctuating positions of the resonance frequencies trace
out irregular oscillatory curves that avoid intersections as the
parameter α is varied (see Fig. 2 of Ref. [57]).

The eigenfrequencies were unfolded to mean spacing unity
for a fixed value of α with the help of Weyl’s formula, yielding
440 rescaled eigenfrequencies ei(α), i = 1,2, . . . ,440 for each
of the 37 values of α. Also the parameter α was rescaled by
using the procedure described in Ref. [59]:

X =
√〈

v2
α

〉
α,

〈
v2

α

〉 = 1

440

440∑
i=1

(
dei

dα

)2

(9)

We considered the cross-section autocorrelation function for
parametric variations,

CX
21(δX) = 〈|S21(X)|2|S21(X + δX)|2〉 − 〈|S21|2〉2, (10)

where 〈. . .〉 denotes the average over the parameter and
intermediate frequencies between the respective eigenvalue
and the neighboring ones. This correlation function has been
examined for quantum dots and has a square Lorentzian
shape [2,14,15], CX

21(δX) = CX
21(0)/(1 + (δX/XC)2)

2
. The

correlation width XC of the experimentalCX
21(δX) was obtained

either from a fit of this formula to it or by determining the
value of δX for which CX

21(δX) = CX
21(0)/4. Both procedures

yielded the same values of XC . Maxima were counted in the
spectrum |S21(X)|2 for each frequency, using the fact that the
eigenfrequencies correspond to the frequencies at the maxima
in the resonance spectra, |S21(f )|2. Accordingly, we obtained
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the number of maxima in a given X range by simply counting
the eigenfrequencies. They actually had been determined for
the studies published in Ref. [57], and the density of maxima,
〈ρmax

X 〉, was inferred on dividing the number thereof by the
range of the rescaled parameter. Figure 7 shows the quantity
〈ρmax

X 〉XC as a function of the correlation width XC . It is
expected to assume a constant value of 3/(π

√
2) � 0.68 (dash-

dotted line) for XC � 1. The absence of such saturation may be
attributed to the attainment of only very small values of XC ,
since the measurements were performed at superconducting
conditions. Consequently there is no dissipation in the walls,
implying that the effective number of open channels is two.
This is in contrast to the experiments with the tilted-stadium
microwave billiard at room temperature, where fictitious open
channels had to be introduced to account for the absorption.

To test the results for the parametric system in more
detail, we in addition performed RMT simulations using the
S-matrix formalism Eq. (4). We replaced H by a Hamiltonian
H (μ) = H1 cos μ + H2 sin μ, where H1,H2 are random ma-
trices drawn from the GOE and μ is varied [57]. The number
of open channels was chosen equal to M = 32. Still the results
of these simulations, plotted as red triangles in Fig. 7, describe
the experimental data very well and saturate for XC � 0.7 at
〈ρmax

X 〉XC � 0.68, i.e., at the value predicted for the Ericson
region. Like in the experiments with the tilted stadium in Sec. II
we derived an analytical expression for the dependence of the
product 〈ρmax

X 〉XC on the correlation width XC in the regions
of isolated and overlapping resonances using a similar ansatz〈

ρmax
X

〉
XC = 3

π
√

2
c0

XC√
X2

C + c1XC + c2

, (11)

with now three fit parameters, c0, c1, c2. The good agreement
with Eq. (11) (dashed line), obtained by setting c0 = 1, c1 =
−1/2, and c3 = 1/3 is clearly visible. For large values of XC ,
the RMT results for 〈ρmax

X 〉XC and the analytical expression
attain the predicted asymptotic value, 〈ρmax

X 〉XC → 3
π

√
2
. The

experimental data are also well described by this expression.
This is further demonstrated in the inset, which shows a zoom
into the experimental data range.

In Refs. [14,16] an analytical expression was derived for the
product of the mean density of maxima 〈ρQD

X 〉 and the width
XC of the correlation function for the variation of an external
perpendicular magnetic field in quantum dots, which takes the
shape of a square Lorentzian in the Ericson region,

〈
ρ

QD
X

〉
XC =

√
3

π
√

2

√
7�2 − 10� + 6

2�2 − 3� + 2
, (12)

with � the tunneling probability, which corresponds to the
average of the transmission coefficients T1 and T2 associated
with the antennas in the microwave experiment. Figure 4 shows
the ratio χ (�) = 〈ρmax

X 〉XC/(〈ρQD
X 〉XC) of the experimental

result and the analytical prediction Eq. (12) for the product
of the mean density of maxima and the mean correlation
width. It illustrates that, like in the parameter-independent
cases considered in Sec. II, the former are well described by
the latter for � � 0.4. While for quantum dots, the product of
the mean density of maxima and the width of the corresponding
correlation function attains a non-vanishing value for � → 0,

this is not the case for an open microwave or quantum billiard.
Therefore, the deviation of χ (�) from unity, observed for small
values of �, was expected.

VI. CONCLUSIONS

Drawing inspiration from ideas developed in nuclear
physics, in this article the relation of the mean density of
maxima 〈ρmax

ε 〉 in cross-section fluctuations of a chaotic
compound-nucleus scattering process to the correlation width
�corr using the analogy of the associated S-matrix formalism to
that for the description of the resonance spectra of microwave
billiards has been investigated. Historically, the value of bN =
2KN�corr has been extensively debated [7–9] in the nuclear
physics literature. Therefore it is reassuring that our experi-
ments were able to reconfirm the prognostication of Refs. [7,8]
regarding the saturation value for fairly large values of �corr

that were predicted nearly half a century ago. Not only do we
establish the association thereof with conductance fluctuations
in quantum dots, but our numerical and RMT results also
suggest an appropriate ansatz to account for the behavior in
the region of low �corr. Indeed, on the basis of the fit of a general
ansatz for the product of the mean density of maxima and the
mean correlation width to the experimental and RMT results a
good analytical description was found, which interpolates be-
tween zero for a vanishing correlation width and the predicted
saturation value in the Ericson region, for the cases of a large
number of open channels and of just two open channels and
for a parameter-dependent system; see Eqs. (2), (8), and (11),
respectively. Interestingly, all three expressions have the same
simple structure and the coefficients are similar. Still, we were
not able to provide an analytical derivation. We also compared
our experimental and numerical results with predictions for
quantum dots [16] associated with a correlation function
with the shape of a Lorentzian and a squared Lorentzian,
respectively, and found a good agreement for sufficiently large
tunneling probabilities, i.e., transmission coefficients � � 0.4.
For small � → 0, however, the product of the mean density
of maxima and the mean correlation width vanishes in our
experiments and RMT simulations and takes a nonzero value
in quantum dots. The extension of the results to quantum
graphs further broadens their scope of applicability to studies
in condensed matter and solid-state physics for which quantum
graphs have gained widespread acceptance as model sys-
tems [60]. Hence, we believe that the results presented herein
hold great potential at the interface of multiple fields for future
investigations in this direction, while simultaneously bringing
long-awaited closure to a lingering problem in nuclear physics.
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[41] H.-D. Gräf, H. L. Harney, H. Lengeler, C. H. Lewenkopf, C.

Rangacharyulu, A. Richter, P. Schardt, and H. A. Weidenmüller,
Phys. Rev. Lett. 69, 1296 (1992).

[42] H. Primack and U. Smilansky, J. Phys. A 27, 4439 (1994).
[43] O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52,

1 (1984).
[44] M. L. Mehta, Random Matrices (Academic Press, London,

1990).
[45] R. A. Méndez-Sánchez, U. Kuhl, M. Barth, C. H. Lewenkopf,
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