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Phase-lag synchronization in networks of coupled chemical oscillators
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Chemical oscillators with a broad frequency distribution are photochemically coupled in network topologies.
Experiments and simulations show that the network synchronization occurs by phase-lag synchronization
of clusters of oscillators with zero- or nearly zero-lag synchronization. Symmetry also plays a role in the
synchronization, the extent of which is explored as a function of coupling strength, frequency distribution, and
the highest frequency oscillator location. The phase-lag synchronization occurs through connected synchronized
clusters, with the highest frequency node or nodes setting the frequency of the entire network. The synchronized
clusters successively “fire,” with a constant phase difference between them. For low heterogeneity and
high coupling strength, the synchronized clusters are made up of one or more clusters of nodes with the
same permutation symmetries. As heterogeneity is increased or coupling strength decreased, the phase-lag
synchronization occurs partially through clusters of nodes sharing the same permutation symmetries. As
heterogeneity is further increased or coupling strength decreased, partial synchronization and, finally, independent
unsynchronized oscillations are observed. The relationships between these classes of behavior are explored with
numerical simulations, which agree well with the experimentally observed behavior.
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I. INTRODUCTION

Synchronization lies at the heart of a wide range of physical,
chemical, and biological phenomena [1–3]. Synchronization
in networks is currently the focus of extensive research aimed
at developing a better understanding of networks of interacting
dynamical elements [4–12]. Biological systems offer particu-
larly compelling examples of network synchronization [13];
for example, central pattern generators (CPG) are known to
produce and control rhythmic behavior such as breathing and
movement [14]. We now know that the swimming motion of
the lamprey fish is controlled by a CPG that emits subsequent
phase waves, entraining the neuronal network of the spinal
cord [15].

Although theoretical studies have provided many of the
advances in research on network synchronization [4–12], a
number of experimental studies of physical and chemical
networks have now been reported. Experiments on systems
of coupled lasers [16,17], electro-optic devices [18], elec-
trochemical oscillators [19–21], and Belousov-Zhabotinsky
oscillators [22–25] have provided insights into network
synchronization in real-world settings. Recently, a study by
Pecora et al. [26] demonstrated the importance of permutation
symmetries in zero-lag synchronization, which was also shown
experimentally with an electro-optic network. The permutation
symmetries allow the master stability function for the complete
network to be decomposed into subunits.

Here we address the question: What role does symmetry
play when the oscillator heterogeneity is sufficiently large
that phase-lag synchronization [3] is exhibited? A versatile
experimental system for investigating the synchronization
dynamics of coupled oscillators is the Belousov-Zhabotinsky
(BZ) reaction [27]. Individual chemical oscillators are gener-
ated by placing cation exchange beads loaded with the BZ
catalyst into catalyst-free BZ reaction mixtures [28]. This
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modified BZ system has been used to study diffusively coupled
oscillators [29] and synchronization transitions in globally
coupled systems [30,31]. The photosensitive BZ reaction,
with the catalyst Ru(bipy)2+

3 [32,33], allows a wide range of
network topologies and coupling schemes to be realized, where
the coupling is through photochemical feedback [23,24,34].
Color changes arising from the concentration of the reduced
catalyst Ru(bipy)2+

3 (orange) and its oxidized form Ru(bipy)3+
3

(green) allow the phase of an oscillator to be determined by
grayscale measurements with a CCD camera. The photochem-
ical feedback occurs by the illumination of each bead with
a spatial light modulator (SLM) at 460 nm, which leads to
the production of HBrO2, the autocatalyst of the BZ reaction
[23,34–36].

In this paper, we report on studies of networks of BZ
chemical oscillators with bidirectional coupling, defined by
the adjacency matrix Aij , consisting of N oscillators with
a distribution of periods. The oscillators are coupled by a
linear interaction function of the normalized grayscale value
difference (zj − zi) without delay or phase frustration. We
calculate the feedback light intensity φi to the i th node as

φi = φ0 + σ

ki

N∑

j=1

Aij (zj − zi), (1)

where φ0 is the background intensity, and the coupling strength
σ is normalized by the degree ki of the respective node. The
normalized grayscale values zi and zj for nodes (oscillators)
i and j are obtained from the transmitted light intensity of
the oscillators and are proportional to the concentration of
Ru(bipy)3+

3 . Equation (1) is used to calculate the feedback
light intensity φi with the ZBKE model [37] for the photo-
sensitive BZ reaction (see Supplemental Material [38]) in the
simulations described below.

The oscillator with the highest frequency plays a special
role in systems of coupled heterogeneous oscillators [39]. De-
pending on the coupling strength and frequency heterogeneity,
it may dictate the frequency of all the oscillators (complete
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synchronization), only of a subset (partial synchronization)
or none of the oscillators (incoherence) [40]. The symmetry
properties of the network are also of key importance in the
coupled oscillator dynamics [26]. Networks exhibit permuta-
tion symmetries [41] rather than Euclidean symmetries, such
as reflection, rotation, and translation. Permutations exchange
up to N node positions in the network. The action of a
symmetric permutation P commutes with the adjacency matrix
A, PA = AP . The network symmetries or automorphisms
can be readily computed with computer algebra software
[26,42]. A spatial representation of a network may possess
spatial symmetries that reflect the underlying permutation
symmetries; however, this occurs only for specifically tailored
node positioning [41].

All experiments are conducted with the following proto-
col: The initial conditions are prepared by imposing global
coupling between all oscillators for 200 s. The system is
then changed from global coupling to the specific network
topology, as shown in Fig. 1(a). The unperturbed period is
measured at the conclusion of the experiment after removing
the photochemical coupling of the oscillators.

We first describe experiments in which phase-lag syn-
chronization of a network of chemical oscillators occurs
through symmetry clusters, which are clusters of nodes with
the same permutation symmetries. We then describe phase-
lag synchronization that occurs only partially through these
clusters, as coupling strength is decreased or frequency het-
erogeneity is increased. The location of the highest frequency
oscillator may also play an important role in this behav-
ior. On further decreasing coupling strength or increasing
frequency heterogeneity, the frequency synchronization of
the network breaks down until finally only unsynchronized
oscillators are observed. We then present simulations of the
chemical oscillator network in which the synchronization
behavior is examined as a function of coupling strength and
frequency heterogeneity. The simulations reveal a transition
from phase-lag synchronization through symmetry clusters
to synchronization partially through symmetry clusters to
partial synchronization to unsynchronized behavior as the
coupling strength is decreased or the frequency heterogeneity
is increased.

II. PHASE-LAG SYNCHRONIZATION THROUGH
SYMMETRY CLUSTERS

When the nodes are sorted according to their temporal firing
sequence, a pattern of phase-lag synchronization emerges,
which is described in Fig. 1. The experimentally measured gray
level for each oscillator as a function of time, with the node
index given in Fig. 1(a), is shown in Fig. 1(d). As the network
begins to synchronize at approximately 400 s, the nodes fire
in sequence, with node 1 firing first, nodes 2–5 firing next,
and finally nodes 6–10 firing last, and the cycle then repeats
for the remainder of the experiment. The nodes that fire nearly
simultaneously define a synchronization cluster, each of which
is color coded (at left) in Fig. 1(d) as in Fig. 1(a). The symmetry
clusters of the network, which are determined only by the
node connectivities, ignoring the oscillator heterogeneity, are
indicated in Fig. 1(b) by a different color coding, which is
also shown (at left) in Fig. 1(d). On comparing Figs. 1(a)

FIG. 1. (Color) Phase-lag synchronization in a network of
Belousov-Zhabotinsky (BZ) chemical oscillators. (a) The bidirec-
tional links show the connectivity in the network. Nodes that oscillate
simultaneously, or nearly so, define a synchronization cluster and are
the same color. (b) Nodes that have the same permutation symmetries
define a symmetry cluster and are the same color. (c) A reduced
representation of the symmetry clusters. (d) Experimentally recorded
grayscale values of all oscillators, showing the wave pattern. The
node index corresponds to the numbering in (a). Red lines separate
the synchronization clusters, with the synchronization clusters and
symmetry clusters color coded (at left) as in (a) and (b), respectively.
(e) Kuramoto order parameter [2] for each synchronization cluster,
color coded as in (a), and the complete network (black) as a function of
time. The network connections are established at 200 s (dashed line)
following initial conditions of frequency synchronization with global
coupling. (f) A linear fit through the phase occurrence of each node
of each synchronization cluster reveals a constant phase difference
between synchronization clusters [color coding as in (a)]. Note that
the synchronization cluster index is equivalent to the network distance
from the pacemaker with an offset of 1. See the Supplemental Material
[38] for experimental setup and parameters as well as five other
network topologies. Average natural period and standard deviation
T0 = 35.02 ± 1.10 s; coupling strength σ = 2.0.

and 1(b), two features become apparent: Each synchronization
cluster is made up of symmetry clusters, and any particular
synchronization cluster may include more than one symmetry
cluster. This can also be seen by comparing the color-coded
nodes of the symmetry clusters and synchronization clusters
in Fig. 1(d).

In order to characterize the degree of synchronization of the
synchronization clusters, we determine the Kuramoto order
parameter [2] for each synchronization cluster as a function of
time, as shown in Fig. 1(e). We see that the order parameter for
the first synchronization cluster (node 1, red) is trivially equal
to 1.0; however, the order parameter for second (blue) and
third (green) synchronization clusters is very close to 1.0 after
the network synchronizes. The order parameter as a function
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of time is also determined for the entire network, which is
shown by the black curve. We see that the value of the order
parameter for the network does not approach 1.0, because of
the phase lag between the synchronization clusters.

To characterize the phase lag between each synchronization
cluster, we plot the phase when each node fires in each syn-
chronization cluster relative to when the first synchronization
cluster (node 1) fires, as shown in Fig. 1(f). To obtain the
relative phases, we set the phase when the first synchronization
cluster fires to 3π/2. The occurrence plot in Fig. 1(f) shows
that there is a constant phase difference between the firing
of the nodes in the first and second synchronization clusters
and between the firing of the nodes in the second and third
synchronization clusters, as indicated by the linear fit. Any
two oscillators can be considered to be entrained if their
phase difference �φ is bounded [3], and in our experiments
we find 0.5 < �φ < 1.35 for the phase difference between
synchronization clusters, where a lower bound is included to
distinguish between phase-locked states with zero and nonzero
phase differences.

We note that phase-lag synchronization through synchro-
nization clusters made up of symmetry clusters, as described
in Fig. 1, is observed with other network topologies of coupled
heterogeneous chemical oscillators. We analyze the phase-lag
synchronization in simulations of five different networks of
coupled BZ oscillators in the Supplemental Material [38].
The simulations reveal highly synchronized clusters in plots
similar to Figs. 1(d) and 1(e), and a constant phase lag between
the synchronization clusters in plots similar to Fig. 1(f). We
also present an analysis of the period of the synchronized
network, with topology as in Fig. 1(a), and the natural
periods of the uncoupled oscillators. In simulations with five
different frequency distributions, we find that the period of
the synchronized network and the natural period of the highest
frequency uncoupled oscillator, which serves as the pacemaker
for the network, differ by less than 1%.

When phase-lag synchronization occurs through synchro-
nization clusters that are made up of symmetry clusters, as in
Fig. 1, it is possible to simplify the network by replacing each
symmetry cluster with a single composite node. In Figs. 1(b)
and 1(c), we show how the network of 10 nodes is reduced
to five nodes. The simpler network in Fig. 1(c) exhibits the
same frequency and phase synchronization properties as the
full network in Fig. 1(b). In this example, the green symmetry
cluster (node 1) fires first, which is connected to the violet
(nodes 2 and 3) and orange (nodes 4 and 5) symmetry clusters,
which fire next. The orange symmetry cluster is connected to
the red (nodes 6–9) and blue (node 10) symmetry clusters,
which fire next, and the cycle then repeats. This reduction
allows the phase-lag synchronization dynamics to be predicted
regardless of which symmetry cluster or clusters become the
pacemaker. The approach allows large and complex networks
to be reduced to simpler but equivalent analogs.

III. PHASE-LAG SYNCHRONIZATION PARTIALLY
THROUGH SYMMETRY CLUSTERS

Figure 2 shows an example of phase-lag synchronization
that occurs only partially through the symmetry clusters. This
behavior occurs when the pacemaker site, a synchronization

FIG. 2. (Color) Phase-lag synchronization that occurs only par-
tially through symmetry clusters. (a) and (d) Because the pacemaker
(node 1) is not a complete symmetry cluster, as in Fig. 1, the red and
blue synchronization clusters do not correspond to the symmetry
clusters in Fig. 1(b). (b) Kuramoto order parameter [2] for each
synchronization cluster, color coded as in (a), and the complete
network (black) as a function of time. (c) A linear fit through the
phase occurrence of each node of each synchronization cluster [color
coding as in (a)]. Average natural period and standard deviation
T0 = 50.59 ± 3.81 s; coupling strength σ = 2.0. Other parameters as
in Fig. 1.

cluster of one or more oscillators, does not include an entire
symmetry cluster. The measured gray level for each oscillator
as a function of time is shown in Fig. 2(d), with the node
index given in Fig. 2(a). After the network synchronizes
at approximately 250 s, we again see the nodes firing in
sequence, with node 1 firing first, nodes 2 and 3 firing
next, nodes 4 and 5 firing next, and finally nodes 6–10
firing last. This cycle then repeats for the remainder of the
experiment. An examination of the synchronization clusters,
which are color coded in Fig. 2(a) and indicated (at left)
in Fig. 2(d), and the symmetry clusters, which are color
coded in Fig. 1(b) and also indicated (at left), shows that the
first synchronization cluster (red, node 1) is only part of the
violet symmetry cluster, and that the second synchronization
cluster (blue) is made up of part of the violet symmetry
cluster and the green symmetry cluster. However, because
the green symmetry cluster is fully connected to the orange
symmetry cluster, the third synchronization cluster (green) is
made up of the orange symmetry cluster. Hence, the phase-lag
synchronization through the symmetry clusters is regained,
and the fourth synchronization cluster (purple) is made up of
the red and light blue symmetry clusters. Even though phase-
lag synchronization occurs only partially through symmetry
clusters in this example, the synchronization is robust for over
35 periods. For phase-lag synchronization to completely occur
through symmetry clusters, it is necessary for the pacemaker
to connect to all nodes of one or more symmetry clusters.

Figure 2(b) shows the Kuramoto order parameter [2] for
each synchronization cluster as a function of time. We see a
high degree of zero-lag phase synchronization in each of the
synchronization clusters, with the order parameter for each
approaching 1.0. The order parameter for the entire network,
shown by the black curve, does not approach 1.0 because of the
phase difference between each of the synchronization clusters.
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FIG. 3. (Color online) Network dynamics without complete syn-
chronization. (a) and (c) Frequency synchronization in two groups
of oscillators: nodes 1–7 and 10 and nodes 8 and 9 (separated
by horizontal lines). Average natural period and standard deviation
T0 = 55.65 ± 8.62 s; coupling strength σ = 0.60. (b) and (d)
No synchronization occurs at low coupling strength, and a broad
distribution in period is exhibited. Average natural period and
standard deviation T0 = 55.97 ± 2.04 s; coupling strength σ = 0.05.
Other parameters as in Fig. 1.

Figure 2(c) shows an occurrence plot of the phase at which
each node in each synchronization cluster fires relative to
when the pacemaker, node 1, fires. A constant phase difference
between the firing of the nodes in each synchronization cluster
is indicated by the linear fit.

IV. PARTIAL SYNCHRONIZATION AND LOSS
OF SYNCHRONIZATION

Frequency synchronization between two coupled oscilla-
tors is ensured only when the ratio of the frequency difference
to the coupling strength is sufficiently small [3]. This condition
is violated for small coupling strengths or large widths of
the frequency distribution. Pairwise frequency entrainment of
neighboring nodes i and j will gradually disappear in saddle-
node bifurcations [2], depending on the frequency detuning
�ωij and the maximum of the antisymmetric (odd) part of
the interaction function [43]. In this case, we observe only
partial frequency synchronization, as shown in Fig. 3(a). The
oscillators divide into two groups with different frequencies,
ω1 = 0.11 Hz (period 57 s) and ω2 = 0.12 Hz (period 52 s), as
shown in Fig. 3(c). Both groups become aligned due to beating,
with a minimum average phase difference between the nodes
occurring approximately every 10 periods of the faster group.
We note that synchronization clusters do not appear, and there
seems to be no relation between the oscillator phases and
the symmetry clusters. As expected, even partial frequency
synchronization disappears on further reducing the coupling
strength, Figs. 3(b) and 3(d), and no periods align. The phase

difference between any two oscillators grows without bound,
and any entrainmentlike phase distribution is short-lived and
occurs only as a result of beating.

V. NUMERICAL SIMULATIONS

Numerical simulations of the BZ oscillator network, with
topology as in Fig. 1(b), were carried out with the ZBKE model
[37], modified to describe the excitatory photosensitive BZ
reaction [23,34,36]. Simulations were carried out with varying
coupling strength σ and oscillator frequency heterogeneity
(T0)std, defined by the standard deviation of the period distri-
bution of the uncoupled oscillators. The standard deviation of
the mean period of the coupled oscillators was measured to
determine the extent of frequency synchronization. As shown
in Fig. 4(a), a sharp boundary between the synchronized and
unsynchronized regions is exhibited, with the structure of a 1:1
Arnold tongue. The region inside the tongue is characterized
by a vanishing standard deviation of the oscillation period over
all nodes.

Another representation of the network dynamics is shown
in Fig. 4(b), where the extent of phase-lag synchronization
is measured, defined as the time average of the number of
synchronized nodes. The 1:1 Arnold tongue continues to
be apparent with this measure, and the plot contains more
information about the network dynamics, including regions
of partial synchronization for values of σ and (T0)std that are
below the full synchronization threshold.

Fully entrained states, like those found in the experiments,
Figs. 1 and 2, are located inside the Arnold tongue shown
in Figs. 4(a) and 4(b). The representative simulations shown
in Figs. 4(c) and 4(d) are indicated in Figs. 4(a) and
4(b) by the corresponding symbols, with unsynchronized
and partially synchronized behavior outside and complete
phase-lag entrainment inside the Arnold tongue. As described
above, fixed points corresponding to phase locking between
oscillator pairs i and j disappear in saddle node bifurcations
when crossing this boundary. The phase-lag synchronization
therefore breaks down into partial synchronization, as shown
in the second column of Figs. 4(c) and 4(d). Reducing the
coupling strength further yields incoherent behavior, where
all oscillator frequencies are different and are fluctuating,
as shown by the frequency distribution and phases in Figs.
4(c) and 4(d), first column. The simulations also reveal new
types of behavior close to the Arnold tongue boundary, Figs.
4(c) and 4(d), third column. Even though there is complete
frequency locking, the phase-lag synchronization does not
follow the symmetry clusters because there are inactive links
in the network where the ratio of the frequency difference to
the coupling strength is above the entrainment threshold. The
synchronization therefore must occur via another route, where
this ratio is below the threshold for every link.

For identical oscillators, phase clusters are observed rather
than phase-lag synchronization, as shown in Fig. 4(b) for
(T0)std = 0. Depending on the initial conditions, we observe
either in-phase synchronization or cluster synchronization. At
low coupling strength, a small degree of heterogeneity gives
rise to phase-lag synchronization, and with increasing coupling
strength, an increasing degree of heterogeneity is necessary
for phase-lag entrainment of the network. The transition

022819-4



PHASE-LAG SYNCHRONIZATION IN NETWORKS OF . . . PHYSICAL REVIEW E 92, 022819 (2015)

FIG. 4. (Color online) Simulations of the network of heterogeneous, photosensitive BZ oscillators with a modified ZBKE model [37].
(a) Degree of synchronization according to the standard deviation of the mean period as a function of coupling strength and the standard
deviation of the uncoupled oscillator period distribution (T0)std. (b) The number of phase-lag synchronized oscillators, n(sync), as a function
of coupling strength and oscillator heterogeneity defined by (T0)std. The number of phase-lag synchronized oscillators is determined according
to 0.5 < �φ < 1.35 for the phase difference between synchronization clusters and �φ � 0.5 for the phase difference within synchronization
clusters. (c) and (d) Panels (left to right) showing period distribution (c) and the relative phase of each oscillator (d), corresponding to symbols in
(a) and (b) for increasing coupling strength: (circle) unsynchronized, (triangle) partial synchronization, (square) full synchronization with five
synchronization clusters, (diamond) full synchronization with three synchronization clusters. See the Supplemental Material [38] for modified
ZBKE model and parameters.

from phase cluster synchronization, with identical oscilla-
tors, to phase-lag synchronization, with sufficient oscillator
heterogeneity for a particular coupling strength, is difficult
to characterize experimentally with inherently heterogeneous
chemical oscillators. This transition is of significant interest
and will be further explored in future computational studies.

VI. DISCUSSION

The most remarkable finding in this study is that phase-lag
synchronization may occur through symmetry clusters in a
network of heterogeneous BZ oscillators. In order to define
the symmetry clusters in our network, we considered only the
connectivity and ignored the oscillator heterogeneity, since
clusters of oscillator nodes with the same permutation sym-
metries do not exist with heterogeneous oscillators. However,
as we have described in Fig. 1, the phase-lag synchronization
leads to synchronization clusters in which the oscillators
are highly phase and frequency synchronized, and these
synchronization clusters are made up of symmetry clusters—
which have become clusters of oscillators with the same
permutation symmetries. The zero-lag phase synchronization
of the oscillators within a particular synchronization cluster
arises from the phase-resetting character of the BZ oscillators,
which can be seen from the phase-response curve of this
chemical oscillator system [23]. For sufficiently high coupling

strength and low frequency heterogeneity, the firing of the
pacemaker, such as node 1 in Fig. 1, causes the oscillators
to which it is connected to fire simultaneously, which, in this
case, are nodes 2–5, with phase and frequency synchronization
of these oscillators being the result. The firing of the nodes
in this synchronization cluster causes the nodes to which it
is connected, nodes 6–10, to fire simultaneously, again with
phase and frequency synchronization being the result. The
cycle then repeats, with the frequency set by the pacemaker,
the first synchronization cluster. The phase lag between the
first and second synchronization clusters and the second and
third synchronization clusters is due to the response time of the
photochemically coupled BZ oscillators. When the pacemaker
fires, the oscillators at nodes 2–5 in the second synchronization
cluster respond to an increase in illumination intensity with
a sequence of photochemical reactions that produce the
autocatalyst, HBrO2 [36]. The inhibitor Br− is consumed by
the HBrO2 until it reaches a critical concentration, at which
point HBrO2 autocatalysis rapidly occurs and the oscillators
fire. A similar phase lag occurs as nodes 6–10 in the third
synchronization cluster respond to the firing of the nodes in
the second synchronization cluster. Hence, there is a constant
phase lag in this photochemically coupled BZ oscillator
network, as shown by the linear phase gradient in Fig. 1(f).

The phase-lag synchronization through symmetry clusters
shown in Fig. 1 requires a pacemaker symmetry cluster
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that is fully connected to one or more symmetry clusters.
Typically, the pacemaker is a single oscillator node, as in
Fig. 1; however, it could be a symmetry cluster made up of
several oscillator nodes that are very close in frequency. If
the highest frequency oscillator occurs in a symmetry cluster
with other oscillators differing significantly in frequency, the
phase-lag synchronization may begin without propagating
through symmetry clusters, as shown in Fig. 2. We see that
the pacemaker, node 1, is only half of the two-node violet
symmetry cluster, and that it is also connected to node 3, which
is a one-node symmetry cluster. Hence, when the pacemaker
fires, it causes nodes 2 and 3 to fire synchronously, forming
a synchronization cluster that is not made up of symmetry
clusters. However, node 3 is fully connected to the orange
symmetry cluster, made up of nodes 4 and 5. The firing of
node 3 causes nodes 4 and 5 to fire synchronously, forming
a synchronization cluster made up of one symmetry cluster.
The orange symmetry cluster is connected to the red and light
blue symmetry clusters, which then fire, forming the fourth
synchronization cluster. Hence, the phase-lag synchronization
through symmetry clusters is reestablished in the third and
fourth synchronization clusters. Even though the phase-lag
synchronization occurs only partially through symmetry clus-
ters in this experiment, Fig. 2(b) shows that the synchronization
clusters are highly phase and frequency synchronized, with the
Kuramoto order parameter becoming very close to 1.0 for each
cluster. We also see the constant phase lag between the firing
of the nodes in each synchronization cluster in Fig. 2(c), with
a linear phase gradient.

In this paper, we have shown that networks of het-
erogeneous chemical oscillators synchronize by phase-lag
synchronization through synchronization clusters made up
of symmetry clusters for sufficiently high coupling strength
and low heterogeneity. As discussed above, the location of
the pacemaker also plays an important role in this behavior.
The synchronization clusters exhibit a high degree of phase
and frequency synchronization even though they contain
oscillators with a range of natural frequencies. A constant
phase lag is exhibited between the firing of successive
synchronization clusters, which arises from the chemical
response time of the photochemically coupled oscillators.
The frequency of the network is set by the pacemaker,
which is typically a single oscillator with the highest fre-
quency. The pacemaker may be a multiple-node symmetry
cluster if the oscillators in the cluster have nearly the
same frequency. However, a multiple-node symmetry cluster
containing a single node pacemaker may lead to phase-lag
synchronization that occurs only partially through symmetry
clusters.

We have found that the shortest path from the pacemaker to
the final synchronization cluster, which corresponds to one full
oscillation of the network, occurs with phase-lag synchroniza-
tion through symmetry clusters. We use the adjacency matrix
to derive the distance matrix of the network. Its elements
are the shortest paths as computed by Dijkstra’s algorithm
[44] between any nodes i and j, with i,j ranging from 1 to
N . In networks with phase-lag synchronization, the algorithm
follows the path of successive synchronization clusters made
up of symmetry clusters. Phase-lag synchronization that occurs
partially through symmetry clusters typically has one or more
additional synchronization clusters, such as the example in
Fig. 2 or in Fig. 4(d), third column. Hence, if one considers
the phase-lag synchronization of a network as a means of
information transfer through the network, the phase-lag syn-
chronization through symmetry clusters would be the fastest.

Phase-lag synchronization in our network of coupled
heterogeneous chemical oscillators propagates through syn-
chronization clusters much like synchronization by a phase
wave. A possible benefit of synchronization clusters is that
they provide a redundancy of nodes if one or more nodes in the
cluster cannot be synchronized. This redundancy may result in
an increased robustness of phase-lag synchronization in natural
systems with inherent heterogeneity. Phase synchronization is
thought to play a key role in neural communication between
regions of the brain [45], and phase-lag synchronization is
a possible mechanism for such processes [46,47]. However,
zero-lag synchronization is also found in the brain [48,49],
and how each of these processes occur remains an open
question. We hope that studies of simple physical systems
such as networks of coupled chemical oscillators can offer
insights into the possible mechanisms of biological signal
transmission in neural communication [45] as well as central
pattern generators [14].
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