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Prognostic interaction patterns in diabetes mellitus II: A random-matrix-theory relation
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We analyze protein-protein interactions in diabetes mellitus II and its normal counterpart under the combined
framework of random matrix theory and network biology. This disease is the fifth-leading cause of death in
high-income countries and an epidemic in developing countries, affecting around 8% of the total adult population
in the world. Treatment at the advanced stage is difficult and challenging, making early detection a high priority
in the cure of the disease. Our investigation reveals specific structural patterns important for the occurrence of
the disease. In addition to the structural parameters, the spectral properties reveal the top contributing nodes
from localized eigenvectors, which turn out to be significant for the occurrence of the disease. Our analysis is
time-efficient and cost-effective, bringing a new horizon in the field of medicine by highlighting major pathways
involved in the disease. The analysis provides a direction for the development of novel drugs and therapies in
curing the disease by targeting specific interaction patterns instead of a single protein.
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I. INTRODUCTION

Diabetes mellitus II (DM-II) is a metabolic disorder which
is known to be a complex and multifactorial disease [1–4].
The World Health Organization statistics reveal that DM-II
had affected nearly 325 million people up to 2013, of which
46% of cases are undiagnosed, and the disease shows a
rising trend worldwide [5–7], making it the fifth-leading
cause of death in high-income countries and an epidemic in
developing countries [8,9]. It is one of the most important
noncommunicable diseases of the 21st century, in terms of
both mortality and morbidity [10]. Indecent lifestyle, increased
urbanization, unhealthy behaviors, and obesity are some of the
major causes behind the disease [11,12]. According to a recent
study, individuals with this complex disease spend on average
more than $85,000 on treatment and its complications over
their entire lifetimes, anda trillion dollars is spent on health
and diseases worldwide [13,14]. But the research pertaining
to the development of novel treatments and methods of
cure is exhaustive [8]. Even with the enormous investment
in pharmacological research and clinical trials in the past
decades, there has not been a proportionate advancement in
clinical results. All these factors demand a new perspective in
disease research, which we provide here using the combined
framework of random matrix theory (RMT) and network
theory. This framework predicts important structural patterns
crucial for the disease and is very time-efficient and cost-
effective.

A few network studies done on DM-II reveal some
important pathways associated with insulin signaling using
microarray data sets [15–18]. These studies are based on a
handful of disease-associated proteins, while our investigation
for the first time performs an extensive analysis of all the
pancreatic cell proteins. We investigate DM-II at the proteomic
level using network biology along with the eigenvector
localization under the RMT framework. This mathematical
theory was formulated six decades ago in order to understand
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the spectra of compound nuclei [19]. Later on, the theory
has shown remarkable success in clarifying various complex
systems ranging from quantum chaos to galaxy, stock market,
power grid, etc. [20–22]. In recent years, this theory has
shown credibility in studies of various biological systems
like gene coexpression networks, protein-protein interaction
(PPI) networks, understanding of the genetic variance among
species, etc. [23–25]. In the current work, we construct the
protein-protein interaction network of DM-II by analyzing
normal and disease states of pancreatic cells and investigating
their structural properties, which are further compared with the
properties of random networks. The analysis reveals specific
structural patterns, as well as nodes contributing significantly
to the most localized eigenvector, that are crucial for the
occurrence of the disease.

II. MATERIALS AND METHODS

A. Data assimilation and network construction

In the PPI network of DM-II, nodes are the proteins
and edges denote the interactions between these proteins.
After diligent and enormous effort, we collected the protein
interaction data from various literature and bioinformatic
sources. To preserve the authenticity of the data, we take
into account only proteins which are reviewed and cited. We
consider two widely used bioinformatic databases, namely,
GenBank from NCBI [26] and UniProtKB, consisting of data
available from other resources like the European Bioinformatic
Institute, the Swiss Institute of Bioinformatics, and the Protein
Information Resource [27]. The protein data from the above
resources are very few in number. To add more information, we
take highly studied DM-II cell lines whose protein expression
data are known. Here, we use the protein expression data of
EndoC-βH1 cells in the disease data set [28]. Since there are
very few human cell lines available, we take the mouse and rat
cell lines, namely, MIN and INS-1, the proteins of which have
already been proved to behave similarly in humans [29,30].
After collecting the proteins for both data sets, their interacting
partners are downloaded from the STRING database [31]. We
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take into account only the largest subnetworks from the normal
as well as from the disease data and investigate their structural
and spectral properties.

B. Structural measures

The adjacency matrix of the PPI networks can be represented
as follows:

Aij =
{

1 if i ∼ j,

0 otherwise. (1)

The degree of a node (ki) is defined as the number of neighbors
the node has (ki = ∑

j Aij ). The degree distribution p(k),
revealing the fraction of vertices of degree k, is known as the
fingerprint of the network [32]. Another important parameter
is the (CC) of the node (i), which is defined as the ratio of the
number of connections a particular node has to the possible
number of connections that it can have [33]. The average CC
of the network characterizes the overall tendency of nodes to
form clusters or groups. Further, the betweenness centrality
of a node is defined as the fraction of shortest paths between
node pairs that passes through the said node of interest [34].
Another important parameter is the diameter of the network,
which measures the longest of the shortest paths between all
the pairs of nodes [32].

C. Spectral techniques

Eigenvalues of the adjacency matrix [Eq. (1)], denoted
λ1 > λ2 > λ3 > · · · > λN , are referred to as network spectra.
Further, we use the IPR to analyze localization properties of
the eigenvectors. The IPR of the kth eigenvector Ek , with its
lth component denoted Ek

l , can be defined as

I k =
∑N

l=1

[
Ek

l

]4

( ∑N
l=1

[
Ek

l

]2)2 (2)

which shows two limiting values: (i) a vector with identical
components Ek

l ≡ 1/
√

N has I k = 1/N , whereas (ii) a vector
with one component Ek

1 = 1, and the remainder being 0, has
I k = 1. Thus, the IPR quantifies the reciprocal of the num-
ber of eigenvector components that contribute significantly.
An eigenvector whose components follow a Porter-Thomas
distribution yields I k = 3/N [35], and those which deviate
from this value provide system-dependent information [36].
We further calculate the average value of the IPR, in order to
measure the overall localization of the network calculated as
〈IPR〉 = ∑N

k=1 I k/N .

III. RESULTS: STRUCTURAL PROPERTIES OF NORMAL
AND DISEASE NETWORKS

The normal data set has 4613 nodes (proteins) with
26,035 connections (interactions) among them, while the
disease data set comprises 1100 nodes and 5578 connections,
demonstrating that the disease data consist of fewer proteins
and connections than the normal data. One of the possible
reasons behind this is the limited availability of data for
the disease state as discussed in Sec. II A. Another possible
reason is that in the disease state, many pathways are silenced
or levels of protein expression are altered, leading to fewer

TABLE I. Detailed parameters for normal and disease subnet-
works. The columns represent the total number of proteins (nodes)
in the network, N , collected using various databases (described in
the Method section), number of connections in the subnetworks NC ,
average degree 〈k〉, diameter (D), average clustering coefficient 〈CC〉,
number of nodes having CC = 1 in the whole network (Nclus=1),
average inverse participation ratio 〈IPR〉, and number of degenerate
eigenvalues in the whole network at −1 (λ−1) and 0λ0 for the
subnetworks of both the normal and the disease state.

Network N NC 〈k〉 D 〈CC〉 Nclus=1 〈IPR〉 λ−1 λ0

N1 2083 11017 10 17 0.35 6.1% 0.010 1.8% 3.1%
N2 1705 9888 11 12 0.33 6.2% 0.008 1.8% 3.5%
D1 656 3628 11 10 0.36 6.0% 0.015 1.06% 3.6%
D2 384 1882 10 9 0.46 7.8% 0.032 4.9% 7.2%

proteins [37]. The normal and the disease data sets lead to
many connected clusters or subnetworks, whose sizes are
summarized in the second column in Table I. Here, we perform
statistical analysis of the two largest clusters for both the
normal and the disease data sets. The third column in Table I
conveys that even with fewer nodes, the disease subnetworks
possess almost the same 〈k〉 as the normal ones. Further,
the disease subnetworks exhibit relatively smaller diameters
compared to the normal ones. Since a small diameter facilitates
rapid communication [33], up-regulation and down-regulation
of pathways may be one of the reasons behind the faster
signaling leading to the disease state. Further, we calculate
the average CC of all the subnetworks along with the total
number of nodes having CC = 1 (Nclus=1) as listed in Table I.
The percentages of nodes having this property for the normal
and all the disease subnetworks, except D2, are approximately
same. For D2, the number of nodes having CC = 1 is slightly
higher compared to that in other subnetworks, indicating the
presence of more clique structures in this subnetwork. The
importance of cliques and relevance of this structure for
the disease become more clear in Sec. III A. In addition,
there is a high degeneracy at −1 and 0, denoted λ−1 and
λ0 (Table I), for all the subnetworks. The occurrence of −1
eigenvalues indicates the existence of complete subgraphs or
structures close to complete subgraphs [38]. The number of
zero degeneracies has a direct relation to the number of exact
and partial duplicates, as both of them contribute to lowering
the rank of the corresponding matrix [39]. A large number
of λ0 in real networks indicates a high number of exact and
partial duplicates. Note that an isolated node also contributes
to lowering the rank of the matrix and hence adding to the zero
degeneracy. This trivial situation does not arise here as we
consider connected clusters. The values of λ0 for all the real
networks are much higher than those for their corresponding
model networks as reported in Tables I and II. We return to this
point in Sec. V A when discussing nodes which are localized
as well as functionally important.

The degree distributions p(k) of both the normal and the
disease subnetworks follow power law [40], indicating that
few nodes have a very high degree. Earlier structural analyses
of DM-II networks also emphasize that proteins having a
large number of interactions are functionally important [41].
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TABLE II. The corresponding Erdös-Rényi (ER), small world (SM), and configuration (conf) models for all the normal and disease data
sets. The parameters show all the results as an ensemble average of 10 realizations of the ER, SM, and conf networks with the same N and 〈k〉
as for real networks.

Network 〈CC〉ER NER
clus=1 λER

−1 λER
0 DER 〈CC〉SW NSW

clus=1 λSW
−1 λSW

0 DSW 〈CC〉conf N conf
clus=1 λconf

−1 λconf
0 Dconf

N1 0.005 0 0 0 6 0.36 0 0 0 7 0.023 7 0 1.5% 7
N2 0.007 0 0 0 6 0.36 0 0 0 7 0.027 4 0 1.7% 7
D1 0.017 0 0 0 7 0.32 0 0 0 6 0.083 12 0 4.5% 7
D2 0.027 0 0 0 7 0.44 0 0 0 6 0.123 7 0 2.1% 6

Since the present investigation uses a much larger number of
proteins and interactions compared to any other work done
on DM-II, our data sets reveal new proteins that turn out
to be on top in the degree distributions. The bigger data set
used in our investigation arises for the following two reasons:
first, we made an exhaustive literature search for almost all
the authenticated databases to construct our data set; and
second, new proteins and interactions have been revealed since
2008 [41], contributing additional interactions to the proteins
in our data set.

High-degree nodes are involved in insulin production and
are known to be regulated in the disease state, leading to
lower production of insulin. A detailed functional descrip-
tion of high-degree nodes is deferred to the Supplementary
Material [40]. Further, since the power-law degree distribution
is known to confer robustness to the underlying network
against random external perturbations as well as to instill
complexity in the corresponding system [32], the similar
behaviors exhibited by the disease and normal networks
bring them into the same universality class as other complex
biological systems [42]. It follows that the overall structural
properties, such as diameter, CC, average degree, and degree
distribution, of disease and normal subnetworks are similar,
indicating complex interactions and fast dissemination of
information in the pancreatic cell, which is in line with other
complex systems. Important differences between the disease
and the normal states are revealed when we analyze nodes
forming complete subgraphs as well as those appearing in
spectral analysis under the RMT framework.

A. Preserved structures through clique formation

All the subnetworks have a very high value of 〈CC〉 as
reported in Table I. This implicates the presence of a high
number of triangles or cliques of order 3 [33]. Cliques indicate
preserved interactions in the networks and are believed to
be conserved during evolution [43]. Further, these structures
are also considered to be the building blocks of a network,
making the underlying system more robust [44] and stable [45].
Therefore, we hope to reveal important information by
analyzing these patterns in detail. We focus on nodes that have
CC = 1 and are common in both the networks. It turns out
that there are 34 nodes appearing commonly in the normal
and disease data sets. We perform an extensive functional
analysis [40] of these nodes to study the differences between
the states, as these proteins enjoy special structural features
in the networks. Of 34 proteins, 28 are directly responsible
for the occurrence of DM-II, for instance in regulation of
the insulin level in the blood [46], insulin resistance and

aberrant glucose metabolism [47], and lipid metabolism and
obesity [48]. Overall, nodes having CC = 1 and common in
both the disease and the normal data sets play a significant role
in the occurrence of the disease [40]. We further compare these
structural properties to various other model networks, namely,
random, small world (SW), and configuration networks, to
examine the deviation of the disease and normal networks
from the random controls.

IV. COMPARISON WITH VARIOUS RANDOM
CONTROL NETWORKS

A. Erdös-Rényi (ER) random model

To create corresponding ER networks [49], we connect
nodes with a fixed probability p, calculated as 〈k〉/N . Prop-
erties of corresponding ER random networks thus constructed
are summarized in Table II. Owing to the very nature of
construction of the ER networks, we get a very small CC
(CC ∼ k/N). In addition, the ER random network depicts no
degeneracy at zero eigenvalue.

B. Small world network
Since all the disease networks have a significantly high

value of 〈CC〉, indicating hidden importance of network
interactions contributing to this property, we attempt to model
this using a corresponding SW network algorithm (Table II).
The SW networks are generated using the Watts-Strogatz
algorithm [33]. Starting from a regular lattice, connections
are rewired with probability p. The rewiring probability is
chosen in such a manner that it leads to the desired CC
matching the corresponding real networks. It turns out that
while the model network contribution to the CC comes from
almost all the nodes, for real-world networks only 75%–80%
of nodes contribute to the CC of the network and the rest
of the nodes do not have any interacting neighbors, i.e., they
form starlike structures. Additionally, real networks have a
significant number of nodes with CC = 1, a property which,
again, is not found in the corresponding model network. As
elaborated in the previous section (Sec. III A), nodes with
CC = 1 have a special role in the occurrence of the disease,
making the deviation of CC = 1 properties of the nodes from
the model networks more crucial. Next, SW networks also do
not exhibit any degeneracy at 0, which is very much expected
from the way this network is constructed. In SW networks
almost all the nodes form a ring structure, and hence this rules
out two (or more) nodes sharing the same neighbors.
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C. Configuration model

The ER random and SW networks, being the simplest
models for capturing various properties of real systems,
fail to model one of the very important aspects of many
real-world networks including those considered here. The
degree distribution of ER random networks follows a Poisson
distribution, whereas those investigated here follow power-law
behavior, as the configuration model preserves the exact degree
sequence of a network [50]. The configuration model generates
a random network with a given degree sequence of an array
of size m = 1

2

∑N
i=1 ki which has random connections among

different elements. We generate 10 such realizations for a given
degree sequence.

The CC and IPR of all the configuration model networks
are all the same as for the ER random networks (Table II),
as expected from the configuration model algorithm. Further,
we note that all these model networks, while acting under
one or the other constraint, are basically built upon random
interactions, i.e., the pairs of nodes that should interact are
chosen randomly out of many possible configurations. There
are features which real-world systems are supposed to lack
that in turn are captured in various spectral properties. For
instance, none of the random controls are able to reproduce
nodes having CC = 1 and high degeneracy at −1. But there
is a high value of the zero degeneracy. The occurrence of the
zero degeneracy for the configuration model is not surprising
owing to the power-law nature of the degree distribution which
is known to contribute into zero degeneracy [39].

It follows that while networks corresponding to various
random models manifest diameters different from those of
the real networks, the SW networks model the high-CC
property and the configuration model captures the high-zero-
degeneracy property possessed by the real networks. In the
next sections, we delve into understanding the localization
properties of the four subnetworks.

V. LOCALIZATION BEHAVIOR OF THE NORMAL AND
DISEASE NETWORKS

We calculate the eigenvector localization using the IPR
[Eq. (2)], and based on the localization behavior, we can
divide the individual spectrum into two components. The first
component follows RMT predictions of the Porter-Thomas
distribution of Gaussian Orthogonal Ensemble statistics [51],
and the other one deviates from this universality and indicates
localization (Fig. 1).

The very distinct interpretation of this behavior of universal
and nonuniversal (deviation from universality) components is
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FIG. 1. (Color online) Eigenvector localization for both the nor-
mal and the disease subnetworks. The IPR of both the normal (N1 and
N2) and the disease (D1 and D2) networks, clearly reflecting three
regions: (i) a degenerate part in the middle, (ii) a large nondegenerate
part which follows Gaussian Orthogonal Ensemble statistics of the
RMT, and (iii) a nondegenerate part both at the end and near the zero
eigenvalues which deviate from the RMT.

that the underlying system has random interactions leading
to the universal part of the spectra, as well as nonrandom,
pattern-specific interactions contributing to the part of the
spectra deviating from universality. Further, the average IPR
calculated for the normal and disease subnetworks reveals
that the normal subnetworks are less localized than the
subnetworks of the disease networks (Table I), indicating that
the normal subnetworks are more random than the disease
subnetworks. The fact that the disease state has a reduced
number of connections compared to the normal state suggests
that there are some pathways or proteins which are silenced,
resulting in hampered interactions, perhaps due to mutation
leading to the disease state. This interpretation, combined with
the result that the 〈IPR〉 of the disease is higher than the normal,
indicates that these hampered pathways may correspond to or
should be treated as random pathways whose removal results
in diminished randomness in the disease state. This result can

TABLE III. Top contributing nodes (TCNs) of the disease-1 (D1) subnetwork. The top localized eigenvectors (Ek) for the D1 data set
representing the index of the localized eigenvector (column 1), followed by their TCNs (column 2) and network parameters, namely, degree,
clustering coefficient (CC), and betweenness centrality.

Ek TCN k CC

234 PSMD1, PSMD11, PSMB8 4, 4, 4 1, 1, 1
228 PFKP, PFKL, PSMB8, H3.3B 5, 5, 4, 8 0.9, 0.9, 1, 0.75
229 COL1A2, COL3A1, PSMB8, H3.F3B 6, 6, 4, 8 0.5, 0.53, 1, 0.75
232 PSMB8, PSME1, PSMD11, H3F3B, 4, 4, 4, 8, 1, 1, 1, 0.75,

H3.3B, PSMD1 8, 4 0.75, 1
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TABLE IV. Top contributing nodes (TCNs) of the disease-2 (D2) subnetwork. The top most localized eigenvectors (Ek) for the D2 data set
(column 1), their top contributing proteins (column 2), and network parameters, namely, degree, clustering coefficient (CC), and betweenness
centrality.

Ek TCN k CC

281 AVPR2, MT-ND5, MT-ND4 2, 13, 13 1, 0.846, 0.846
126 MT-ND1, MT-CO3, MT-ND6 12, 1, 12 0.985, 0.985, 0.984
141 SEL1L, SELS, C1S, HLA-DQA1 1, 2, 9, 6 0, 0, 0.5, 0.46
261 YWHAE, CALM1, CALM3, CALM2 1, 6, 5, 5 0, 0.53, 0.80, 0.80

be considered crucial, as randomness has been emphasized as
an essential ingredient for the robustness of a system [52], and
lack of sufficient randomness might lead to the disease state.

As discussed, the eigenvector localization technique offers
a platform to distinguish random and nonrandom parts of the
spectra. The eigenvector component deviating from the RMT
can be explored further to gain insight into the important
interactions revealed through the top contributing nodes
(TCNs). In order to do that, we investigate the properties
of TCNs of both subnetworks, D1 and D2, as reported in
Tables III and IV, respectively. There turn out to be 31 TCNs
in the disease subnetworks, of which 24 are unique. We
analyze the structural properties, namely, degree, CC, and
betweenness centrality, of these TCNs in both subnetworks.
The top contributing proteins lie in the low-degree regime,
demonstrating that they do not take part in many pathways.
Additionally, the betweenness centrality of all the TCNs is
nearly 0, indicating very poor connectivity of these nodes
with the rest of the nodes in their individual subnetworks.
Together, these rule out a trivial importance of the nodes in
terms of their interactions or connectivity, and hence we shift
our focus to the biological significance of these TCNs and
interaction patterns they form in the network.

A. Functional importance and interaction pattern of top
contributing nodes

These TCNs, when examined for their functional proper-
ties, are found to be significantly important in DM-II, as they
are involved in major functions related to the occurrence of
DM-II. Detailed functional information on all these proteins
is discussed in the Supplementary Material [40].

Next, we analyze the structural patterns of the TCNs
in both disease subnetworks. The D1 subnetwork reveals
the formation of cliques (Fig. 2). Also, they are involved in the
same kind of pathways, which is confirmed by studying the
functional properties of these proteins briefly [40]. Further,
the TCNs of the D2 subnetwork also comprise complete
subgraphs (Fig. 2 ). The functional properties discussed above
demonstrate that these TCNs form complexes, as they perform
the same kinds of functions, the details of which are explained
in the Supplementary Material [40]. Thus, the interaction
patterns of these TCNs in both networks of disease data sets,
which are revealed through the IPR, pertain to nodes that form
cliques indicating a robust and stable system as discussed in
Sec. III A.

Thereafter, we compare the interaction patterns of TCNs in
the disease state with their interaction patterns in the normal
state. Of 24 TCNs in the disease state, 10 are also found in the

normal data set. The interaction patterns of these TCNs possess
cliquelike structures in the normal subnetworks. These TCNs
in the normal data set have a comparatively higher degree than
in the disease state, indicating more interactions. This may be
due to silencing of various pathways (e.g., insulin signaling
and glucose metabolism) from the normal to the disease state
due to change in the levels of protein expression as discussed
earlier. The structural analysis indicates that even after reduced
interactions in the disease state, cliques of order 3 are not
destroyed, reflecting that the minimum criteria for maintaining
the functionality of the networks are preserved. This may
be due to the addition of new proteins in the diseased state.
Additionally, the interacting partners of these TCNs illustrate
the phenomenon of gene duplication, i.e., a pair of nodes
having exactly the same interacting partners [53]. Gene dupli-
cation is already known to be important for evolution [54,55].
Degeneracy at the zero eigenvalue, which has a direct relation
with the complete and the partial duplication [39], reveals
that there is an increase in the exact and partial duplications
from the normal to the disease network, as indicated by
the increased number of λ0 degeneracies. It is interesting
that although overall there is an increase in the duplicate
nodes, the duplicate nodes carrying other special structural
properties proceed differently, and of the 10 TCNs common
in both states, two pairs of TCNs possess the phenomenon
of gene duplication in the normal data set as indicated in
Fig. 3. Interestingly, this duplication phenomenon is lost in
the disease state (Fig. 3). The gene duplication has structural
and functional significanc, as fluctuations in or destruction
of the duplicated nodes can either cause an imbalance of

FIG. 2. (Color online) Interaction patterns of top contributing
nodes (TCNs) in disease data sets. Left: Local structure of all TCNs
in the D1 subnetwork. Right: Interaction pattern of TCNs in the
D2 sub-network. Diamonds (yellow) represent the (TCNs); boxes
(green), the first interacting partners of these TCNs.
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FIG. 3. (Color online) Interaction patterns of disease top con-
tributing nodes (TCNs) in normal data sets. Local structural patterns
for the disease TCNs in the normal network. Left: N1 subnetwork.
Right: N2 subnetwork. Diamonds (yellow) represent the TCNs;
boxes, the first interacting partners of these TCNs. The same TCNs
in normal subnetworks possess more interactions than the disease
subnetworks.

genetic material or lead to the generation of new gene products
resulting in diseases [56]. The protein corresponding to the
TCN possessing gene duplication behavior affects the major
pathways, namely, insulin resistance and pathways promoting
obesity, in turn resulting in DM-II [40]. Thus, proteins revealed
through the localization properties of spectra have interactions
which may be important targeting sites for drug development
in DM-II.

VI. CONCLUSION

To conclude, we provide a platform for detecting important
proteins revealed through structural patterns in DM-II using
the network approach and RMT. The analysis suggests that,
instead of targeting individual proteins, a group of proteins
forming particular interaction patterns should be taken into
consideration for drug development. This approach, though
based on sophisticated mathematical techniques, is time-
efficient and cost-effective and paves the way to looking at

diseases from a different perspective by taking the whole
system into consideration. For the first time the localization of
eigenvectors under RMT combined with the network theory
framework is employed to analyze DM-II. Being the first step,
the approach holds the potential to provide a new dimension
to disease research. RMT is a very well-developed branch
of physics and continues to witness emerging techniques
and concepts [57,58]. Appreciating the applicability of this
technique to uncovering crucial information about DM-II,
other well-developed tools of RMT can be used to gain
more insight into the complexity of DM-II and to decipher
important entities and their structural patterns significant in
other diseases. Moreover, our work, on one hand, presents
a new tool for identification of the proteins responsible
for the occurrence of the disease and predicts interaction
patterns for drug targets, while, on the other hand, providing
insight into the complexity of the disease at the rudimentary
level. The analysis, exemplifying the structural and functional
significance of these proteins, indicates that, rather than
individual units, the whole interaction pattern should be treated
as a target for drug development, providing a direction toward
treatment of the disease. This approach can also be extended
to the composition of novel drugs, conceptualization of single-
drug therapy for multiple diseases [59,60], and derivation
of personalized therapy [61], which would be especially
beneficial for low-income countries.
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