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Networks are topological and geometric structures used to describe systems as different as the Internet, the
brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing
the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These
networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics.
The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral
defining the evolution of quantum network states. The quantum network states are characterized by quantum
occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of
the network. We call the geometric networks describing the evolution of quantum network states the quantum
geometric networks. The quantum geometric networks have many properties common to complex networks,
including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution.
Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying,
respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural
phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on
the relation between quantum complex network geometries, spin networks, and triangulations.
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I. INTRODUCTION

Networks are discrete structures that can be used to
describe, model, and understand a variety of real systems, in-
cluding complex interacting systems [1–5] or the microscopic
nature of space-time [6–9].

Recently, in network science the characterization of the
complexity of networks with geometrical and topological
methods is gaining great momentum with several works
related to the definition of curvature of the networks [10–22],
persistent homology [23–25], complex networks embedded in
finite dimensions [26–29], and the study of the hyperbolicity
of complex networks [30–38].

In this context, it is becoming clear that in order to
characterize the geometry of networks it is important to
describe the underlying structure of simplicial complexes. A
simplicial complex is constructed by gluing together simplices
such as points, lines, triangles etc., along their faces. Therefore,
different works characterize ensembles of random simplicial
complexes [39–42] and their geometrical and topological
properties. Recently, a model for emergent complex network
geometry has been proposed based on growing simplicial
complexes [43].

In quantum gravity a central problem is to find the
appropriate model describing the geometry of space-time at
the quantum level. Different approaches have been proposed
in which geometry emerges from some pregeometric phase
[44–46] that include spin networks and loop quantum grav-
ity [6–8], spin foams [47], causal dynamical triangulations
[48,49], causal sets [50], energetic causal sets [51–53],
network cosmology [54], and quantum graphity [55–57].
Networklike structures play a fundamental role in all these
approaches.

This suggests that the emergence of geometric structure
from the quantum description of networks is a more general

mathematical problem that can be not only relevant for
understanding the structure of space-time, but which might
also help to understand general complex network structures.

Already in the early days of the field of network science the
relation between complex network topologies and quantum
statistics was shown in the framework of the Bianconi-
Barabasi model [58,59] that is a growing network model
with preferential attachment and energies of the nodes which
display a Bose-Einstein condensation. This model can also
be extended to weighted networks [60] described by the
Bose-Einstein statistics and undergoing also the condensation
of the weight of the links. The relation between growing Cayley
trees with fitness of the nodes and Fermi-Dirac statistics
has been found in Ref. [61] and the underlying symmetries
between the models in Refs. [59,61] have been discussed in
Ref. [62]. In the context of equilibrium network models it has
been shown that quantum statistics emerges to describe simple
or weighted networks [63].

Here we characterize the nonequilibrium evolution of
networks constructed from growing simplicial complexes of
dimension two, i.e., formed by triangles, and such that to each
link we associate an energy ε. We show that geometrical
complex networks emerge from this dynamical evolution
which display at the same time small-world network properties
[64], exponential or scale-free degree distribution [65], high
clustering coefficient, and high modularity [5]. These networks
can be either planar or nonplanar with a Euler characteristic
that is either χ = 1 (planar) or χ ∝ N , where N is the network
size, indicating a finite average curvature in the network. As
we show in two limiting cases of this network dynamics, these
networks describe the evolution of quantum network states.
These network states are constructed along similar lines used
in the quantum gravity literature [55–57] by associating an
Hilbert space to each node of the network and two Hilbert
spaces to each possible link of the network. These network
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states evolve through a nonequilibrium, Markovian dynamics.
The network states can be mapped to geometric networks and
have an evolution described by an appropriate path integral.
The network dynamics describes the paths of single histories
of networks on which the path integral is calculated.

We distinguish between Fermi-Dirac networks and Bose-
Einstein networks. For both of them the number of triangles
incident to a given link is n + 1. However, for Fermi-Dirac
networks n can only take the values n = 0,1, whereas for Bose-
Einstein networks n can take any integer value n = 0,1,2 . . ..
These networks evolve in such a way that at the global scale
the average of n over the links with energy ε follows the
Fermi-Dirac statistics for the Fermi-Dirac network and the
Bose-Einstein statistics for the Bose-Einstein network.

These network structures depend on an external parameter
that we call the inverse temperature β. As functions of β

they undergo major structural phase transitions in which
the network structure changes drastically. In the case of the
Fermi-Dirac network, for β > βc the network is not anymore
small world, but acquires a finite Hausdorff dimensionality.
In the case of the Bose-Einstein network, for β > βc a link
acquires a finite fraction of triangles, and the nodes at the
end of the link acquire a finite fraction of all the links. This
geometrical phenomenon is the Bose-Einstein condensation
for these networks.

We observe here that the quantum network states studied in
this paper are by no means the only way to associate a quantum
state to a network. In particular, in the quantum computation
community, alternative approaches [66–70] have been widely
explored, characterizing quantum transport, quantum random
networks, and quantum networks in which the links correspond
to entangled states.

The paper is organized as follows. In Sec. II we describe the
geometric network model with energy of the links depending
on the parameter m fixing the maximum number of triangles
incident to a link. Moreover, we define the entropy rate of
the model and we describe the observed phase transition. In
Sec. III we define the quantum network states. In Sec. IV
we define the evolution of the Fermi-Dirac quantum network
state and the Bose-Einstein quantum network state. In Sec. V
we study the Fermi-Dirac network (given by the geometric
network model with m = 2). We show that this network
characterizes the Fermi-Dirac quantum state, and we show
that it is globally described by the Fermi-Dirac statistics.
Finally, we compare the analytical results to simulations and
we describe the phase transition occurring at low temperatures.
In Sec. VI we study the Bose-Einstein network (given by
the geometric network model with m = ∞), showing that it
fully characterizes the Bose-Einstein quantum state, follows
the Bose-Einstein statistics, and undergoes the Bose-Einstein
condensation at low temperatures. In Sec. VII we consider the
thermodynamics of the networks and we consider the case in
which we project the quantum network state on an unlabeled
final network state. In Sec. VIII we generalize the geometric
model introducing a new parameter p and a new process of
addition of triangles that allows for the generation of network
geometries that are not planar. We characterize the geometry
of these networks and describe the phase transitions observed
at low temperature. In Sec. IX we generalize the evolution of
the quantum network states corresponding to the generalized

geometric network model. In Sec. X we describe the dual of the
networks generated by the proposed model and we comment
on the relation between the Fermi-Dirac network and spin
networks. In Sec. XI we comment on the relation between
complex quantum network geometries, triangulations, and
foams. Finally, in Sec. XII we give the conclusions.

II. GEOMETRIC NETWORK WITH ENERGY
OF THE LINKS

A. Evolution of the geometric networks with energy of the links

Real networks display at the same time several structural
properties (including finite clustering coefficient, significant
modularity, finite spectral dimension, heterogeneous degree
distribution) that have been shown to be captured by a very
simple model of emergent geometry recently introduced by
the authors [43]. The model proposed in Ref. [43] is a
nonequilibrium model of growing simplicial complexes of
dimension dn = 2, i.e., formed by gluing triangles along their
edges. In this model each link can belong at most to a number
m of triangles where the parameter m can take any finite
value m � 2 or the value m = ∞, indicating the case in
which each link can belong to an arbitrarily large number
of triangles. In the case m = 2 the model reproduces random
manifolds of dimension dn = 2 with an exponential degree
distribution and random distribution of local curvatures, in
the case m = ∞ the model generates scale-free networks
with finite clustering coefficient and significant modularity
quantifying the relevance of their community structure.

In Ref. [43] all the nodes and all the links are treated
equally, having the same probability to attract new triangles.
Nevertheless, in complex systems, attaching a new triangle to
a given link might not have the same probability of attaching
it to another link.

Already in the context of complex networks growing by
preferential attachment [1,2], the heterogeneity of the nodes
in attracting new links has been recognized to be essential
to characterize the evolution of networks, as for example
the World Wide Web or the Internet [58,59]. Usually, this
heterogeneous “quality” of the nodes is modeled by associating
each node to an energy drawn from a given distribution.
Interestingly, complex networks with energies of the nodes
have been shown [59,61] to be characterized by quantum
Bose-Einstein and Fermi-Dirac statistics and might display
a Bose-Einstein condensation in which one node grabs a
finite fraction of the links. This phase transition is relevant
for a number of complex networks including economical,
technological, and social networks in which nodes connected
to a finite fraction of the nodes might emerge.

In the quantum gravity literature, the relation between
networks and quantum states has been recently explored
[55–57] to construct models of emergent space-time geometry.
In these works, each network is associated to a quantum
network state and the network structure is dictated by an
equilibrium Hamiltonian dynamics.

Here we consider networks constructed by a nonequi-
librium dynamics describing the underlying structure of
simplicial complexes constructed by the addition of connected
complexes of dimension dn = 2, i.e., triangles. These networks
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display nontrivial geometrical properties, characterizing to
some limit planar random manifolds, as discussed later in
the paper. For this reason we call them geometric networks.
As in the geometric network model [43], we assume that each
link can belong at most to a number m of triangles. Moreover,
we associate energies to both nodes and links describing the
different ability of nodes and links to attract new triangles.

In studying this model our goal is twofold. On one side, we
aim at characterizing a wider class of emergent geometries and
their possible structural phase transitions in order to unveil the
basic geometric properties of complex networks. On the other
side, we aim at furthering our understanding on the relation
between the network evolution and quantum mechanics by
exploring the connection between network evolution, quantum
statistics, and evolution of quantum network states constructed
using methods similar to the one introduced in Refs. [55–57].

The energies of the nodes and of the links are defined as
follows. Every node i of the network is associated with the
energy of the link ωi > 0 drawn from a distribution g(ω) [71].
The energy ωi is assigned to the node i when the node is
added to the network and is quenched during the growth of
the network. Every link � = (i,j ) between node i and node j

is associated with the energy of the link εij , which is a given
symmetric function of the energy of the two nodes i and j ,
i.e.,

εij = f (ωi,ωj ) = f (ωj ,ωi), (1)

with εij > 0.
We define the so-called spin Jij of the link � = (i,j ) as

Jij = 1
2 (ωi + ωj ). (2)

The spins of the links belonging to a triangle between the
nodes i, j , and r satisfy the conditions

|Jir − Jjr | � Jij � Jir + Jjr . (3)

This result remains valid for any permutation of the order of the
nodes i, j , and r belonging to the triangle. Although most of
the derivations shown in this paper can be performed similarly
for either continuous or discrete energy of the nodes and of
the links, here we consider the case in which the energies of
the nodes {ωi} and the energy of the links {εij } are discrete.
In particular, if the energy of the nodes takes integer values,
the spin of the links takes half-integer values and Eq. (3) can
be interpreted as the Clebsch-Gordon relations between the
half-integer spins of the links of each triangle. This property
motivates dubbing this variable a spin.

Specific expressions of the energy εij of the link (i,j ) might
depend on the spin Jij of the link. Examples of specific choices
for the energy of the link are the quadratic relation,

εij = Jij (Jij + 1), (4)

or the linear relation,

εij = 2Jij = ωi + ωj . (5)

Here we want to keep the generality of the model and we take
εij given by Eq. (1) unless a specific functional form of the
energy of the link is indicated.

The geometric network model is the underlying network of
a simplicial complex of dimension d2 = 2 formed by gluing
triangles along the edges. We assume that each link can belong
at most to a number m of triangles where the parameter m can
take any finite value m � 2 or the value m = ∞, indicating
the case in which each link can belong to an arbitrarily large
number of triangles. We call the links to which we can still
add at least one triangle unsaturated. All the other links we call
saturated. In the case m = ∞, all the links are unsaturated. We
start at time t = 1 from a network formed by a single triangle,
a simplex of dimension dn = 2. At each time we add a triangle
to an unsaturated link (i,j ) of the network. We choose this link
with probability �

[1]
(i,j ) given by

�
[1]
(i,j ) = e−βεij aij ξij (1 + nij )

Z
, (6)

where Z = Z is given by

Z =
∑
r<s

e−βεrs arsξrs(1 + nrs). (7)

Here we introduced several time-dependent quantities which
we use repeatedly in this paper: aij is the element (i,j ) of
the adjacency matrix a of the network; ξij is equal to 1 (i.e.,
ξij = 1) if the number of triangles to which the link (i,j )
belongs is less than m, otherwise it is zero (i.e., ξij = 0);
nij + 1 is equal to the total number of triangles incident to the
link (i,j ). Having chosen the link (i,j ), the simplicial complex
at time t is constructed by adding a node r , two links (i,r) and
(j,r), and the new triangle linking node i, node j , and node
r . The geometric complex network is the network structure of
the resulting simplicial complex.

Therefore, the number of nodes N of the network grows
linearly with time and is given by N = t + 2.

The linking probability depends on the parameter β � 0
that we call inverse temperature. For β = 0, all the links that
are unsaturated have equal probability to be selected. For β >

0 instead, unsaturated links with low energy εij are more likely
to be selected than links with higher energy.

With the above algorithm we describe a growing simplicial
complex formed by adding triangles. From this structure we
can extract the corresponding network where we consider
only the information about node connectivity (which node
is linked to which other node). We call this network model the

FIG. 1. (Color online) The growing geometrical network is the
underlying network structure of a growing simplicial complex in
which triangles are continuously attached to the simplicial complex
and glued to one unsaturated link. The link where the new triangle is
added is chosen with probability �

[1]
(i,j ) given by Eq. (6). The figure

shows an example where the maximum number of triangles incident
to a link is m = 2.
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FIG. 2. (Color online) The Fermi-Dirac network evolution (a)
and the Bose-Einstein network evolution (b). At each time a new
triangle is added to a link (i,j ) chosen according to the probability
�

[1]
(i,j ) given by Eq. (6). The maximum number of triangles incident

to a link is m = 2 for the Fermi-Dirac network evolution and m = ∞
for the Bose-Einstein network evolution.

geometrical growing network. In Fig. 1 we show schematically
the dynamical rules for building the growing simplicial
complexes and the growing geometrical networks that describe
its underlying network structure. In the following we focus,
in particular, on the limiting cases in which m = 2 (two-
dimensional manifolds) or m = ∞. For reasons that become
clear in the following, we call the growing geometric network
with m = 2 the Fermi-Dirac network and the one with m = ∞
the Bose-Einstein network. In Fig. 2 we show examples of the
first few steps of their evolution. The Fermi-Dirac network
and the Bose-Einstein network are also indicated as quantum
geometric networks.

B. Entropy rate of the network evolution

Entropy measures for network evolution are very important
characteristics for evaluating the interplay between random-
ness and order in these structures [72–75]. In particular, for
growing network models, the entropy rate [72] characterizes
how the space of typical network dynamical evolutions
increases with time. A change in the scaling of the entropy
rate typically indicates a phase transition in the network [72].
The geometric network evolution is described by the sequence
{ω(t ′),�(t ′)}t ′�t , where ω(t) indicates the energy of the node
added to the network at time t and �(t) = (i,j ) indicates the
link chosen at time t with probability �

[1]
(i,j ) given by Eq. (6).

At any given time, therefore, �(t) indicates the link to which
the new triangle is attached.

The entropy rate of the network evolution can be expressed
as

HG(t) = −
∑

ω(t),�(t)

P (ω(t),�(t)|{ω(t ′),�(t ′)}t ′<t )

× ln P (ω(t),�(t)|{ω(t ′),�(t ′)}t ′<t ), (8)

where P (ω(t),�(t)|{ω(t ′),�(t ′)}t ′<t ) is the probability that,
given the temporal evolution of the network until time t − 1,
at time t a new triangle is attached to the link �(t) with the new
node of this triangle having energy ω(t).

At time t the probability that the new node has energy
ω(t) = ω is given by the probability distribution g(ω), and it
is independent of the previous evolution of the network. The
probability of choosing the link �(t) is given by �

[1]
�(t) that

depends on the previous history of the network. Moreover,
ω(t) and �(t) are independent. Therefore, the entropy rate can
be written as

HG(t) = Hω + H [1](t), (9)

with Hω, H [1](t) specified below. In particular, Hω is the
contribution to the entropy rate due to the random distribution
of the energy of the nodes, it is independent of time and is
given by

Hω = −
∑

ω

g(ω) ln g(ω). (10)

The quantity H [1](t) of the growing geometric network
evolution defines the contribution to the entropy rate due to
the choice of the link where the new triangle is attached and is
given by

H [1](t) = −
∑
i<j

�
[1]
(i,j ) ln �

[1]
(i,j ) (11)

evaluated at time t . With Eq. (6), we get

H [1](t) = β〈εij 〉 + ln Z, (12)

where

〈εij 〉 = 〈εij�
[1]
ij

〉 =∑
i<j

aij ξij (1 + nij )εij e
−βεij

Z
. (13)

We note here that, as the inverse temperature β changes, we
might expect a phase transition in the network characterized
by a different scaling of the entropy rate H [1] and the
normalization constant Z with time t below and above the
transition.

The normalization constant Z is fixed by Eq. (7). For β = 0,
Z grows linearly with time t . In fact, for β = 0 and m = 2,
nij = 0 only if ξij = 1 and nij = 1 only if ξij = 0. Moreover,
since at each time we add two unsaturated links and we remove
one unsaturated link,

Z =
∑
i<j

aij ξij (1 + nij ) = t + 2. (14)

For β = 0 and m = ∞ instead, all the links are unsaturated,
i.e., ξij = 1 and every triangle is incident to three links.
Therefore, since we add a triangle for every time step,

Z =
∑
i<j

aij ξij (1 + nij ) = 3t. (15)
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For a significant range of values of β > 0 we still continue
to have Z ∝ t for t � 1 because Z is a sum over a linearly
growing set of nonzero variables. For β → ∞, however, only
the unsaturated links with minimal energy of the links εij =
ε0 will contribute to the sum defined in Eq. (7) because the
dynamics becomes extremal. Therefore, we can have Z 	
O(1). In this case a phase transition is expected to occur in the
network at the structural level. This phase transition induces a
substantial change in the geometry of the networks above and
below the transition, as discussed in the next paragraph.

C. Phase transition in geometric networks

The networks constructed according to the model defined in
Sec. II A are planar. In fact, the Euler number of the simplicial
complex from which they are extracted is constant during the
network evolution and is given by

χ = N − L + T = 1, (16)

where N is the total number of nodes, L is the total number of
links, and T is the total number of triangles.

Let us prove this result recursively. At time t = 1 the
simplicial complexes are formed by a single triangle N = 3,

L = 3, T = 1. Therefore, we have

χ = 1. (17)

At each time step we add a single node, two links, and one
triangle; therefore,

	χ = χ (t) − χ (t − 1) = 0. (18)

This shows that the simplicial complexes constructed by gluing
new triangles to a single existing link of the network have
Euler characteristic χ = 1. When considering the network
underlying each of these simplicial complexes and embedding
it in a plane, one can see that the number of faces F of the
embedded graph is, in fact, equal to the number of triangles T

of the simplicial complex when we do not count the external
face of the planar network. Therefore, these networks are
planar.

Another, equivalent way to prove that our networks are
planar is to observe that these networks, by construction, do
not contain any complete graphs of five nodes (subgraph K5)
or any bipartite complete graph of six nodes (subgraph K3,3).

Additionally, we define the boundary of the network as
the set of unsaturated nodes and links. Unsaturated links are
links (i,j ) with ξij = 0, while unsaturated nodes are nodes
with at least an incident unsaturated link. Note that in the
geometric networks studied here, all the nodes are unsaturated
since by construction they are always incident to exactly two
unsaturated links. Therefore, all the nodes of the network
belong to its boundary. For these networks the curvature Ri

[16,17] associated with each node i is given by

Ri = 1 − ki

2
+ Ti

3
= 4 − ki

6
= 3 − Ti

6
, (19)

where ki indicates the degree of node i, Ti indicates the total
number of triangles incident to node i, and the last equation
can be derived by considering that in the present model Ti =
ki − 1 for every i. The last expression in Eq. (19), relating the
curvature Ri of node i to the number Ti of triangles incident

to it, has an intuitive explanation. As all triangles are isosceles
and each node is at the boundary of the network, each node
incident to exactly Ti = 3 triangles will have zero curvature,
since the sum of the angles incident to it is π .

Here we focus on the quantum geometric networks (cases
m = 2 and m = ∞) and we study the geometry of these
network models as functions of β. These networks are
generated by a nonequilibrium dynamics that does not contain
any indication about any embedding space. In the case m = 2,
the Fermi-Dirac networks are planar manifolds describing
random geometries. In the case m = ∞, the Bose-Einstein
networks are planar scale-free networks but are not manifolds.

Here we show numerical evidence that, for given distribu-
tion g(ω) and energy of the links εij = f (ωi,ωj ), a structural
phase transition can occur in quantum geometric networks.
Specifically, we consider the case in which ω can only take
integer values and the distribution g(ω) is Poisson with average
c; i.e.,

g(ω) = 1

ω!
cωe−c. (20)

Moreover, we take the energy εij of the generic link (i,j ) given
by Eq. (5).

As a function of β we observe a phase transition in both
the Fermi-Dirac network and the Bose-Einstein network. For
β > βc the structure of the network and its geometry change
drastically as can already be seen from the visualizations of
the networks (Fig. 3 for the Fermi-Dirac network and Fig. 4
for the Bose-Einstein network). The transition is characterized
by a different scaling of the entropy rate H [1] below and above
βc. For β < βc, H [1] increases with time as H [1] 	 ln(t), due
to the linear scaling of Z ∝ t , while, for β > βc, H [1] = O(1)
and fluctuates widely during the network evolution. Here we
discuss in detail the consequences of this transition in the
Fermi-Dirac network and in the Bose-Einstein network. In
Fig. 5 we show major geometrical and structural properties of
the network as functions of the inverse temperature β across
the phase transitions. In particular, we display the maximal
shortest (hopping) distance from a given node of the initial
triangle D, the maximal degree kmax of the network, the entropy
rate H [1], the modularity M [76] calculated using the Louvain
algorithm [77], and the average clustering coefficient C across
the phase transitions. In Fig. 6 we show major geometrical and
structural properties of the network as functions of time for
given values of the inverse temperature β below and above the
phase transition. Finally, in Figs. 7 and 8 we show the degree
distribution P (k), the average clustering coefficient C(k) of
nodes of degree k, and the distribution of the curvature P (R),
for the Fermi-Dirac and the Bose-Einstein network above and
below the phase transition.

For the Fermi-Dirac network, the most important indicator
of the phase transition is D, which grows logarithmically with
time for β < βc and as a power-law for β > βc. Therefore the
network is small world for β < βc, while it has finite Hausdorff
dimension for β > βc. Moreover, the maximum degree kmax

increases significantly below the transition for β > βc.
Furthermore, for β < βc, the degree distribution P (k) is

exponential, and the distribution of the curvature P (R) has a
negative exponential tail, the average curvature is 〈R〉 = 1/N ,
and its second moment 〈R2〉 is finite.
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FIG. 3. (Color online) Visualization of the Fermi-Dirac network [with g(ω) given by Eq. (20) and c = 10] for β = 0.05,0.5,5 and N =
1000. For low value of β, i.e., β < βc 	 0.14, the network is small world; for large values of β, i.e., β > βc 	 0.14, the network develops a
large diameter. The color indicates the partition into communities found by running the Louvain algorithm [77].

For β > βc, instead, P (k) follows a power law, and P (R)
has a negative power-law tail. In this case, the average
curvature is 〈R〉 = 1/N , but its second moment 〈R2〉 diverges.
For every value of β, the network has high modularity M

and a hierarchical structure [78], with an average clustering
coefficient C(k) of nodes of degree k decaying as C(k) 	 k−α

and α = 1.
For the Bose-Einstein network, the most important indicator

of the phase transition is the maximum degree kmax, which
scales sublinearly with time for β < βc and linearly for β >

βc; i.e., in this case the most connected node is linked to a finite
fraction of all the nodes. Moreover, for β < βc, D increases
logarithmically with the network size, i.e., the network is small
world, while for β > β it decreases significantly.

Furthermore, for β < βc, the degree distribution P (k) is
scale free, the network has high modularity M , and the
distribution of the curvature P (R) has a negative power-law

tail. For β > βc, instead, P (k) is dominated by outlier hubs,
the network has low modularity M , and P (R) has a negative
tail dominated by outlier nodes.

In both cases, the average curvature is 〈R〉 = 1/N , and its
second moment 〈R2〉 diverges. The network has a hierarchical
structure [78] with an average clustering coefficient C(k) of
nodes of degree k decaying as C(k) 	 k−α and α = 1.

III. QUANTUM NETWORK STATES

A. The Hilbert space

Using a similar approach used already in Refs. [55–57],
here we define quantum network states. in Refs. [55–57] a
Hilbert space is associated with each node and each possible
link of a network of N nodes. Here we associate to each node
and Hilbert space Hnode and to each link we associate two
Hilbert spaces Hlink and H̃link. The total Hilbert space HN of

FIG. 4. (Color online) Visualization of the Bose-Einstein network [with g(ω) given by Eq. (20) and c = 10] for β = 0.05,0.5,5 and
N = 1000. For low value of β, i.e., β < βc 	 0.06, the network is small-world, for large values of β, i.e., β > βc 	 0.06, the network is
condensed and develops a finite diameter. The color indicates the partition into communities found by running the Louvain algorithm [77].
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FIG. 5. (Color online) The maximal distance D from the initial triangle, the maximal degree kmax, the entropy rate H [1], the modularity M

calculated using the Louvain algorithm [77], and the average clustering coefficient C are plotted as functions of the inverse temperature β for
the Fermi-Dirac network (m = 2) and for the Bose-Einstein network (m = ∞). The networks have nodes with energies following a Poisson
distribution g(ω) with average c = 10. The data are reported for networks of size N = 10 000 (averaged 30 times), N = 5000 (averaged 60
times), and N = 2500 (averaged 90 times). The predicted phase transition for the Fermi-Dirac network is at βc 	 0.14; for the Bose-Einstein
network it is at βc 	 0.06.
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FIG. 6. (Color online) The maximal distance D from the initial triangle, the maximal degree kmax, and the entropy rate H [1] are plotted as
functions of time t for the Fermi-Dirac network (m = 2) and for the Bose-Einstein network (m = ∞). The inverse temperatures are β = 0.05
and β = 5, respectively, below and above the phase transitions. The networks have nodes with energies following a Poisson distribution g(ω)
with average c = 10. The data are averaged 20 times.

a network of N nodes is given by

HN =
N⊗

Hnode

N(N−1)/2⊗
Hlink

N(N−1)/2⊗
H̃link. (21)

A single realization of a growing geometric network of size
N in which the nodes are labeled by the time they have been
added to the network can be mapped to a quantum state by
mapping the nodes, the links, and the triangles of the network
to quantum states as described in the following.

B. Nodes quantum states

To every node i we associate a Hilbert space Hnode, which
is the Hilbert space of a fermionic oscillator with energy ωi .
Therefore, to every node i of the network we associate a node
quantum state that can be decomposed on the basis

{|oi,ωi〉}, (22)

with oi = 0,1. The state

|oi = 1,ω〉 (23)

is said to contain a particle of energy ω and can be mapped to
the presence of the node i with energy ω = ωi in the network.
The state

|oi = 0,ω〉 (24)

is an empty state and can be mapped to the absence of the
node i in the network. In this case the value of ω is irrelevant
to characterize the state.

C. Link quantum states

To every possible link (i,j ) of a network we associate an
Hilbert space Hlink. The Hilbert space Hlink is chosen to be
that of a fermionic oscillator. To every pair of nodes (i,j ) in
the network we associate a link quantum state that can be
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FIG. 7. Structural and geometrical properties of the Fermi-Dirac
network as functions of the inverse temperature β for single network
realizations of size N = 105. The degree distribution P (k), the
average clustering coefficient C(k) of nodes of degree k, and the dis-
tribution of the curvatures P (R) are plotted for β = 0.05,0.5,5. The
networks have nodes with energies following a Poisson distribution
g(ω) with average c = 10. For low values of β, i.e., β < βc 	 0.14,
P (k) and P (R) are exponential, while for large values of β, i.e.,
β > βc 	 0.14, they become power law. The average clustering
coefficient C(k) of nodes of degree k always goes like C(k) ∝ k−1.

decomposed on the basis

{|aij 〉}, (25)

where aij = 0,1. The state

|aij = 1〉 (26)

is said to contain a particle and is mapped to a link (i,j ) in the
network. The state

|aij = 0〉 (27)

is an empty state and is mapped to the absence of a link in the
network.

D. Incident triangles quantum state

To every possible link (i,j ) of a network we associate an
Hilbert space H̃link. For the Fermi-Dirac network state we
assume that this Hilbert space is the one associated with
a fermionic oscillator. For the Bose-Einstein network state
we assume that this Hilbert space is instead associated with
a bosonic oscillator. Therefore, to each possible link of the
network we associate a incident triangles quantum state that
can be decomposed on the basis

{|nij 〉}, (28)

with nij = 0,1 for the Fermi-Dirac network and nij =
0,1,2, . . . for the Bose-Einstein network. The quantum number
nij of links for which aij = 1 is mapped to the number of
triangles exceeding one incident to every existing link (i,j ).

FIG. 8. Structural and geometrical properties of the Bose-
Einstein network as functions of the inverse temperature β for
single network realizations of size N = 105. The degree distribution
P (k), the average clustering coefficient C(k) of nodes of degree
k, and the distribution of the curvatures P (R) are plotted for
β = 0.05,0.5,1. The networks have nodes with energies following
a Poisson distribution g(ω) with average c = 10. For low values
of β, i.e., β < βc 	 0.06, P (k) and P (R) are scale-free, while for
large values of β, i.e., β > βc 	 0.06, these distributions become
dominated by outliers. The average clustering coefficient C(k) of
nodes of degree k always goes like C(k) ∝ k−1.

Therefore, if m = 2 we can only have nij = 0,1, while if
m = ∞ we can have any integer value of the occupation
number nij = 0,1,2 . . ..

E. Quantum network states

At each time t the quantum network state can be decom-
posed into a basis

|{oi,ωi,aij ,nij }〉 =
∏

i

|oi,ωi〉
∏
i<j

|aij 〉
∏
i<j

|nij 〉. (29)

We consider the following operators that act on the nodes,
links, and incident triangle quantum states.

F. Creation-annihilation operators

The operators b
†
j (ω),bi(ω) are creation-annihilations of

node quantum states and have anticommutation relations

{bi(ω),b†j (ω′)} = δ(i,j )δ(ω,ω′),

{bi(ω),bj (ω′)} = 0, (30)

{b†i (ω),b†j (ω′)} = 0,

where δ(x,y) is the Kronecker δ; δ(x,y) = 1 for x = y

and δ(x,y) = 0 otherwise. They act on the node states
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{|oi,ωi〉} as

bi(ωi)|oi = 0,ωi〉 = 0,

bi(ωi)|oi = 1,ωi〉 = |oi = 0,ωi〉,
(31)

b
†
i (ωi)|oi = 0,ωi〉 = |oi = 1,ωi〉,

b
†
i (ωi)|oi = 1,ωi〉 = 0.

The operators c
†
ij ,cij are creation-annihilation operators of link

quantum states and have anticommutation relations

{cij ,c
†
rs} = δ[(i,j ),(r,s)],

{cij ,crs} = 0, (32)

{c†ij ,c†rs} = 0.

where δ[(i,j ),(r,s)] = 1 if i = r and j = s or if i = s and
j = r and δ[(i,j ),(r,s)] = 0 otherwise. They act on the link
states |aij 〉 as

cij |aij = 0〉 = 0,

cij |aij = 1〉 = |aij = 0〉,
(33)

c
†
ij |aij = 0〉 = |aij = 1〉,

c
†
ij |aij = 1〉 = 0.

Finally, we define two classes of creation-annihilation opera-
tors acting, respectively, on the incident triangle quantum states
of Fermi-Dirac and Bose-Einstein quantum network states.
The creation and annihilation operators d

†
ij and dij acting on

incident triangle quantum states of Fermi-Dirac network states
are anticommuting, i.e.,

{dij ,d
†
rs} = δ[(i,j ),(r,s)],

{dij ,drs} = 0, (34)

{d†
ij ,d

†
rs} = 0.

When these operators act on the incident triangle quantum
states, they can only generate occupation numbers nij = 0,1.
Their action on the basis {|nij = 0〉,|nin = 1〉} is given by

dij |nij = 0〉 = 0,

dij |nij = 1〉 = |nij = 0〉,
(35)

d
†
ij |nij = 0〉 = |nij = 1〉,

d
†
ij |nij = 1〉 = 0.

The creation-annihilation operators d̃
†
ij and d̃ij that are acting

on the incident triangle quantum states of the Bose-Einstein
quantum network states have the commutation relations

[d̃ij ,d̃
†
rs] = δ[(i,j ),(r,s)],

[d̃ij ,d̃rs] = 0, (36)

[d̃†
ij ,d̃

†
rs] = 0.

When these operators act on the incident triangle quantum
states, they can generate arbitrary occupation numbers nij =
0,1,2, . . .. Their action on the basis {|nij = n〉} is given by

d̃ij |nij = n〉 = √
n|nij = n − 1〉,

(37)
d̃
†
ij |nij = n〉 = √

n + 1|nij = n + 1〉.

IV. EVOLUTION OF QUANTUM NETWORK STATES

In this section we define a nonequilibrium Markovian evo-
lution of the quantum network states. The possibility of a
Markovian evolution of quantum network states is not entirely
new in the literature, as it has been proposed, for example,
in Ref. [55]. Therefore, we define a quantum network state
|ψN (t)〉 and its evolution with time. The quantum network
state at every time step can be decomposed into the base

|ψN (t)〉 =
∑

{oi ,ωi ,aij ,nij }
C{oi ,ωi ,aij ,nij }|{oi,ωi,aij ,nij }〉.

We start from an initial condition at t = 1 given by

|ψN (1)〉 = 1√
Z(1)

∑
ω1,ω2,ω3

[ ∏
i=1,2,3

ρ(ωi)b
†
i (ωi)

]
c
†
12c

†
23c

†
13|0〉,

where Z(1) is fixed by the normalization condition
〈ψN (1)|ψN (1)〉 = 1. The quantum evolution of the network
state is given by a Markov process whose transition rate is
determined by the unitary operator U ,

|ψN (t)〉 = Ut |ψN (t − 1)〉, (38)

where Ut is defined by

Ut =
√
Z(t − 1)

Z(t)

∑
ωt+2

∑
i,j |i<j

√
g(ωt+2)e−βεij /2

× b
†
t+2(ωt+2)c†(t+2)ic

†
(t+2)j h

†
ij c

†
ij cij . (39)

Here, as in Eq. (1), εij = f (ωi,ωj ) and Z(t) is fixed by
the normalization condition 〈ψN (t)|ψN (t)〉 = 1. The quantum
operators h

†
ij can take two different values, defining in this way

the Fermi-Dirac quantum network state and the Bose-Einstein
quantum network state, i.e.,

h
†
ij =

{
d
†
ij Fermi-Dirac quantum network state,

d̃
†
ij Bose-Einstein quantum network state.

In the following section we consider in detail the Fermi-Dirac
and the Bose-Einstein quantum network states.

V. FERMI-DIRAC QUANTUM NETWORK EVOLUTION

A. Path integral

The evolution of the Fermi-Dirac quantum network state is
given by

|ψN (t)〉 = Ut |ψN (t − 1)〉

=
√
Z(t − 1)

Z(t)

∑
ωt+2

∑
i,j |i<j

√
g(ωt+2)e−βεij /2

× b
†
t+2(ωt+2)c†(t+2)ic

†
(t+2)j d

†
ij c

†
ij cij |ψN (t − 1)〉,

(40)

where εij = f (ωi,ωj ) and Z = Z(t) is fixed by the normal-
ization condition 〈ψN (t)|ψN (t)〉 = 1.

Using the definitions of the creation and annihilation
operators defined in Sec. III, the normalization constant Z(t)
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of the Fermi-Dirac quantum network state is fixed by the path
integral

Z(t) =
∑

{ω(t ′)}

∑
{�(t ′)}

W ({ω(t ′),�(t ′)}t ′�t ) (41)

for t � 2. Here {�t ′ }t ′=1,...,t is a sequence of links �(t ′) =
(it ′,jt ′ ) and {ω(t ′)}t ′=1,...,t is a sequence of energies of the
nodes that describes a single history over which the path
integral is calculated. In the path integral in Eq. (41) each
path {ω(t ′),�(t ′)}t ′=1,...,t is assigned a weight

W ({ω(t ′),�(t ′)}t ′�t ) =
t+2∏
i=1

g(ωi)
∏
t ′�t

a�(t ′)(t
′)

× [1 − n�(t ′)(t
′)]e−β

∑
i<j εij nij (t), (42)

where the terms aij (t) and nij (t) that appear in Eq. (42) can be
expressed in terms of the history {�(t ′)}t ′�t as

aij (t) =
t−1∑
t ′=2

{δ[(i,j ),(t ′ + 2,it ′ )] + δ[(i,j ),(t ′ + 2,jt ′ )]}

+ δ[(i,j ),(1,2)] + δ[(i,j ),(1,3)] + δ[(i,j ),(2,3)],

nij (t) =
t−1∑
t ′=2

δ[�(t ′),(i,j )]. (43)

Therefore, Z(t) can be interpreted as a partition function of a
statistical mechanics problem in which each path up to time t

has probability

P ({ω(t ′),�(t ′)}t ′�t ) = W ({ω(t ′),�(t ′)}t ′�t )

Z(t)
. (44)

Each of the paths {ω(t ′),�(t ′)}t ′�t can be mapped to a
geometrical network evolution with m = 2. In this mapping
ω(t) indicates the energy of the node added to the network at
time t , �(t) = (it ,jt ) indicates the link to which we attach a new
triangle at time t , aij (t) indicates the adjacency matrix of the
network, and nij (t) indicates the additional number of triangles
incident to an existing link (i,j ). The probability of each
geometrical network evolution {ω(t ′),�(t ′)}t ′=1,...,t described
in Sec. II A is the same as the weight that the corresponding
history has in Eq. (42).

Starting from Eq. (44) we can calculate the conditional
probability that at time t we add a link �(t) = (i,j ) given
the present state of the network evolution, �

[F ]
(i,j ) = P (�(t) =

(i,j )|{ω(t ′),�(t ′)}t ′<t ). A straightforward calculation shows
that

�
[F ]
(i,j )(t) = e−βεij aij (t)[1 − nij (t)]

ZF

, (45)

where

ZF =
∑
i<j

e−βεij aij (t)[1 − nij (t)]. (46)

Given that 1 − nij = 1 has the graphical network interpreta-
tion ξij = 1, i.e., indicates that the link (i,j ) is not saturated,
while 1 − nij = 0 indicates that the link is saturated, i.e.,
ξij = 0, the expression in Eq. (45) is the same as �

[1]
(i,j ) defined

in Eq. (6). It follows that studying the geometrical network evo-
lution for m = 2 determines the properties of the Fermi-Dirac

quantum network state. For this reason we call the growing
geometrical network with m = 2 the Fermi-Dirac network.

B. Fermi-Dirac statistics

The average of the quantum number nij over all the links of
the Fermi-Dirac network follows the Fermi-Dirac distribution.
Since nij = 0,1, equivalently, we can say that the probability
that a link with energy ε is saturated follows the Fermi-Dirac
statistics. To derive this result, let us consider the master
equation [4] for the number Nt

F (n|ω,ω′) of links (i,j ) (with
i > j , ωi = ω and ωj = ω′) that have nij = n = 0,1 at time
t . Since at each time we choose a link (i,j ) with probability
�

[F ]
(i,j )(t), only if it is unsaturated (i.e., nij = 0), we add one

triangle to the link (i.e., nij = 0 → nij = 1) and we add other
two unsaturated links, the master equation reads

Nt+1
F (n = 1|ω,ω′) = e−βε

ZF

Nt
F (n = 0|ω,ω′)

+Nt
F (n = 1|ω,ω′),

(47)

Nt+1
F (n = 0|ω,ω′) = −e−βε

ZF

Nt
F (n = 0|ω,ω′)

+ 2ρF (ω,ω′) + Nt
F (n = 0|ω,ω′),

where ε = f (ω,ω′) and ρF (ω,ω′) is the probability that a new
link (i,j ) of the network with i > j links two nodes with
energy ωi = ω and ωj = ω′. In order to solve this master
equation, we assume that the normalization constant ZF ∝ t

and we put

e−βμF = lim
t→∞

ZF

t
. (48)

This is a self-consistent assumption that must be verified by the
solution of Eqs. (47). Moreover we also assume that at large
times Nt

F (n|ω,ω′) 	 2tPF (n|ω,ω′). In fact, the number of
links in the network is 2t + 1 	 2t for t � 1. Here PF (n|ω,ω′)
indicates the asymptotic probability that a random link (i,j )
with i > j and ωi = ω, ωj = ω′ has nij = n. With these
assumptions, we can solve Eqs. (47) finding

PF (n = 0|ω,ω′) = ρF (ω,ω′)
eβ(ε−μF )

eβ(ε−μF ) + 1

= ρF (ω,ω′)[1 − nF (ε)],
(49)

PF (n = 1|ω,ω′) = ρF (ω,ω′)
1

eβ(ε−μF ) + 1

= ρF (ω,ω′)nF (ε),

where ε = f (ω,ω′) and nF (ε) is the Fermi-Dirac occupation
number

nF (ε) = 1

eβ(ε−μF ) + 1
. (50)

Considering all the links with energy ε, we have

〈n|ε〉 = ρF (ε)nF (ε), (51)

where

ρF (ε) =
∑
ω,ω′

δ[ε,f (ω,ω′)]ρF (ω,ω′) (52)
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and where

〈n|ε〉 =
∑
ω,ω′

δ[ε,f (ω,ω′)]ρF (ω,ω′)
∑
n=0,1

nPF (n|ω,ω′). (53)

Therefore, in the Fermi-Dirac network the average of the
incident triangle quantum number over links of energy ε

follows the Fermi-Dirac distribution.
To complete the solution it is necessary to find the correct

expression for ρF (ω,ω′). Since, by definition, ω is the energy
of the new node attached to the network at time t and since
this energy is drawn randomly from a distribution g(ω), we
have that the probability ρF (ω,ω′) can be factorized,

ρF (ω,ω′) = g(ω)g̃F (ω′), (54)

where g̃F (ω′) is the probability that a new triangle is attached to
a link having at its end a node of energy ω′ and is thus normal-
ized. Therefore, we can write a recursive equation for g̃F (ω′).
Since we attach new triangles to random unsaturated links
with energy εij = ε = f (ω,ω′) with probability e−β(ε−μF ), it
follows that the recursive equation for g̃F (ω) reads

g̃F (ω) =
∑
ω′

e−β[f (ω,ω′)−μF ][PF (n = 0|ω,ω′)

+PF (n = 0|ω′,ω)]

=
∑
ω′

[ρF (ω,ω′) + ρF (ω′,ω)]nF [f (ω,ω′)], (55)

where in the last equation we have used the expression for
PF (n = 0|ω,ω′) given by Eq. (49). Equation (55) can be
formulated as the eigenvalue problem

g̃F (ω) =
∑
ω′

AF (ω,ω′)g̃(ω′), (56)

where

AF (ω,ω′) = g(ω)nF [f (ω,ω′)]

×
{

1 −
∑
ω′′

g(ω′′)nF [f (ω,ω′′)]

}−1

. (57)

Since we require that g̃F (ω) is a probability, i.e., it is
non-negative and normalized, the solution of the eigenvalue
problem is given by the Perron-Frobenious eigenvector g̃F (ω)
of the matrix AF (ω,ω′) satisfying∑

ω

g̃F (ω) = 1. (58)

Finally, the chemical potential μF is fixed by the self-
consistent condition in Eq. (48) that can be rewritten as∑

ε

ρF (ε)nF (ε) = 1

2
, (59)

which is the same equation as the one fixing the chemical
potential in a Fermi gas [79] with density of states ρF (ε),
inverse temperature β, and specific volume v = 2. If the self-
consistent equation given by Eq. (48) has a solution, and ZF ∝t ,
the master equation asymptotically in time has a stationary
solution given by Eqs. (49). This implies that the average of
the quantum numbers nij over links of energy ε, i.e., 〈n|ε〉,
follows the Fermi-Dirac distribution.

C. Structural properties of the Fermi-Dirac model

Let us here characterize some of the important structural
properties of the Fermi-Dirac network model. First of all, let
us consider the degree distribution P (k). In order to find P (k)
we first write the master equation for the number Nt

F (k|ω) of
nodes that at time t have degree k given that they have energy
ωi = ω. For simplicity in this paragraph we consider the linear
relation Eq. (5) between link and node energies.

The master equation [4] for Nt
F (k|ω) reads

Nt+1
F (k|ω) = e−β(ω−μ̃F )

t
Nt

F (k − 1|ω)[1 − δ(k,2)]

− e−β(ω−μ̃F )

t
Nt

F (k|ω) + g(ω)δ(k,2) + Nt
F (k|ω),

(60)

where we have assumed that asymptotically in time we can
define the chemical potential μ̃F given by

eβμ̃F = eβμF lim
t→∞

〈∑
ij e−βωj (1 − nij )aij δ(ki,k)∑

i δ(ki,k)

〉
.

By assuming in the large network limit t � 1 that NF (k|ω) 	
tP (k|ω), solving Eq. (60) we get

P (k|ω) = g(ω)
eβ(ω−μ̃F )

[eβ(ω−μ̃F ) + 1]k−1
(61)

for k � 2. Therefore, summing over all the values of the energy
of the nodes ω we get the full degree distribution P (k),

P (k) =
∑

ω

g(ω)
eβ(ω−μ̃F )

[eβ(ω−μ̃F ) + 1]k−1
, (62)

for k � 2.
The curvature Ri of a node i is given by

Ri = 4 − ki

6
. (63)

So the distribution of the curvature P (R) is given by

P (R) =
∑

ω

g(ω)
eβ(ω−μ̃F )

[eβ(ω−μ̃F ) + 1]3(1−2R)
, (64)

where R � 1
3 . Therefore, the distribution of the curvature is

decaying exponentially for negative values of the curvature.
Moreover the average curvature is 〈R〉 = 1/N and the fluctu-
ations around this average are bounded, i.e., 〈R2〉 < ∞.

D. Comparison with numerical simulations

Here we numerically simulate a Fermi-Dirac network
evolution in which the energies of the nodes are non-negative
integers with g(ω) given by a Poisson distribution with average
c as in Eq. (20) and link and node energies related linearly
Eq. (5).

We compare the results of the theory with the outcomes of
the simulations as long as the chemical potential μF defined
in Eq. (59) is well defined. In particular, we show the results
of simulations confirming that the average of the quantum
number nij over the links of energy ε, 〈n|ε〉, is given by Eq. (51)
and follows the Fermi-Dirac statistics. In Fig. 9 we compare
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FIG. 9. (Color online) The Fermi-Dirac occupation number
nF (ε) is extracted from the simulation results by plotting 〈n|ε〉/ρF (ε)
(star points) and compared with the theoretical prediction (solid red
line). Data are shown for a Fermi-Dirac network with g(ω) given by
a Poisson distribution with c = 2. The network size is N = 2000 and
the simulation results are averaged over 30 runs.

the results of the simulations with the theoretical expectations
by plotting the right and left hand sides of equation

nF (ε) = 〈n|ε〉
ρF (ε)

, (65)

equivalent to Eq. (51) and the degree distribution P (k) of this
network with the theoretical expectation given by Eq. (62).
We find very good agreement in both cases, as displayed in
Fig. 10.

E. Phase transition in the Fermi-Dirac network

The self-consistent approach for solving the Fermi-Dirac
network is based on the assumption that the chemical potential
μF of the network defined in Eq. (48) exists. However, in the
network it is possible to find a phase transition at high enough
inverse temperature, i.e., for β > βc, where this assumption
fails (see Sec. II C). In order to determine where this phase
transition occurs, we have solved the self-consistent equation
for the chemical potential μF given by Eq. (59). This equation
can always be solved to find the chemical potential μF , but
the value of the chemical potential μF as a function of the

FIG. 11. (Color online) The chemical potential μF versus the in-
verse temperature β for a Fermi-Dirac network with g(ω) = N 1

ω! z
ω,

with ω ∈ [0,100], c = 10 and with N indicating the normalization
sum. The critical value of the inverse temperature is βc 	 0.14, which
is in good agreement with the simulations (see Fig. 5).

inverse temperature can have a maximum for β = βc. Here
we have identified this maximum with the onset of the phase
transition. In fact, from the dynamic rules of the model it
is clear that the network dynamics for increasing value of β

tends to attach new triangles on unsaturated nodes with lower
energy. Therefore, if the probability P (n = 0|ω,ω′) is given
by Eq. (49), the chemical potential μF can only increase with
increasing inverse temperature β.

In Fig. 11 we show the chemical potential μF as a function
of the inverse temperature β for a Fermi-Dirac network with a
Poisson distribution g(ω) [given by (20)] with average c = 10
and linear relation between the energy of the nodes and the
energy of the links [Eq. (5)]. In order to perform the numerical
calculation of the chemical potential μF the distribution g(ω)
is truncated at a cutoff value ω� = 100. The chemical potential
μF has a maximum at βc 	 0.14, which is a good prediction

FIG. 10. (Color online) The degree distribution P (k) of the Fermi-Dirac network is plotted with star points for a Fermi-Dirac network
with g(ω) given by a Poisson distribution with c = 2. The network size is N = 5000 and the simulation results are single realizations of the
networks. The simulations are compared with the theoretical predictions of Eq. (62), shown as a solid red line.
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for the phase transition, as can be seen from the simulation
results shown in Fig. 5.

VI. BOSE-EINSTEIN NETWORK EVOLUTION

A. Path integral

The evolution of the Bose-Einstein quantum state is
described by the unitary operator Ut defined in

|ψN (t)〉 = Ut |ψN (t − 1)〉

=
√
Z(t − 1)

Z(t)

∑
ωt+2

∑
i,j |i<j

√
g(ωt+2)e−βεij /2

× b
†
t+2(ωt+2)c†(t+2)ic

†
(t+2)j d̃

†
ij c

†
ij cij |ψN (t − 1)〉, (66)

where εij = f (ωi,ωj ) and Z = Z(t) is fixed by the normal-
ization condition 〈ψN (t)|ψN (t)〉 = 1.

In this case the normalization constant Z(t) is given by the
path integral

Z(t) =
∑

{ω(t ′)}

∑
{�(t ′)}

W ({ω(t ′),�(t ′)}t ′�t ) (67)

for t � 2 and εij = f (ωi,ωj ). Here {ω(t ′),�t ′ }t ′=1,...,t is a
sequence of links �(t ′) = (it ′ ,jt ′ ) and a sequence of energies of
the new nodes ω(t ′) that describes a single history over which
the path integral is calculated. Each path {ω(t ′),�(t ′)}t ′�t in
Eq. (67) is assigned a weight

W ({ω(t ′),�(t ′)}t ′�t ) =
t+2∏
i=1

g(ωi)
t∏

t ′=2

a�(t ′)(t
′).

× [1 + n�(t ′)(t
′)]e−β

∑
i<j εij nij (t), (68)

where aij (t) and nij (t) can be expressed in terms of the history
{�(t ′)}t ′�t in the same way as in Eq. (43). Note the characteristic
sign difference in Eq. (68) compared to the Fermi-Dirac case.
Therefore, Z(t) can be interpreted as a partition function of a
statistical mechanics problem in which each path up to time t

has probability

P ({ω(t ′),�(t ′)}t ′�t ) = W ({ω(t ′),�(t ′)}t ′�t )

Z(t)
. (69)

Each of the paths {ω(t ′),�(t ′)}t ′�t can be mapped to a
geometrical network evolution with m = ∞. In this mapping,
ω(t) indicates the energy of the node added to the network at
time t , �(t) = (it ,jt ) indicates the link to which we attach a new
triangle at time t , and aij (t) indicates the adjacency matrix of
the network. Moreover, nij (t) indicates the number of triangles
that exceed one, attached to the link (i,j ). The probability of
each geometrical network evolution {ω(t ′),�(t ′)}t ′�t described
in Sec. II A is the same as the probability given in Eq. (69).

Starting from Eq. (68) we can calculate the conditional
probability that at time t we add a link �(t) = (i,j ) given
the present state of the network evolution, �

[B]
(i,j ) = P (�(t) =

(i,j )|{ω(t ′),�(t ′)}t ′<t ). A straightforward calculation shows
that

�
[B]
(i,j )(t) = e−βεij aij (t)[1 + nij (t)]

ZB

, (70)

where

ZB =
∑
i<j

e−βεij aij (t)[1 + nij (t)]. (71)

The expression in Eq. (45) is the same as �
[1]
(i,j ) defined in

Eq. (6) for m = ∞. In this case, ξij (t) = 1 for nodes (i,j ) for
which there is a link, i.e., aij (t) = 1. It follows that studying
the geometrical network evolution for m = ∞ determines the
properties of the Bose-Einstein quantum network state. For this
reason we call the growing geometrical network with m = ∞
the Bose-Einstein network.

B. Bose-Einstein statistics

In the Bose-Einstein network the average of the quantum
number nij over links with energy ε follows the Bose-Einstein
distribution. To show this result, let us consider the master
equation [4] for the number Nt

B(n|ω,ω′) of links (i,j ) (with
i > j and ωi = ω and ωj = ω′) that have nij = n = 0,1,2, . . .

at time t . Since at each time we choose a link (i,j ) with
probability �

[B]
(i,j ), the master equation reads

Nt+1
B (n|ω,ω′) = e−βεn

ZB

Nt
B(n − 1|ω,ω′)[1 − δ(n,0)]

− e−βε(n + 1)

ZB

Nt
B(n|ω,ω′)

+ 2ρB (ω,ω′)δ(n,0) + Nt
B(n|ω,ω′), (72)

where ε = f (ω,ω′) and ρB(ω,ω′) is the probability that a new
link will connect a new node with energy ω and an old node
with energy ω′. In order to solve this master equation, we
assume that the normalization constant ZB ∝ t and we put

e−βμB = lim
t→∞

ZB

t
. (73)

Moreover, we also assume that at large times Nt
B(n|ω,ω′) 	

2tPB(n|ω,ω′) as the number of links in the network is 2t + 1 	
2t for t � 1. The quantity PB (n|ω,ω′) indicates the asymptotic
probability that a random link (i,j ) with i > j and ωi = ω and
ωj = ω′, has nij = n. Making these assumptions, it is possible
to solve Eq. (72), getting

PB(n,|ω,ω′) = ρB(ω,ω′)�[1 + eβ(ε−μB )]eβ(ε−μB )

× �(n + 1)

�[eβ(ε−μB ) + n + 2]
(74)

for n � 0. Equation (74) is automatically normalized once the
distribution ρB(ω,ω′) is normalized. Therefore, the average
of the quantum numbers nij over links with energy εij = ε is
given by

〈n|ω,ω′〉 = ρB(ω,ω′)
1

eβ(ε−μB ) − 1
= ρB(ω,ω′)nB(ε), (75)

where nB(ε) indicates the Bose-Einstein occupation number

nB(ε) = 1

eβ(ε−μB ) − 1
. (76)

Summing over all the links with energy ε, we get

〈n|ε〉 = ρB(ε)nB(ε), (77)
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where

ρB(ε) =
∑
ω,ω′

δ[ε,f (ω,ω′)]ρB(ω,ω′). (78)

Therefore, in the Bose-Einstein network the average of the
quantum number nij over links of energy ε follows the Bose-
Einstein distribution.

To complete the solution it is necessary to find the correct
expression for ρB(ω,ω′). Since by definition ω is the energy
of the new node attached to the network at time t , and since
this energy is drawn randomly from a distribution g(ω), the
probability ρB(ω,ω′) can be factorized,

ρB(ω,ω′) = g(ω)g̃B(ω′), (79)

where g̃B(ω′) is the probability that a new triangle is attached
to a link having at its end a node of energy ω′ and is therefore
normalized.

We can write a recursive equation for g̃B(ω′). In fact we
have

g̃B(ω) =
∑
ω′

e−β[f (ω,ω′)−μB ]{[ρB(ω,ω′) + 〈n|ω,ω′〉]

+ [ρB(ω′,ω) + 〈n|ω′,ω〉]}
=
∑
ω′

[ρB(ω,ω′) + ρB(ω′,ω)]nB[f (ω,ω′)], (80)

where in the last equation we have substituted Eq. (75) into
〈n|ω,ω′〉. This equation can be formulated as the eigenvalue
problem

g̃B(ω) =
∑
ω′

AB(ω,ω′)g̃(ω′), (81)

where

AB(ω,ω′) = g(ω)nB[f (ω,ω′)]

×
{

1 −
∑
ω′′

g(ω′′)nB[f (ω + ω′′)]

}−1

. (82)

Since we require that g̃B(ω) is a probability, i.e., it is
non-negative and normalized, the solution of the eigenvalue
problem is given by the Perron-Frobenious eigenvector g̃B(ω)
of the matrix AB(ω,ω′), satisfying∑

ω

g̃B(ω) = 1. (83)

By imposing the self-consistent condition in Eq. (73), we find
the equation determining the chemical potential μB ,∑

ε

ρB(ε)nB(ε) = 1

2
, (84)

which is the same equation as the one fixing the chemical
potential in a Bose gas [79] with density of states ρB (ε), inverse
temperature β, and specific volume v = 1/2.

If the self-consistent Eq. (86) has a solution, this implies
that the average of the quantum number nij over links of energy
ε, 〈n|ε〉, follows the Bose-Einstein distribution.

C. Structural properties of the Bose-Einstein network

In this section we derive the degree distribution and the
distribution of the curvature in the case in which the energies
of the links are linearly dependent on the energies of the nodes
as in Eq. (5). In order to derive the degree distribution in
this case, let us write the master equation [4] for the number
Nt

B(k|ω) of nodes that at time t have degree k and energy ω,
i.e.,

Nt+1
B (k|ω) = e−β(ω−μ̃B )(k − 1)

t
Nt

B(k − 1|ω)[1 − δ(k,2)]

− e−β(ω−μ̃B )k

t
Nt

B(k|ω) + g(ω)δ(k,2)

+Nt
B (k|ω), (85)

where we have assumed self-consistently that asymptotically
in time μ̃B is defined as

eβμ̃B = eβμB lim
t→∞

〈∑
ij e−βωj aij (1 + nij )∑

i kiδ(ki,k)

〉
. (86)

Assuming that asymptotically in time Nt
B(k|ω) 	 tP (k|ω) we

find the expression for P (k|ω) and substituting this expression
in Eq. (85) we have

P (k|ω) = g(ω)�[2 + eβ(ω−μ̃B )]eβ(ω−μ̃B )�(k)

�[eβ(ω−μ̃B ) + k + 1]
(87)

for k � 2. Therefore, the degree distribution of the entire
network is scale free and given by

P (k) =
∑

ω

P (k|ω) (88)

for k � 2. The fraction of the total number of links attached to
nodes with energy ω is given, asymptotically in time, by

〈k|ω〉 = 1

2

∑
k

kP (k|ω) = g(ω)[1 + ñB(ω)], (89)

where ñB(ω) is defined as

ñB(ω) = 1

eβ(ω−μ̃B ) − 1
. (90)

In Eq. (89) the first term indicates the fraction of links initially
attached to the new nodes of energy ω and is therefore given
by g(ω) because every new link has one end attached to a
new node and the new node has energy ω with probability
g(ω). The second term represents the fraction of links attached
to the nodes of energy ω after the time of their arrival into
the network. This term is proportional to the Bose-Einstein
occupation number.

The curvature Ri of a node i is given by

Ri = 4 − ki

6
. (91)

So the distribution of the curvature P (R) is given by

P (R) =
∑

ω

g(ω)�[2 + eβ(ω−μ̃B )]eβ(ω−μ̃B )�(4 − 6R)

�[eβ(ω−μ̃B ) + 5 − 6R]
, (92)

where R � 1
3 . Therefore, the distribution of the curvature is

scale-free and decaying as a power-law for negative values
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FIG. 12. (Color online) The Bose-Einstein occupation number nB (ε) is extracted from the simulation results by plotting 〈n|ε〉/ρB (ε) (star
points) and compared with the theoretical prediction (solid red line). Data are shown for a Fermi-Dirac network with g(ω) given by a Poisson
distribution with c = 2. The network size is N = 1000 and the simulation results are averaged over 50 runs.

of the curvature. Moreover the average curvature is 〈R〉 =
1/N and the fluctuations around this average N → ∞ are
diverging, i.e., 〈R2〉 → ∞ as N → ∞.

D. Comparison with numerical simulations

We numerically simulate a Bose-Einstein network evo-
lution in which the energies of the nodes are non-negative
integers with g(ω) given by a Poisson distribution with average
c [Eq. (20)] and the link and node energies are related by
Eq. (5) and compare with the theoretical results. We verify that
Eq. (77) is satisfied by the results of the numerical simulations.
In Fig. 12 we plot both sides of the equation

nB(ω) = 〈n|ε〉
ρB(ε)

, (93)

equivalent to Eq. (77) and the degree distribution P (k)
of this network with the theoretical expectation given by
Eq. (88), finding very good agreement between theoretical
and numerical results in both cases (see Fig. 13).

E. Transition: Bose-Einstein condensation

The self-consistent approach for solving the Bose-Einstein
network is based on the assumption that the chemical potential
μB of the network defined in Eq. (73) exists. However, in the
network it is possible to find a phase transition at high enough
inverse temperature, i.e., for β > βc, where this assumption
fails. Since the negative chemical potential, μB < 0, can only
increase with the temperature, the critical value of the inverse
temperature βc is determined by the self-consistent equation
for the chemical potential Eq. (84), where we impose μB = 0
and β = βc, i.e., ∑

ε

ρc
B(ε)

1

eβcε − 1
= 1

2
. (94)

Here ρc
B(ε) is given by Eq. (79) and is calculated for μB = 0.

In a Bose gas of density of states ρB(ε) the existence of a finite
critical temperature βc indicates the onset of the Bose-Einstein
condensation. For the network this indicates that there is a
single link incident to a finite fraction of all the triangles,
and therefore also the degree of the incident nodes is a finite

FIG. 13. (Color online) The degree distribution P (k) of the Bose-Einstein network is plotted with star points for a Bose-Einstein network
with g(ω) given by a Poisson distribution with c = 2. The network size is N = 5000 and the simulation results correspond to a single network
realization. The simulations are compared with the theoretical predictions of Eq. (88), shown as a solid red line.
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FIG. 14. (Color online) The chemical potential μB versus the
inverse temperature β for a Bose-Einstein network with g(ω) =
N 1

ω! z
ω, with ω ∈ [0,100], c = 10, and N indicating a normalization

sum. The critical value of the inverse temperature is βc 	 0.06, which
is in good agreement with the simulations (see Fig. 5).

fraction of the total degree of the network (see Figs. 4–6 and
the discussion of the transition in Sec. II C). This phenomenon
is similar to the one occurring in other models displaying the
so-called Bose-Einstein condensation in complex networks
[59,60]. In Fig. 14 we show the chemical potential μB as
a function of the inverse temperature β for a Bose-Einstein
network with a Poisson distribution g(ω) with average c = 10
[given by Eq. (20)] and a linear relation between the energy
of the links and the nodes [given by Eq. (5)], where in order
to perform the numerical calculation of μB the distribution
g(ω) is truncated at a cutoff value ω� = 100. In this network
a Bose-Einstein phase transition occurs at βc 	 0.06, which is
in very good agreement with the simulation results shown in
Fig. 5.

VII. THERMODYNAMICS OF QUANTUM
GEOMETRIC NETWORKS

A. Relation between the total energy E and the entropy S

Given the quantum geometric network evolution, it is
natural to characterize its thermodynamic properties above
and below the phase transition. Let us define the total energy
E of a quantum geometric network as

E(t) =
∑
i<j

εijnij (t) (95)

and the entropy S(t) of the quantum geometric network
evolution as

S(t) = −
∑

{�(t)}t ′�t

P ({�(t ′)}t ′�t |{ω(t ′)}t ′<t )

× ln P ({�(t ′)}t ′�t |{ω(t ′)}t ′<t ). (96)

In this expression, P ({�(t ′)}t ′�t |{ω(t ′)}t ′<t ) is the probability
that the temporal evolution of the network until time t is
described by the subsequent addition of triangles to the links
{�(t ′)}t ′�t , given that the energies of the nodes until time t − 1
are {ω(t ′)}t ′<t . Together with the definition of H [1] given by

Eq. (11) it can be easily derived that

H [1](t) = 	S(t) = S(t) − S(t − 1). (97)

Moreover, we have already found [Eq. (12)] that

H [1] = β〈εij 〉 + ln Z, (98)

where the average 〈εij 〉 is given by Eq. (13) and can be related
to the expected increment in time of the energy E(t) given by
Eq. (95),

〈εij 〉 = 〈	E〉 = 〈E(t) − E(t − 1)〉. (99)

The relation between 	S and 〈	E〉 can be found using
Eqs. (97)–(99). This relation depends on the inverse tem-
perature β. For β < βc we have that for large times, t � 1,
Z 	 e−βμt , and therefore,

	S 	 β[〈	E〉 − μ] + ln t. (100)

In the limit t → ∞, the chemical potential μ converges to μF

for the Fermi-Dirac network and to μB for the Bose-Einstein
network. Instead, for β > βc we have that Z = O(1). By
putting Z = e−βν = O(1), we have

	S = β[〈	E〉 − ν], (101)

where ν is a stochastic variable depending on the history of
the network.

B. Probability of an unlabeled quantum network final state

Given a network quantum state mapped to a geometric
network with N = t + 2 nodes i = 1,2, . . . ,N ,

|φL(t)〉 =
∏

i

|ωi〉
∏
i<j

|aij 〉
∏

i<j |aij =1

|nij 〉, (102)

consider the unlabeled quantum network state constructed
from it by considering all the permutations of the node labels,

|φS(t)〉 =
∑
{π(i)}

∏
i

|ωπ(i)〉
∏
i<j

|aπ(i)π(j )〉
∏

i<j |aπ(i)π(j )=1

|nπ(i)π(j )〉,

(103)

where π (i) indicates a permutation of all the indices {i =
1,2 . . . ,N} of the nodes. We are interested in evaluating the
probability Pf that the quantum network state |ψN (t)〉 given
that Eq. (38) is found in this unlabeled final network state; i.e.,
we want to calculate

Pf = |〈φS(t)|ψN (t)〉|2. (104)

This is equivalent to calculating the probability that the
geometrical network evolution generates time t networks
that are equivalent under relabeling to the nodes. Any given
history from time t = 1 to time t corresponds to a series of
processes consisting of gluing new triangles to unsaturated
links. Therefore, given a final network state one can prune the
network in the same order at which the triangles have been
added. In this pruning process, we start by removing the last
triangle that has been glued to the network, then removing the
second to last triangle until we reach the initial triangle of the
network evolution. Nevertheless, different network evolutions
can generate networks that only differ by a relabeling of the
nodes corresponding to the same set of triangles added in a
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different order starting from the initial triangle. Finding how
many such histories exist is a problem that can be cast into the
problem of finding the number N of ways we can prune the
network corresponding to the final unlabeled network state.
The pruning of a given geometric network consists of an
iterative process in which one takes randomly any triangle
incident only to a single other triangle and different from the
initial triangle and removes it until the full network is reduced
to the single initial triangle. If we call N the number of ways
this pruning can be done, we find that

Pf =
N 2
(∏

i<j |aij =1 nij !
)

Z e−βE, (105)

where E is given by Eq. (95). Finding N is a combinatorial
problem to be solved for any given final network realization.
The formula for N can be found iteratively using similar
techniques as in Refs. [80,81]. We can interpret

S = 2 ln(N ) (106)

as an entropy associated to the unlabeled network state. With
this notation we have for the Fermi-Dirac network

Pf = e−βE+S

Z (107)

and for the Bose-Einstein network

Pf =
e−βE+S(∏

i<j |aij =1 nij !
)

Z . (108)

VIII. GENERALIZED GEOMETRIC NETWORK MODEL
WITH ENERGY OF THE LINKS

A. The network evolution

Here we consider an extension of the geometric network model
that might allow the generation of networks in which not all the
nodes are at the boundary. In particular, our goal is to describe
geometric network models in which the resulting networks
might contain saturated nodes, i.e., nodes incident only to
saturated links.

Therefore, here we define a generalized geometric network
model where the nonequilibrium network evolution includes
and additional processes with respect to the one introduced
for the geometric networks studied in the previous sections.
We start from a network formed by a single triangle, a
simplex of dimension dn = 2. Each link can belong, at most,
to m triangles. If a link (i,j ) belongs to m triangles, it is
saturated and ξij = 0. If it belongs to less than m triangles it is
unsaturated and ξij = 1. To each node i an energy of the node
ωi is assigned from a distribution g(ω). The energy of the node
is quenched and does not change during the evolution of the
network. Moreover, to each link (i,j ) we associate an energy
of the link εij given by a symmetric function of the energy of
the nodes i and j as in Eq. (1).

At each time we perform two processes: process (a) and
process (b). Process (a) is the same process considered in the
original model described in Sec. II A. Here we consider also
an additional process [process (b)] occurring at each time with
probability p. Process (a) and process (b) are described in the
following.

(i) Process (a). We add a triangle to an unsaturated link
(i,j ) of the network linking node i to node j . We choose this
link with probability �

[1]
(i,j ) given by Eq. (6). Having chosen

the link (i,j ) we add a node r , two links (i,r) and (j,r), and
the new triangle linking node i, node j , and node r .

(ii) Process (b). With probability p we add a single link
between two nodes not already linked and at hopping distance
2, and we add all the triangles that this link closes, without
adding more than m triangles to each link. In order to do this,
we define a variable σ (t) = 1 if process (b) takes place at
time t (event which occurs with probability p) and σ (t) = 0
if process (b) does not take place at time t . If σ (t) = 1, we
choose two unsaturated links (i ′,j ′) and (j ′,r ′) specified by
q = (i ′,j ′,r ′) with probability �

[2]
q=(i ′,j ′,r ′) given by

�
[2]
q=(i ′,j ′,r ′) = 1

C e−β(εi′j ′+εj ′r′ )(1 − ai ′r ′ )

× ai ′j ′ξi ′j ′aj ′r ′ξj ′r ′(1 + ni ′j ′ )(1 + nj ′r ′ )

×
∏
s �=r ′

[ai ′sξi ′sasr ′ξsr ′ (1 + ni ′s)(1 + nsr ′ )],

(109)

where C is the normalization constant and where ξij = 1
indicates an unsaturated link, while ξij = 0 indicates a satu-
rated link. Moreover in Eq. (109) the quantity 1 + nij indicates
the total number of triangles incident to the link (i,j ). Then
we add a link (i ′,r ′) and all the triangles that the link (i ′,r ′)
closes.

In Fig. 15 we show how the generalized growing network
model can be extracted by the generalized growing simplicial
complex evolving through process (a) and process (b).

In Fig. 16 we show schematically the dynamical rules
for building generalized geometrical growing networks with

FIG. 15. (Color online) The generalized growing geometric net-
work model is the underlying network of a growing simplicial
complex evolving by process (a) and process (b). In process (a) a
new triangle is connected to the network and glued to an existing
unsaturated link of the network. In process (b) two nodes at distance
2 connected by unsaturated links are connected by a new link, and
all the triangles that this link closes are added, provided that no more
than m triangles are incident to each link. In the figure the case with
m = 2 is plotted.
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FIG. 16. (Color online) The generalized Fermi-Dirac network
evolution (panel a) and the generalized Bose-Einstein network
evolution (panel b). At each time a new triangle is added to a link (i,j )
chosen according to the probability �

[1]
(i,j ) given by Eq. (6) [process

(a)], and with probability p also process (b) takes place and a new link
is added between two nodes at distance 2 with probability chosen with
�

[2]
q(t) given by Eq. (109). The maximal number of triangles incident to

a link are m = 2 for the generalized Fermi-Dirac network evolution
and m = ∞ for the generalized Bose-Einstein network evolution. In
the figure, at time t = 3 process (b) takes place and the new link
added according to this process is plotted with a thick green line.

m = 2 and m = ∞ that we call, respectively, generalized
Fermi-Dirac network and generalized Bose-Einstein network.

B. Entropy rate of the generalized geometric network

Calling �(t) = {ω(t),�(t),σ (t),q(t)} the generalized ge-
ometric network evolution is described by the sequence
{�(t ′)}t ′�t . At time t the sequence includes the new terms
�(t). The entropy rate of the generalized geometric growing
network is

HG(t) = −
∑
�(t)

∑
q(t)

P(�(t)|{�(t ′)}t ′<t )

× lnP(�(t)|{�(t ′)}t ′<t )), (110)

where P(�(t)|{�(t ′)}t ′<t )) indicates the probability of having
�(t) given {�(t ′)}t ′<t . The probability of ω(t) = ω is g(ω),
and it is independent of all the other precedent events.
The probability of �(t) is given by �

[1]
�(t), as in Eq. (6).

The probability of having process (b), i.e., σ (t) = 1, is p,
and the probability of not having process (b), i.e., σ (t) = 0, is
1 − p. Finally, if the process (b) takes place, the probability of

q(t) is �
[2]
q(t), as in Eq. (109). The entropy rate of the network

evolution can therefore be written as the sum of three different
entropy rates,

HG(t) = Hω + H [1](t) + H [2](t). (111)

Here Hω is the contribution to the entropy rate due to the
time-independent random distribution of the energy of the
nodes,

Hω = −
∑

ω

g(ω) ln g(ω). (112)

The quantity H [1](t) indicates the contribution due to process
(a),

H [1](t) = −
∑
�(t)

�
[1]
�(t) ln �

[1]
�(t), (113)

while H [2](t) indicates the contribution due to process (b),

H [2](t) = −(1 − p) ln(1 − p) −
∑
q(t)

p�
[2]
q(t) ln

[
p�

[2]
q(t)

]
.

(114)

A change in the scaling of H [1](t) + H [2](t) with time indicates
a phase transition in the network. Such a phase transition can
occur at high values of the inverse temperature β, where the
network dynamics can become extremal, similar to what we
have seen occurring in the precedent sections in the case p = 0.

C. Phase transition in the generalized geometric networks

Except for the case m = 2, which is planar, the generalized
geometric network model with p > 0 is not planar, and we
have

lim
t→∞

χ

t
> 0. (115)

In fact, if process (b) occurs, we add zero new nodes, one new
link, and we have the possibility to add more than one triangle
if m > 2. Therefore, we have that at any given time

〈	χ〉 = 〈χ (t) − χ (t − 1)〉 > 0. (116)

For these networks we extend the definition of the curvature
defined for planar graphs [16,17] and we take the curvature Ri

associated with each node i of the network given by

Ri = 1 − ki

2
+ Ti

3
, (117)

which is the same definition as in Eq. (19), apart from that
there is no simple relation between ki and Ti . Here we focus,
in particular, on the cases m = 2 and m = ∞ and we show
numerical evidence that a phase transition might occur in these
networks. Specifically, we consider the case in which ω can
only take integer values and the distribution g(ω) is Poisson
with average c, i.e., Eq. (20), and node and link energies are
related by Eq. (5).

As a function of β we observe a phase transition both in
the case of the generalized Fermi-Dirac network and in the
case of the generalized Bose-Einstein network. For β > βc the
structure of the network and its geometry change drastically as
it can been seen already from the visualizations of the networks
(Fig. 17 for the generalized Fermi-Dirac network and Fig. 18
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FIG. 17. (Color online) Visualization of the generalized Fermi-Dirac network with a Poisson energy distribution of the nodes g(ω) given
by Eq. (20), c = 10, β = 0.05,0.5,5, N = 1000, and p = 0.9. For low value of β, i.e., β < βc, the network is small world; for large values
of β, i.e., β > βc, the network develops a large diameter. The color indicates the partition into communities found by running the Louvain
algorithm [77].

for the generalized Bose-Einstein network). The transition
is characterized by a different scaling of the entropy rate
H [1](t) + H [2](t) below and above the transition. For β < βc,
H [1](t) + H [2](t) increases with time as H [1](t) + H [1](t) 	
ln(t). For β > βc instead, H [1](t) + H [2](t) = O(1) fluctuates
widely during the network evolution. Here we discuss in detail
the consequences of this phase transition in the generalized
Fermi-Dirac network and in the generalized Bose-Einstein
network. In Fig. 19 we show major geometrical and structural
properties of the network as functions of the inverse tempera-
ture β across the phase transitions. In particular, we display the
maximal shortest (hopping) distance from the initial triangle
D, the maximum degree kmax of the network, the entropy rate
H [1] + H [2], the modularity M calculated using the Louvain
algorithm [77], and the average clustering coefficient C across

the phase transitions. In Fig. 20 we show major geometrical
and structural properties of the network as functions of time for
given values of β below and above the transition for p = 0.9.
Finally, in Figs. 21 and 22, we show the degree distribution
P (k), the average clustering coefficient C(k) of nodes of degree
k, and the distribution of the curvature P (R) for the generalized
Fermi-Dirac network and for the generalized Bose-Einstein
network below and above the phase transition.

In the generalized Fermi-Dirac network, for β < βc, D

grows logarithmically with time (i.e., the network is small-
world), and the degree distribution P (k) is exponential. For
β > βc, D grows as a power law with time (i.e., the network
is not anymore small world), kmax increases significantly, and
P (k) follows a power-law. For every value of β, the network
has high modularity M and a hierarchical structure [78], with

FIG. 18. (Color online) Visualization of the generalized Bose-Einstein network with a Poisson energy distribution of the nodes g(ω) given
by Eq. (20), c = 10, β = 0.05,0.5,5, N = 1000, and p = 0.9. For low value of β, i.e., β < βc, the network is small world; for large values of
β, i.e., β > βc, the network is condensed and develops a small diameter. The color indicates the partition into communities found by running
the Louvain algorithm [77].

022815-20



COMPLEX QUANTUM NETWORK GEOMETRIES: EVOLUTION . . . PHYSICAL REVIEW E 92, 022815 (2015)

10-2 10-1 100 101
20

40

60

80

100 N=10000
N=5000
N=2500

m = 2

N=10000
N=5000
N=2500

N=5000
N=2500
N=1250

10-2 10-1 100 101

4

6

8

10-2 10-1 100 101
0

100
200
300
400
500
600 N=10000

N=5000
N=2500

10-2 10-1 100 101
10-1

100
N=5000
N=2500
N=1250

10-2 10-1 100 101
10-1

100

101

10-2 10-1 100 101
100

101

N=5000
N=2500
N=1250

10-2 10-1 100 101

0.8

0.9

1.0

N=10000
N=5000
N=2500

10-2 10-1 100 101

0.2

0.4

0.6

N=5000
N=2500
N=1250

10-2 10-1 100 101
0.70

0.75

0.80

0.85

0.90

0.95
N=10000
N=5000
N=2500

10-2 10-1 100 101
0.7

0.8

0.9

1.0 N=5000
N=2500
N=1250

m=

FIG. 19. (Color online) The maximal distance D from the initial triangle, the maximal degree kmax, the entropy rate H [1] + H [2], the
modularity M calculated using the Louvain algorithm [77], and the average clustering coefficient C, are plotted as functions of the inverse
temperature β for the generalized Fermi-Dirac network (m = 2) and for the generalized Bose-Einstein network (m = ∞), with p = 0.9. The
networks have links with energies following a Poisson distribution g(ω), with average c = 10. The data are reported for networks of size
N = 10 000 (averaged 30 times), N = 5000 (averaged 60 times), N = 2500 (averaged 90 times), and N = 1250 (averaged 120 times).
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FIG. 20. (Color online) The maximal distance D from the initial triangle, the maximal degree kmax, and the entropy rate H [1] + H [2] are
plotted as functions of time t for the generalized Fermi-Dirac network (m = 2) and for the generalized Bose-Einstein network (m = ∞) with
p = 0.9. The inverse temperatures are β = 0.05 and β = 5, respectively, below and above the phase transitions. The networks have nodes with
energies following a Poisson distribution g(ω) with average c = 10. The data are averaged 20 times.

an average clustering coefficient C(k) of nodes of degree k

decaying as C(k) 	 k−α and α = 1. The curvature distribution
P (R) has a negative tail.

In the generalized Bose-Einstein network, for β < βc,
kmax scales sublinearly with the network size, D increases
logarithmically with the network size (i.e., the network is
small-world), the degree distribution P (k) is scale free, the
network has high modularity M , and P (R) has a scale-free
positive tail. For β > βc, kmax scales linearly with the network
size (i.e., the largest node is linked to a finite fraction of
the links), D decreases significantly, P (k) is dominated by
outlier hubs, the network has low modularity M , and P (R)
has a positive tail dominated by outliers. For every value of β,
the network has a hierarchical structure [78], with an average
clustering coefficient C(k) of nodes of degree k decaying as
C(k) 	 k−α and α � 1.

IX. GENERALIZED QUANTUM NETWORK EVOLUTION

The evolution

Here we consider a generalized quantum network state
evolution corresponding to the generalized geometric network
evolution using a similar approach as in the case p = 0. We
start from an initial condition given by

|ψN (1)〉 = 1√
Z(1)

∑
ω1,ω2,ω3

[∏
i=1,3

ρ(ωi)b
†
i (ωi)

]
c
†
12c

†
23c

†
13|0〉,

(118)

where Z(1) enforces the normalization condition
〈ψN (1)|ψN (1)〉. The evolution of the quantum network
state is a nonequilibrium Markovian dynamics obtained
applying the unitary operator Ut to the state |ψN (t − 1)〉. This
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FIG. 21. Structural and geometrical properties of the generalized
Fermi-Dirac network as functions of the inverse temperature β for
single network realizations of size N = 105. The degree distribution
P (k), the average clustering coefficient C(k) of nodes of degree k, and
the distribution of the curvatures P (R) are plotted for β = 0.05,0.5,5
and p = 0.9. The networks have nodes with energies following a
Poisson distribution g(ω) with average c = 10. For low values of β,
i.e., β < βc, both P (k) and P (R) are exponential, while for large
values of β, i.e., β > βc, they become power law. The average
clustering coefficient C(k) of nodes of degree k C(k) always goes
like C(k) ∝ k−1.

dynamics and the operator Ut are defined as in

|ψN (t)〉 = Ut |ψN (t − 1)〉

=
√
Z(t−1)

Z(t)

⎡⎣√1−p+√
p

∑
i ′,j ′,r ′|i ′<r ′

e−β(εi′j ′+εj ′r′ )/2

× c
†
i ′r ′

(∏
s

h
†
i ′sh

†
sr ′

)
c
†
j ′r ′cj ′r ′c

†
i ′j ′ci ′j ′

⎤⎦
×
∑
ωt+2

∑
i,j |i<j

√
g(ωt+2)e−βεij /2

× b
†
t+2(ωt+2)c†(t+2)ic

†
(t+2)jh

†
ij c

†
ij cij |ψN (t−1)〉,

(119)

where Z(t) is fixed by the normalization condition
〈ψN (t)|ψN (t)〉 = 1. Moreover, the quantum operator h

†
ij in

Eq. (119) depends on the type of the quantum network state,
i.e.,

h
†
ij =

⎧⎪⎨⎪⎩
d
†
ij

generalized Fermi-Dirac,
quantum network state,

d̃
†
ij

generalized Bose-Einstein,

quantum network state.

With a long but straightforward calculation, following the same
steps as for the original Fermi-Dirac network state and the

FIG. 22. Structural and geometrical properties of the generalized
Bose-Einstein network as functions of the inverse temperature β for
single network realizations of size N = 105. The degree distribution
P (k), the average clustering coefficient C(k) of nodes of degree k, and
the distribution of the curvatures P (R) are plotted for β = 0.05,0.5,1
and p = 0.9. The networks have nodes with energies following a
Poisson distribution g(ω) with average c = 10. For low values of β,
i.e., β < βc, both P (k) and P (R) are scale free, while for large values
of β, i.e., β > βc, these distributions become dominated by outliers.
The average clustering coefficient C(k) of nodes of degree k always
goes like C(k) ∝ k−α with α � 1.

original Bose-Einstein network state, it is possible to show
that the normalization constant Z(t) can be interpreted as a
path integral over the paths corresponding to the evolution of
the generalized growing geometric networks, allowing us to
obtain the generalized Fermi-Dirac network for m = 2 and the
generalized Bose-Einstein network for m = ∞.

X. DUAL NETWORKS AND CONNECTION BETWEEN
THE FERMI-DIRAC QUANTUM NETWORK

AND SPIN NETWORKS

Starting from the Fermi-Dirac quantum network, we can
construct the dual network by mapping each triangle of the
original network to a node of the dual network and every link
of the original network to a link in the dual network (see
Fig. 23).

Each node of the dual of the Fermi-Dirac network has
degree 3. A link of the dual network can be saturated or
unsaturated. A link of the dual network is saturated if it
connects two nodes of the dual network. This happens if and
only if the two corresponding triangles of the original network
are glued together (i.e., they have a common link). A link
of the dual network is unsaturated if it does not connect two
nodes. This happens if a triangle of the original network has
an unsaturated link.

As the Fermi-Dirac network grows, also the dual network
grows. In the original Fermi-Dirac network only process (a)
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FIG. 23. (Color online) Fermi-Dirac network and its dual net-
work. In the case in which only process (a) takes place the dual
network is a tree. In the case in which also process (b) takes place
the dual network contains loops. In this case we have explicitly
drawn the triangles forming the underlying simplicial complex of
the Fermi-Dirac networks. The nodes of the dual network are plotted
as red squares and correspond to the triangles of the Fermi-Dirac
network. The links � of the dual network correspond to the links (i,j )
between nodes i and j of the Fermi-Dirac network and are associated
to a spin variable J� = Jij = εij /2. The links of the dual are indicated
with red lines and can be saturated (if they join two nodes of the dual
network) or unsaturated if they connect only to a single node of the
dual network.

takes place; therefore, the dual network is a tree. If instead one
considers the generalized Fermi-Dirac network, in which also
process (b) takes place, the dual network contains loops (see
Fig. 23).

In the case in which the energies of the nodes take only
integer values we can interpret the dual network as a spin
network [6–8]. In fact, we can associate to the link � = (i,j )
of the dual network the half-integer spin Jij given by Eq. (2)
satisfying the Clebsch-Gordon conditions given by Eq. (3) at
each node of the dual network. Nevertheless, we note here that
the quantum evolution of the proposed Fermi-Dirac network
is a nonequilibrium dynamics and not an equilibrium one as
usually assumed in the context of spin networks.

In the case of the Bose-Einstein networks it is also possible
to construct the dual network following a similar procedure
used for constructing the dual of the Fermi-Dirac network, but
in this case the dual will not be regular, since each triangle in the
Bose-Einstein network model can be linked to an arbitrarily
large number of other triangles incident to the links at its
boundary.

It worth mentioning that in the literature of quantum gravity
spin networks with a causal structure have been proposed and
are the so-called energetic causal sets [51–53]. Therefore, it
will be interesting to explore further the connections between
the Fermi-Dirac networks and energetic causal sets.

Our framework is instead quite far from the spin net-
works used in loop quantum gravity. Notably, in complex
quantum network geometries we do not make use of in-
tertwines, and the network does not have relevant simple
symmetries.

XI. RELATION TO TRIANGULATIONS, FOAMS,
AND PLANAR GRAPHS

Planar complex networks have already been studied in
the literature in several contexts [26–29,82–84], including the
study of glass and foams and planar complex networks.

The model most closely related to our model is the scale-
free random network constructed by adding randomly triangles
to links [26]. Nevertheless, our model does not reduce to this
model for any value of the parameters. In fact, also the Bose-
Einstein network for β = 0 is not equivalent to this model. The
difference is that in the Bose-Einstein network at β = 0, each
link is not chosen randomly, but proportionally to the number
of triangles already incident to it (i.e., 1 + nij ), according to a
kind of “preferential attachment” to the link.

Other planar scale-free network models are the pseudofrac-
tal scale-free network [27] and the Apollonian networks [28].
These network models are deterministic and yield scale-free
networks with given power-law exponent, while the Bose-
Einstein networks are stochastic planar scale-free networks
whose power-law exponent depends on the distribution g(ω)
and on the value of the inverse temperature β.

Other models for complex networks embedded into surfaces
have been recently proposed [29], extending approaches used
already in the study of glasses and foams [83,84]. In Ref. [29]
maximal embedded graphs have been characterized using a
Monte Carlo algorithm determined by a Hamiltonian which
is a function of the degree of the nodes. This dynamics can
explore networks embedded in surfaces of different genus and
displays a dynamical slowing down as a function of the inverse
temperature of the Monte Carlo algorithm. Therefore, in these
simulations the ground state, ordered network is not observed,
similarly to what has been observed in models of glass and
foam dynamics [83,84]. This approach is very different from
the one proposed in the present article, although the focus
is always the characterization of the network geometry. For
example, the phase transitions present in the quantum complex
network geometries are very different from the one observed
in Refs. [29,83,84]. In fact, in the complex quantum network
geometries the observed phase transitions are nonequilibrium
phase transitions and they are determined by the quenched dis-
order in the network. Instead, in Refs. [29,83,84] the network
has an equilibrium Hamiltonian dynamics, the ground state is
well defined but there is a dynamical slow down. Moreover,
in complex quantum network geometries the observed phase
transitions can change the metric properties of the networks,
which can go from a small-world network to a network with
large diameter without changing its Euler characteristic, as
in the case of the phase transition observed for Fermi-Dirac
networks. Instead, in Ref. [29], changes from small-world
networks to networks with large diameter occur as functions
of the Euler characteristic of the network.

XII. CONCLUSIONS

In this work we have proposed to study a geometrical
network evolution based on growing simplicial complexes of
dimension 2, i.e., simplicial complexes formed by triangles.
The network evolution describes the evolution of a quantum
network state defined by a path integral. The quantum network
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states are characterized by a set of quantum occupation
numbers that can be mapped to the existence of nodes, links,
and triangles incident to the links of the geometric network. In
particular we distinguish between Fermi-Dirac network states
in which the incident triangle quantum occupation number can
take only values 0,1 and the Bose-Einstein quantum network
state where it can take any possible integer value 0,1,2, . . . The
Fermi-Dirac network describes the evolution of the quantum
Fermi-Dirac network state and the Bose-Einstein network
describes the evolution of the quantum Bose-Einstein network
state. The average of the number of triangles exceeding one
and incident to links of energy ε follows the Fermi-Dirac
and the Bose-Einstein statistics in the Fermi-Dirac and in the
Bose-Einstein networks, respectively. The Fermi-Dirac and
the Bose-Einstein networks are complex networks, including
the small-world property, high clustering coefficient, exponen-
tial and scale-free degree distributions, and high modularity.
The proposed network models have an emergent random
geometry, since their Euler characteristic can go from χ = 1
(planar networks) to χ ∝ N , where N are the number of nodes
in the network, and can have a nontrivial distribution of the

curvature P (R). Moreover, these networks can have a phase
transition as a function of the external parameter β, called the
inverse temperature. For β > βc the Fermi-Dirac network is
not anymore small world and the diameter D grows as a power
law of the number of nodes N . For β > βc the Bose-Einstein
network undergoes a Bose-Einstein condensation, and one link
acquires a finite fraction of triangles; therefore, the two nodes
at the two ends of the link have a finite fraction of all the links.

We believe that this model can be used to explore further
the relation of complex geometries with quantum mechanics.

In the future, we plan to explore further the geometrical
network model by characterizing the networks with general
values of the parameter m, defining the corresponding quantum
state evolution and characterizing further their topological
and geometrical properties. Moreover, we plan to study how
quantum dynamical processes [85–89] can be affected by the
structure of these networks. Finally, we plan to consider equi-
librium network models describing the underlying structure of
simplicial complexes and to explore the possibility to observe
further structural phase transitions in geometrical complex
networks.
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