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The Turing instability is a paradigmatic route to pattern formation in reaction-diffusion systems. Following a
diffusion-driven instability, homogeneous fixed points can become unstable when subject to external perturbation.
As a consequence, the system evolves towards a stationary, nonhomogeneous attractor. Stable patterns can be
also obtained via oscillation quenching of an initially synchronous state of diffusively coupled oscillators. In the
literature this is known as the oscillation death phenomenon. Here, we show that oscillation death is nothing but a
Turing instability for the first return map of the system in its synchronous periodic state. In particular, we obtain a
set of approximated closed conditions for identifying the domain in the parameter space that yields the instability.
This is a natural generalization of the original Turing relations, to the case where the homogeneous solution of
the examined system is a periodic function of time. The obtained framework applies to systems embedded in
continuum space, as well as those defined on a networklike support. The predictive ability of the theory is tested

numerically, using different reaction schemes.
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I. INTRODUCTION

From chemistry to physics, passing through biology and
ecology, patterns are widespread in nature. Under specific
conditions, the spontaneous drive to self-organization which
acts on an ensemble of interacting constituents materializes
in a rich zoology of beautiful motifs, that bear intriguing
universal traits [ 1-12]. The spirals that originate from chemical
reactions, the stripes in fish skin patterning, the feline coat
coloration, and the spatial patterns in dryland vegetation are
all examples of the intrinsic ability of seemingly different
systems to yield regular structures, both in space and time.

In 1952, Turing wrote a seminal paper [13] on the theory of
morphogenesis, establishing the mathematical principles that
drive the process of pattern formation. To this end, he consid-
ered the coupled evolution of two spatially distributed species,
subject to microscopic reactions and freely diffusing in the em-
bedding medium. Working in this context, Turing proved that
a homogeneous mean-field solution of the examined reaction
diffusion system can be unstable to external perturbations.
The Turing instability, as the effect is nowadays called, is
seeded by diffusion and requires an activator-inhibitor scheme
of interaction between agents [14]. When the conditions for
the instability are met, the perturbation grows exponentially in
the linear regime. The system subsequently evolves towards
an asymptotic stationary stable solution characterized by a
patchy, spatially inhomogeneous, density distribution, which
indirectly reflects the collection of modes made unstable at
short time and the geometry of the hosting support [15].
Traveling waves can also set in following a symmetry-breaking
instability of a homogeneous fixed point.

Turing instabilities are classically studied on regular lattices
or continuous supports. For a large class of problems, however,
the inspected system is defined on a complex network. The
theory of patterns formation extends to this latter case, as
discussed in the pioneering paper by Othmer and Scriven
[16], and recently revisited by Nakao and Mikhailov [17].
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Reaction-diffusion systems defined on a graph can produce
an effective segregation into activator-rich and activator-poor
nodes, Turing-like patterns on a heterogeneous spatial support.

In the classical Turing paradigm, the conditions for the onset
of the instability are derived via a linear stability analysis,
which requires expanding the imposed perturbation on the
complete basis formed by the eigenvectors of the (continuum
or discrete) Laplacian [17,18]. Compact inequalities, contain-
ing the entries of the Jacobian matrix for the linearized problem
and the diffusion constants for the interacting species, are
then derived which constitute the necessary condition for the
instability to develop [15].

The formation of a nonuniform stationary state has also
been observed in the dynamics of diffusively coupled os-
cillators. Weak coupling of nonlinear oscillators leads to
synchronization, a fundamental phenomenon in nonlinear
dynamics which plays a pivotal role in many branches
of science. Oscillation quenching is an interesting related
phenomenon, which is seen in spatially coupled systems [19].
Indeed, the possibility of disrupting the oscillations could
be in principle exploited as an efficient dynamical regulator
[20,21]. Moreover, it could be implicated in pathological
neuronal drive, as in the Alzheimer and Parkinson diseases.
Two different types of oscillation quenching phenomena are
generally distinguished in the literature, which differ both in
the fundamental mechanisms of generation, as well as in their
respective manifestations. The suppression of the oscillations
can yield a final homogeneous steady state, a dynamical
process that is known as amplitude death. Oscillation death
(OD) is instead observed when the initially synchronized state
evolves towards an asymptotic, inhomogeneous configuration
[22-24], in response to an externally imposed perturbation
[19]. As remarked upon in the literature (see, e.g., Ref. [22]),
the OD pathway is reminiscent of the Turing symmetry-
breaking transition, which, as we here recall, originally
assumes a reaction-diffusion system perturbed around a
homogeneous, time-independent, equilibrium. Amplitude and
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oscillation death have also been studied on complex networks,
but less work has been done in this direction (see, e.g.,
Refs. [25,26]).

Models exhibiting amplitude or oscillation death are,
however, difficult to investigate. To progress in the analysis
it is customary to invoke a normal form representation for
the amplitude of the unstable modes near a Hopf bifurcation.
Less attention has been devoted to inspecting multispecies
reaction-diffusion systems, for which the analysis proves more
cumbersome. Alternatively, the master stability formalism [27]
can be employed to determine the stability (via the largest
Floquet exponent [28]) of the synchronous state, at a given
coupling strength.

Building on these concepts, the aim of this paper is to shed
further light on the analogy between OD and Turing instability
and eventually base it on solid, quantitative grounds. As we
shall prove in the following, OD is nothing but a Turing insta-
bility for the first return map of the system in its synchronous
periodic state. Arguing along these lines, we will develop
an approximation scheme in order to obtain a set of closed
conditions for identifying the domain in the parameter space
that yields the sought instability. Such conditions constitute
an obvious generalization of Turing original relations, to the
interesting setting where the homogeneous solution of the ex-
amined system is a periodic function of time. The usual Turing
inequalities, which are exact, are recovered when the limit
cycle collapses to a fixed point, thus revealing a generalized
picture which is consistent with the classical paradigm for pat-
tern formation. The obtained framework holds both for systems
embedded in continuum space as well as for those defined on
a complex network. The predictive ability of the theory will
be demonstrated for different reaction schemes, and we will
discuss the accuracy of the theory in different circumstances.

The paper is organized as follows. In the next section,
we shall review the fundamentals of the Turing instability
theory. Then, we will move on to studying the effect of
a tiny heterogeneous perturbation acting on a collection of
synchronous reaction-diffusion oscillators. In Sec. III we
will make use of the master stability function approach,
complemented by standard Floquet analysis. Then, in Sec. [V
we will derive the generalized Turing conditions to which we
alluded above. Numerical simulations are reported in Sec. V
(for the Brusselator and Schnakenberg models) to illustrate
the characteristics of the patterns that are asymptotically
attained. Here, we shall consider the systems defined on
a two-dimensional continuum domain, subject to periodic
boundary conditions, as well as on a heterogeneous network
of the Watts-Strogatz type. In this section we will also test
the accuracy of the generalized Turing conditions against the
Floquet-based results. Finally, in Sec. VI we sum up and draw
our conclusions.

II. BASIC THEORY OF THE TURING INSTABILITY

Consider the following reaction-diffusion system:

0
2= [+ DV,
J ()
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where ¢(r,t) and ¥ (r,t) denote the concentration of the
interacting species of respective diffusion constants Dy and
Dy,. The position in space is specified by the vector r and
t stands for time; f(...,...) and g(...,...) are nonlinear
functions of the concentrations and represent the reaction
contributions. We assume that a stable homogeneous fixed
point exists, so that ¢(r) = ¢ and ¥ (r) =V, with ¢ and ¥
constants, such that f(¢,V) = g(¢,¥) = 0. To formally verify
the stability of the fixed point, we introduce the Jacobian matrix

J:
_(fe Jv
T= <g¢ guf)' @

Here, f, stands for the derivative of f with respect to
the density ¢ evaluated at the fixed point (¢,v). Similar
considerations hold for fy,g4,8y. The homogeneous fixed
point is stable provided that

() = fp +8gy <0, 3)

detd) = fogy — fugs >0, 4

where tr(...) and det(...) denote, respectively, the trace and
the determinant. The Turing approach consists of introducing
a small perturbation w of the initial homogeneous stationary
state and looking for the conditions that eventually yield to the
growth of such disturbance. In formulas, we set

_ (9 _ (-9
v=(4)=(2%) ©

By hypothesis |w| is small, so we can linearize system (1)
around the fixed point to eventually obtain

w = Jw + DV’w, (6)

where w represents the time derivative of w and D is the
diagonal diffusion matrix:

_(Ps O
(2 ) o
To solve the above system subject to specific boundary

conditions one can introduce the eigenfunctions W (r) of the
Laplacian as

—VZW,(r) = k>W(r), ®

for all k € o, where o is a suitable (unbounded) spectral set.
We can then expand the perturbation w as

wr,) =Y e Wi (n), )

keo

where the constants c; are determined by the initial condition.
This operation is equivalent to performing a Fourier transform
in space of the original linearized equations. The complex
function A(k), also known as the dispersion relation, controls
the growth or damping of the initial perturbation. The solution
of the linearized system exists provided that

det[A] — J(k*)] = 0, (10)

where I is the 2 x 2 identity matrix and J(k?) is the modified
Jacobian matrix with the inclusion of the spatial components,
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namely,
— Dyk? f
Jk*) = (f o 4 ) 11
&) 80 gy — Dyk? ()
From Eq. (9) one obtains the characteristic polynomial
MV —Br+C=0, (12)
where

B = f3+ gy — (Dy + Dy)k?, -
C = DyDyk* — (Dygy + Dy f)k> + f58y — fy8o-

Since we are interested in the growth of the unstable pertur-
bation, we should select the largest A(k) = A, Which can be

written as
Amax = 3(B + v/ B? — 40). (14)

Recalling that, by hypothesis, tr[J(0)] < 0, one can immedi-
ately conclude that B < 0 for all k. Hence, the condition of the
instability Ap,x > O translates into C < 0. To obtain a set of
closed analytical conditions for the instability, we observe that
C is a convex parabola in k%. The minimum of the parabola is
located at

2. — (Dogy + Dy fo)
min 2D¢D1//

and the corresponding value of C, hereafter called C™", reads
as

, 5)

_(Dygy + Dy f4)’
4(Dy Dy )?

By imposing C™" < 0 and requiring for consistency reasons
k2. > 0 yields the following conditions for the instability to

develop:
(Dygy + Dy f3)* > 4Dy Dy (f8y — fy86):
(D¢g¢, + D,/,fq)) > 0.

The above inequalities, complemented with the additional
conditions (3), are routinely applied to determine the parameter
choice that makes a reaction-diffusion model unstable to
externally imposed perturbation of the homogeneous fixed
point. Starting from this point, we shall obtain a straight-
forward generalization of the classical Turing picture, which
includes the oscillation death pathway as one of its possible
manifestations.

Before concluding this section, we remark that the above
analysis can be readily adapted to the case of a system defined
on a network of N nodes. A concise description of this
translation can be found in the Appendix.

cmt = + fogy — fv80- (16)

a7

III. LINEAR INSTABILITY ANALYSIS AROUND A
PERIODIC TIME-DEPENDENT SOLUTION:
THE FLOQUET APPROACH

In this section, we consider the evolution of an external
perturbation on an ensemble of synchronous oscillators. Our
starting point is again system (1) which we now imagine to
admit a homogeneous stable solution (@(¢),v(¢)), which is
periodic with period T. We therefore require ¢(t + T) = ¢(t)
and (¢t + T) = ¥ (¢), forall time ¢. In general the curve X(1) =
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(¢(1),¥(¢)) cannot be calculated in closed form, but it can be
determined numerically with a prescribed level of accuracy.

Before proceeding, one must check the stability of the limit-
cycle solution. This fact can be assessed via a direct application
of Floquet theory [28], that we will here describe. We begin by
focusing on a simplified problem, found by ignoring the spatial
components of system (1). In other words, we will commence
by studying the uniform counterpart of system (1), where the
concentrations are solely dependent on time.

We consider a dynamical path starting close to, but not
on, the limit cycle. If the limit cycle is stable, the difference
between this path, here called x(¢), and the limit cycle X(¢)
should decay, as time progresses. Introduce £(¢) = x(¢) — X(¢),
by definition small, and linearize the governing equations to
obtain

£ =J()E, (18)

where the Jacobian matrix is now evaluated at the limit cycle
and depends therefore on time. Due to the periodic nature of
X(t), all elements of J(¢) are periodic and the Floquet theory is
hence applicable. Let us label with X(#) a fundamental matrix
of system (18). Then, for all ¢, there exists a singular, constant
matrix B such that [28]

X(t + T) = X(1)B. (19)

In addition, the following relation holds:

T
detB = exp |:/ trJ(t)dt]. (20)
0

The matrix B depends in general on the choice of the funda-
mental matrix X(¢) employed. Nevertheless, its eigenvalues,
and hence determinant, do not. The eigenvalues p; and p; of
B are usually called the Floquet multipliers of the linearized
system (18). One can also introduce the corresponding Floquet
exponent u; defined via the implicit relation p; = exp(u; T),
for i = 1,2. If p is a characteristic multiplier for (18) and u
the associated exponent, a particular solution of (18) has the
form [28]

(1) = e"'p(1), 21

where p(¢) is a periodic function of period T, i.e., such that
p(t + T) = p(¢). General solutions of the two-dimensional
system (18) can be therefore cast in the form

£(t) = c1e"'pV + cre"'p?, (22)

where the constants c¢; and ¢, are determined by the initial
conditions. For all linear expansions about limit cycles arising
from first-order equations, one of the Floquet exponents of the
system vanishes (i; = 0 or, equivalently, p; = 1) throughout
the limit-cycle phase.! The remaining exponent i, assumes
negative real values. The zero exponent is associated with

I'The nonlinear system being considered admits a periodic solution,
the limit cycle, which we called X(¢). One can easily show that
dX(t)/dt is a solution of the linearized problem (18). Since dX(¢)/dt
is also a periodic function of period 7', then the general solution (22)
implies that one of Floquet multipliers, say p;, must be equal to unity
or, equivalently, i, = 0.
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perturbations along the longitudinal direction of the limit
cycle: these perturbations are neither amplified nor damped
as the motion progresses. At variance, perturbations in the
transverse direction decay in time if the limit cycle is stable.
Recalling that detB = p; p,, for a stable limit cycle one has
detB = p, = exp(u,2T) < 1 and therefore

T T
/ It = / L) + gy ()di <0, (23)
0 0

a relation that will prove useful in the following.

Let us now return to discussing the original problem at hand.
Assume the reaction-diffusion system to be initialized in the
region of the parameters that yields a stable limit-cycle behav-
ior. Therefore, the concentration depends on time, in a periodic
fashion. In addition, we assume a uniform spatial distribution,
meaning that the oscillators are initially synchronized, with no
relative dephasing. We then apply a small, nonhomogeneous
(thus site-dependent) perturbation and ask ourselves if the
interplay between reaction and diffusion can drive the system
towards a spontaneous symmetry breaking instability. This
is nothing but the oscillation death phenomenon that we here
discuss in the framework of a self-consistent reaction-diffusion
framework.

To answer the question, one can adapt to the scope the
Floquet analysis outlined above, considering the generalized
linear equation (18), with the inclusion of space. More
concretely, Eq. (18) reads as

£ = J(k2,0)E. (24)

The matrix J(k%,¢) is formally given by (11), and its entries
are evaluated at the stable (aspatial) limit cycle X(¢). Floquet
theory ensures the existence of a solution of problem (24)
in the form (22) where now w; and w, depend explicitly
on the spatial index k. If ppm,x, the largest of the w;, takes
positive values over a bounded window in k, the reaction-
diffusion system is unstable to the imposed perturbation.
The latter grows exponentially in time, and progressively
disrupts the synchrony of the initial configuration. The largest
Floquet exponent [,y is the analog of the dispersion relation
Amax for the Turing instability and ultimately sets the route
to the phenomenon of oscillation death. Unfortunately, the
determination of pp,x follows a purely numerical approach
and, at this stage, the similarity between Turing and oscillation
death cannot be explored in detail.

In the next section, we shall discuss an alternative,
approximate, approach to the study of the instability of a
perturbed array of synchronous oscillators. We will derive
clear perturbative conditions for the onset of the instability,
which will allow us to reconcile the Turing paradigm and the
oscillation death phenomenon, under a unifying framework.

IV. ALTERNATIVE CONDITIONS FOR THE
DIFFUSION-DRIVEN INSTABILITY OF A UNIFORM
LIMIT-CYCLE SOLUTION

We now turn to derive an alternative criterion to identify
the region of diffusion-driven instability from a uniform limit-
cycle condition. Our predictions will be then confronted to
those obtained following the canonical approach based on the
Floquet theory. Let us start from the linearized equation (24)
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and imagine to partition the interval [0,7] into a collection
of M contiguous sub-intervals [#;,%;1]. We assume that M
is sufficiently large that the width of each subinterval At =
t;+1 — t; can be assumed small. To simplify the reasoning we
have assumed a uniform partition, but this is not a necessary
requirement for the following derivation to hold.

The idea is to solve the linear equation (24) within each
(small) window of time duration A¢, and then use this knowl-
edge to estimate the cumulative growth of the perturbation,
over one complete loop of the limit cycle. In practical terms,
and as already anticipated in the Introduction, we will look at
the stability of the first return map, which is associated to the
periodic limit-cycle solution of the inspected reaction diffusion
kinetics. Inside each subinterval, the perturbation £ obeys
a linear ordinary differential equation with time-dependent
coefficients.

Such an equation can be approximated using a forward
Euler scheme, so to establish a direct link between & =

§(tir)and § = £():

i1 = I + ALY 1)1E + O(AL). (25)
To compute the global evolution of the perturbation along the
limit cycle, one needs to calculate

Ev =TT + ALK 1)1, (26)

Here, one must note that, because a product of matrices is
not in general commutative, the terms in the product must be
“time ordered,” with the earlier times to the right. Neglecting
the terms which scale as A¢" with n > 2, in agreement with
the approximated expression (25), yields

Ew > | 1+ AtY JEK.1)) |&. (27)

J

In the limit At — O (which implies sending simultaneously
M — 00), one can replace the above sum with an integral and
write the mapping from & to &y, as

T T
£(T) = [1 + / J(kz,t)dt:|$0 ~ exp < / J(kz,t)d:)so.
0 0

(28)

Higher order corrections can be also estimated by replacing

the Euler scheme (26) with a refined multistep approximation

of the Runge-Kutta type and performing a similar algebraic

manipulation of the equations involved. We leave this exten-

sion to future work and present instead a different derivation
of the above result, which yields consistent conclusions.
In fact, a formal solution of Eq. (18) can be written as

&iv1 = exp[R©ti41,1)1&, (29)
where (f;y1,t;) = Z,fil 2 ;. The form of the first few 2 ;
elements are

g1

Q= J(&*,7)d,

t

1 L1 T
@i=5 / dr / do[J(k* 1), J(k, )],
t; t;

1 tiy1 71 3
93’,‘ = — / d‘L’] f d‘L’z / d'L’3 (30)
6 t t t;
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x [J(,71), [T, 02), I (k2 T)]]
+ [ (K2, 73), (K2, 12)1, I (K2, 7)],

where [...,...] stands for the matrix commutator. The above
solution is also known as the Magnus series expansion [29].
From the definition of the coefficients (30), it follows that
Q;; >~ O([At]*). Since, by assumption, Af is small, one
can truncate the infinite sum in the explicit solution (29). In
particular, we will consider explicitly the leading term in the
series expansion, to quantify the dominant contribution. Upon
truncation, we have therefore

€iv1 = exp(21,1)§;. €29

Making use of the above relation, we can for instance relate &,
to & as

& = exp(R1,1)é1 = exp(R1,1) exp(21,0)&o. (32)

To progress in the analysis we first recall the Baker-Campbell-
Hausdorff formula. Consider two noncommuting matrices Z
and Z,. Then, the product exp(Z1) exp(Z,) can be written as
exp(Z) where

Z=71+Zr+ (2 Zs] + ..., (33)

where [...,...] stands for the matrix commutator. If matrices
Z, and Z, commute, namely if [Zy,Z,] = 0, one recovers the
usual formula for the composition of the exponential of scalars.
Making use of the above relation in the expression (32) for &;,
one obtains

£ =exp (R + Rio+ 3[R, Qo] +... )& (3D

The correlator [€2;,82; ] involves the product of terms
of order O(At?), and it should be therefore neglected for
consistency reasons, as the expansion is truncated at order
O(At). Moreover, it can be argued that the commutation of
matrices defined on neighbor intervals of the partition in ¢
scales as Ar3, an observation that makes it cumbersome to
organize the next to leading corrections in growing powers of
At.

The reasoning that we have outlined above can be iterated
forward. One gets eventually the following expression for the
magnitude of the perturbation &), at the considered order of
approximation:

M-1

§m = exp Z Q15 | o- (35)

j=0

Performing the continuum limit (At — 0 and M — 00), we
obtain

T
§(T) =~ exp [/0 J(kz,fl)dn]é(o) = exp((1)T)&. (36)

where (J) = (1/T) fOT J(k2,7)dt. The above equation coin-
cides with Eq. (28), obtained under the Euler scheme.
Starting from this setting, it is possible to derive a compact
criterion for the onset of the instability, which we will then
validate a posteriori versus the standard Floquet technique. To
this end, we assume (J) to be diagonalizable. Hence, there exist
a matrix U such that (J) = UD;U~! where D; is a diagonal
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matrix. Equation (36) transforms into
E(T) = exp(UD,U~'T)£(0) = Uexp D, T)U'£(0). (37)

We now introduce n = U~'&. The map (36) then takes the
simple form

n(T) = exp (D; T)n(0). (38)

The eigenvalues of the averaged Jacobian matrix J determine
the fate of the perturbation. If the real part of the largest eigen-
value is positive, then the perturbation develops, otherwise it
fades away after successive iteration of the return map. To
derive the condition for the emergence of the instability one
must therefore calculate the eigenvalues A, » of (J), which are
the solutions of the following characteristic polynomial:

22— Baya + Cay = 0, (39)
where
By = (fs) + (gy) — (Dy + Dy)K?,
Cay = DyDyk* = (Dy(gy) + Dy (fp)k®
+(fo)(8y) — (fu)(8gs),

where (fy) = (1/T) [, fydt. Similarly, for (f,), (g), and
(gy ). Hence, the largest real eigenvalue A,y is

Amax = 3 (Bay + 1/ BG) — 4Ca). (41)

Recalling that by definition B(;y < 0 (the limit cycle is stable),
the condition of the instability Ay, > O translates into Cjy <
0. This is nothing but the same condition that it is recovered
following the conventional Turing calculation with the only
difference that now the time-dependent entries of the Jacobian
matrix are averaged over one complete loop of the unperturbed
limit cycle. To obtain closed analytical condition for the
instability, one can repeat the steps of the derivation reported
in Sec. II to eventually get

(Dy(gy) + Dy (f3))* > 4D Dy((fs)(gy) — (fu)(8s)),
(42)

(40)

(Dy{gy) + Dy (fs)) >0,

which constitute a natural generalization of the standard
Turing recipe. Indeed, the above relations reduce to the Turing
conditions when the limit cycle converges to a fixed point. The
appendix of this article describes how the above analysis can
easily be generalized to the case where the system is defined on
a complex network. In the next section, we will present some
numerical results, including an examination of the accuracy of
the approximation scheme outlined above.

V. NUMERICAL VALIDATION

To test the adequacy of the theory, we shall consider two
distinct reaction schemes: the Brusselator and the Schnaken-
berg model. For both systems, we will delimit the portion of the
relevant parameters space for which the instability is expected
to develop, based on conditions (42). These predictions are
compared to those obtained using Floquet analysis. Numerical
simulations are also performed to challenge the validity of the
proposed theoretical picture.
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FIG. 1. (Color online) The extended region of the Turing insta-
bility for the Brusselator model, as parameters b and ¢ are varied.
The diffusion coefficients were D, = 0.07, Dy, = 0.5. The solid line
shows the Hopf bifurcation for the aspatial model: above the line
the aspatial system converges toward a stable fixed point. Below the
line, a stable homogeneous limit-cycle solution is instead found. The
circular symbols show results from the Floquet approach: the larger
symbols indicating an instability, the smaller ones indicating that
the homogeneous system is stable. The shaded region identifies the
region of parameter space where the instability is predicted to occur,
following Eq. (42).

A. Brusselator model

Here, we will make use of the so-called Brusselator model,
a two species reaction-diffusion model whose local reaction
terms are f(¢, ) =1—(b+ D¢ +cd’y and g@,¥) =
byr — c¢*yr, where b and ¢ act as control parameters.
Conditions (42) allow us to delimit a compact portion of
the parameter plane (b,c) for which the generalized Turing
instability is expected to develop. Results of the study are
reported in Fig. 1: the solid line separates the fixed point
from the limit-cycle regime. The region of instability, the
shaded area in the figure, extends beyond the Hopf bifurcation,
and includes the standard Turing domain as part of it. As
discussed earlier, the instability domain inside the region of
stable homogeneous limit cycle can be calculated via a direct
implementation of the Floquet technique. Large orange circles
in Fig. 1 identify the instability domain as computed via the
Floquet analysis, while small red dots refer to the choice
of the parameters for which the OD instability cannot take
place. These results agree with the prediction obtained from
the generalized Turing inequalities (42). In Fig. 2, we show
the dispersion relations for three parameter choices. Fixing
b = 2.5, we vary the value of ¢, showing results from inside
and outside the instability region.

Numerical simulations are also performed for the system
initialized inside the extended region of instability to visualize
the asymptotic, stationary stable solution that the system
eventually attains. To emphasize the broad relevance of our
conclusion, we performed simulations for (i) the Brusselator
model defined on a regular two-dimensional support, subject to
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FIG. 2. (Color online) Dispersion relations for the Brusselator
model for three parameter choices, calculated from the Floquet
analysis. Fixing b = 2.5, we used ¢ = 1.3 (purple squares), ¢ = 1.2
(red triangles), and ¢ = 1.1 (orange circles). The diffusion coefficients
were Dy = 0.07, D, =0.5.

periodic boundary conditions (see Fig. 3); (ii) the Brusselator
model defined on a Watts-Strogatz network [30] (see Fig. 4).
We also used the Brusselator model to look at the accuracy
of the approximation scheme, presented in the previous
section. In particular, we wish to compare the results for
the full numerical integration, found using Eq. (26) evaluated
over one period of the limit cycle, and the approximate result
found in Eq. (36). In each case, £(T) is found by applying a
matrix operator, say I', to £(0). In Appendix B, Figs. 9 and
10 compare the four elements of I" in the case where k = 0,
for two choices of the reaction parameters. We find that, both
in this instance and in general, that the approximation is very
accurate when the limit cycle is small (which is the case near
to the Hopf bifurcation), but loses accuracy as the limit cycle
becomes larger, although the general trend of T' versus k2 is
still captured. We believe that this is due to more significant

FIG. 3. (Color online) The late time evolution for species ¢ (left)
and ¢ (right) for the Brusselator model inside the extended region
of Turing-like order. The initial homogeneous limit-cycle state is
disturbed by a small nonhomogeneous perturbation. The synchrony
of the spatially coupled oscillators is lost and the system evolves
towards a stationary stable configuration. The patterns resemble
(indeed, under the Fourier lens, are identical to) the patterns obtained
inside the classical Turing region, i.e., above the Hopf transition
line. In other words, it looks like the same Turing attractor can be
reached following two alternative dynamical pathways. Parameters
are b=24; c=1.2; Dy =0.07, Dy = 0.5. The simulations are
carried our over a square box of linear size L = 10 partitioned in 64
mesh points.
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FIG. 4. (Color online) Stationary pattern attained by the Brusse-
lator model, defined on a network of the Watts-Strogatz type (number
of node N = 100 and probability of rewiring p = 0.8). In the main
panel, the asymptotic concentration of species ¢; is plotted as function
of the nodes index i. In the inset, the evolution of the concentration
on a particular node is shown, in order to appreciate the transition
from the initial oscillatory regime to the final stationary state. The
parameters are set as in Fig. 3.

contributions from the matrix commutators in the Magnus
expansion, given in Eq. (30).

B. Schnakenberg model

We shall here consider the Schnakenberg model [31] and
repeat the analysis reported above. The Schnakenberg model is

PHYSICAL REVIEW E 92, 022818 (2015)

FIG. 6. (Color online) Dispersion relations for the Schnakenberg
model for three parameter choices, calculated from the Floquet
analysis. Fixing o = 0.36, we used B = 0.56 (purple squares),
B = 0.52 (red triangles), and B = 0.48 (orange circles). The diffusion
coefficients were Dy = 0.01, Dy, = 1.

characterized by the following reaction terms: f(¢,¥) =a —
¢ + ¢>y and g(¢, ) = b — ¢y, where a and b are constant
parameters. A model of this form was used by Gierer and
Meinhardt to study pattern formation [ 14]. Like Schnakenberg,
we employ it as a model that exhibits limit-cycle behavior
in the aspatial case. To study the system, it is customary
to introduce the parameters « =b —a and 8 = a + b. The
shaded area in Fig. 5 identifies the region of the parameter
plane (o,B) where the instability is predicted to occur. We
again emphasize that patterns are expected to occur outside the
region of classical Turing order, well inside the domain where
the aspatial models display a stable limit-cycle solution. As
for the case of the Brusselator model, one reaches consistent
conclusions if the Floquet analysis is employed instead of
Egs. (42), the generalized Turing inequalities. In Fig. 6, we
show the dispersion relations for three parameter choices.
Fixing = 1.3, we vary the value of B, showing results
from inside and outside the instability region. Numerical
simulations for the Schnakenberg system defined both on a
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FIG. 5. (Color online) The extended region of the Turing insta-
bility for the Schnakenberg model, as parameters « and § are varied.
The diffusion coefficients were Dy, = 0.01, D, = 1. The solid line
shows the Hopf bifurcation for the aspatial model: above the line
the aspatial system converges toward a stable fixed point. Below the
line, a stable homogeneous limit-cycle solution is instead found. The
circular symbols show results from the Floquet approach: the larger
symbols indicating an instability, the smaller ones indicating that the
homogeneous system is stable. The shading delimits the region where
the instability is predicted to occur by Egs. (42).

FIG. 7. (Color online) The final stationary state obtained for
species ¢ by initializing the Schnakenberg model inside the region
where the homogeneous (hence aspatial) limit cycle is stable,
and imposing a small perturbation to the initially synchronous
oscillations. As already remarked in the caption of Fig. 3, the patterns
are practically indistinguishable from those obtained inside the
classical Turing region. Here also, it seems plausible to hypothesize
that the same Turing attractor can be reached following alternative
dynamical paths. Parameters are a = 0.125, b = 0.475 (or a = 0.35
and 8 = 0.6), D, = 0.01, Dy, = 1. The simulations are carried our
over a square box of linear size L = 10 partitioned in 64 mesh points.
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FIG. 8. (Color online) Stationary pattern attained by the
Schnakenberg model, defined on a network of the Watts-Strogatz type
(number of nodes N = 100 and probability of rewiring p = 0.8). In
the main panel, the asymptotic concentration of species ¢; is plotted
as function of the nodes index i. In the inset, the time evolution of
the concentration on one of the nodes of the network is shown. The
transition from the initial oscillation to the final stationary state is
clearly displayed. The parameters are set as in Fig. 7.

continuous two-dimensional support and on a heterogeneous
complex network are performed and the asymptotic, stationary
stable patterns displayed in Figs. 7 and 8, respectively.

VI. CONCLUSION

Reaction-diffusion systems display a plethora of interesting
solutions. Particularly relevant is the spontaneous emergence
of self-organized stationary patterns, originating from a sym-
metry breaking instability of a homogeneous fixed point.
The dynamical mechanism that seeds such an instability was
illustrated by Turing in his pioneering work on the chemical
basis of morphogenesis. Since then, it has been exploited
in many different contexts, ranging from physics to biology.
The concept of the Turing instability also applies to reaction-
diffusion systems defined on a complex network, a setting
that is of paramount importance for neuroscience-related
applications. The internet and the cyberworld in general are
other obvious examples which require the concept of network.

Beyond the Turing picture, stationary regular motifs
can also originate from oscillation quenching of a spa-
tially extended chain of coupled nonlinear oscillators. This
phenomenon, usually referred to as oscillation death, has
been mainly investigated by resorting to a normal form
approximation for the evolution of the spatially unstable
modes. Mathematical progress is possible via a semianalytical
approach which combines knowledge from the celebrated
master stability formalism [27] to the Floquet technique.

Starting from this setting, we have here investigated the
process of pattern formation for a multispecies model, which
displays a limit-cycle behavior in its aspatial limit. We have
showed that oscillation death is nothing but the classical
Turing instability for the first return map of the system in
its synchronous periodic state. Working along these lines we
have obtained a system of compact inequalities, which set
the conditions for the onset of the instability. The obtained
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conditions constitute a natural generalization of the Turing
recipe, so as to include the case where the imposed perturbation
acts on a homogeneous time-dependent periodic solution. The
proposed criterion returns a wider region of Turing instability,
as compared to the conventional approach. The framework
that we have established here can be easily applied to the
case where the system is established on a complex network,
which has relevance in many applications. The stationary
patterns that originate from the inhomogeneous perturbation
of the limit-cycle solution are virtually indistinguishable from
those obtained within the classical Turing region, as we
demonstrated with reference to specific case studies. Based
on these findings, we propose that the conditions for the
generalized instability that we have derived should be carefully
considered for all reaction-diffusion schemes, which undergo
Turing ordering while displaying a limit-cycle solution in their
aspatial counterpart versions.

APPENDIX A: PROCEDURE ON A COMPLEX NETWORK

The purpose of this appendix is to briefly discuss the
generalization of the above analysis to the relevant setting
where the reaction-diffusion system is defined on a discrete
support, such as a complex heterogeneous network.

We begin by considering a network made of N nodes and
characterized by the N x N adjacency matrix W: the entry W;;
is equal to one if nodes i and j (with i # j) are connected, and
it is zero otherwise. If the network is undirected, the matrix W
is symmetric. A general reaction-diffusion system defined on
the network reads as

do;
d_(l; = f(¢i,¥i) + D¢ZAU‘¢]’,
' (AD)
Wi o v D S A
dt _g(¢l71//l)+ sz: 1]w]'

Here, A;; = W;; — k;d;; is the network Laplacian, k; stands
for the connectivity of node i, and §;; is the Kronecker
delta. Assume now that a homogeneous fixed point of system
(Al) exists and indicate it with (¢,¥). The fixed point is
stable provided Egs. (3) hold. Patterns arise when (¢,v)
becomes unstable to inhomogeneous perturbations. As already
discussed with reference to the continuum setting, one can
introduce a small perturbation (§¢;,8;) to the fixed point and
linearize around it, to look for the conditions that seed the
instability. One obtains a linear equation which is equivalent
to Eq. (6) except for the index i which is attached to the
perturbation amount, and hence to w, and which reflects the
discreteness of the embedding structure. To solve the linear
problem, one needs to introduce the spectrum of the Laplacian
operator

j=1

(A2)

where A® and vf“) , respectively, represent the eigenvalues
and their associated eigenvectors. Then, the inhomogeneous
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FIG. 9. (Color online) Comparison of the matrix operator I" used
in Egs. (26) (orange diamonds) and (36) (red circles). Results were
obtained from the Brusselator model with reaction parameters ¢ = 1.2
and b = 2.25.

perturbation can be expanded as

N
8¢ =Y cac™ v, (A3)
j=1
N
Sy =Y by v, (A4)
j=1

where the constants ¢, and b, refer to the initial condition. By
inserting the above expression in the equation which governs
the evolution of the perturbation at the linear order, one gets
a dispersion relation which is identical to (14), provided the
factor —k? is replaced with the Laplacian eigenvalues A®.
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FIG. 10. (Color online) Comparison of the matrix operator I'
used in Egs. (26) (orange diamonds) and (36) (red circles). Results
were obtained from the Brusselator model with reaction parameters
c=1.2and b =235.

In practice, it is this latter quantity which determines the
spatial characteristic of the emerging patterns, when the system
is defined on a heterogeneous complex support. Obviously,
inequalities (42) extend to the case of networks, noting
that —k? hands over into A@. The discussion above adapts
easily to the case where the perturbation is studied around a
homogeneous limit-cycle solution.

APPENDIX B: ASSESSING THE ACCURACY OF THE
APPROXIMATION SCHEME

In this appendix, we check the accuracy of the approxi-
mation scheme used to find the generalized condition for the
instability of the synchronized state. Figures 9 and 10 show
results from the Brusselator model, for two choices of the
parameters. Results are discussed in the main text.
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