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A multiagent based model for a system of cooperative agents aiming at growth is proposed. This is based on a set
of generalized Verhulst-Lotka-Volterra differential equations. In this study, strong cooperation is allowed among
agents having similar sizes, and weak cooperation if agents have markedly different “sizes”, thus establishing
a peer-to-peer modulated interaction scheme. A rigorous analysis of the stable configurations is presented first
examining the fixed points of the system, next determining their stability as a function of the model parameters.
It is found that the agents are self-organizing into clusters. Furthermore, it is demonstrated that, depending on
parameter values, multiple stable configurations can coexist. It occurs that only one of them always emerges with
probability close to one, because its associated attractor dominates over the rest. This is shown through numerical
integrations and simulations, after analytic developments. In contrast to the competitive case, agents are able to
increase their capacity beyond the no-interaction case limit. In other words, when some collaborative partnership
among a relatively small number of partners takes place, all agents act in good faith prioritizing the common
good, when receiving a mutual benefit allowing them to surpass their capacity.
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I. INTRODUCTION

It is usually accepted that the fittest survive through natural
selection [1]. The former biological feature has been extended
to social and moral concepts. It should be recalled that
Darwin’s conclusion pertained to the preservation of favored
races in the struggle for life, when species performed in a given
environment. However, the question of species competition or
cooperation among themselves for survival is another matter.

Generally speaking, species social systems are in fact clas-
sified in competitive, cooperative, or mixed type, depending on
the set of interactions existing among agents. For example, in
Nature, ants exhibit a typical cooperative behavior [2,3], on the
other side, in economy, companies sharing a customer market
usually behave as natural competitors [4]. However, collabo-
ration with competitors might be a winning strategy [5–10].

Thus, fundamental, besides moral or economic, questions
can be raised about sets of interacting agents exhibiting emer-
gence of a self-organizing collective behavior, not resulting
from the existence of a “central controller” [11–14], but due
to their own interactions with the other agents.
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Several simulation and analytic studies can be found in
the literature on such systems, called prey-predator models.
However, for such systems, the agent interacting processes
can be also modeled by using a set of ordinary differential
equations (ODEs), for example, following a Lotka-Volterra
(LV) model [11,15,16]. The time evolution or dynamics of the
system can be displayed along a continuous time axis, rather
than at discrete time points, in simulation work.

For example, in [17,18] the LV model was used to model
the competition among websites using constant and equal
interactions among all agents. It was found that two distinctive
behaviors are possible: winner takes all and sharing the
market. In [19], this model was modified by introducing a non-
constant and linear interaction which allows the emergence of
the rich gets richer behavior. Moreover, in [20], a competitive
non-linear interaction was considered leading to a stratification
or clustering of agents, as often observed in economic life.

In this work, a cooperative scenario between agents, rather
than a competitive one, is presented, based on a similar set of
LV model differential equations. Particularly, how the “size”
of the each agent increases (or not) is studied depending on
the cooperation with the other agents. When modeling such
a socioeconomic multiagent system, the “size” is understood
as something similar to the market share, [17,19,20]. In this
line of thought, the n interacting agents are all needing some
common resources within a general environment. Here below,
an interaction function is introduced, which allows agents to
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cooperate in a selective way, i.e., the interaction is strong
between those agents with similar or equal sizes. On the other
hand, a weaker cooperative interaction is between agents if
they have very different sizes. As a side way argument, it can
be considered that such a same-size-cooperative rule occurs in
sport competition. For example, the main (soccer) teams share
the best players in order to remain at the top.

Here, a simple symmetric model is considered, i.e., by
assuming that the strength of cooperation is reciprocal between
two cooperating agents. It is shown that this model allows
for unveiling the main features of this interesting type
of systems. More sophisticated interactions including, for
example, asymmetry in the cooperation could be addressed in
the future as an extension of this work (see Sec. VI). Therefore,
here our cooperative system has two parameters, σ and K , [see
Eq. (5) in Sec. II]:

(a) σ scales the difference between agent sizes,
(b) K defines the kind of scenario (cooperative or not) and

also controls the amplitude of the interactions.
The main purpose of this paper is to analyze the cooperative

scenario and demonstrate that a synergy is established leading
to a situation in which every interacting agent benefits from the
group. This is the point that makes the difference with other
previous works [17,19,20].

This paper is organized as follows. In Sec. II, the mathemat-
ical model is described. In Sec. III, the cooperative scenario is
studied in detail. In Sec. IV, the fixed points are searched
and the K parameter range effect is analyzed. In Sec. V,
simulations and results for a case of ten agents are shown.
Finally, in Sec. VI, the main conclusions are outlined.

II. THE MODEL

Let n agents be sharing some common resource; when an
agent is able to get some portion of the common resource,
its size increases, but if losing a portion of its resource
its size decreases. In the model, essentially based on the
well-known prey-predator model, the interaction parameter
is not assumed to be a constant: it is supposed to depend
on the difference between agent sizes. This fact implies that
sizes do dynamically change in time, expectedly producing a
highly complex dynamics, due to a feedback phenomenon.
Mathematically, the model is based on Verhulst evolution
equations [21,22]

ṡi = αisi(βi − si), (1)

and on the generalized Lotka-Volterra evolution equations
[15,16]

ṡi = αisi(βi − si) −
∑
i �=j

γij sisj ,

(2)
for i �= j, and i = 1, . . . ,n,

where si is the size of agent i, αi is the agent’s growth rate, βi is
the agent’s maximum capacity, and γij is a constant coefficient
determining the interaction between si and sj . Eq. (2) is easily
generalized to read

ṡi = αisi(βi − si) −
∑
i �=j

γ (si,sj )sisj , for i = 1, . . . ,n,

(3)

where γ (si,sj ) is the interaction between agent si and agent
sj , here this matrix is composed of dynamic parameters that
result from the difference between both agent sizes in relation.
There is no time lag delay. Therefore, each agent size si(t)
represents a portion of common resources that the agent is able
to get at a given time t . When the interaction γ (si,sj ) �= 0, a
feedback situation is present; if γ = 0 the system is reduced
to the basic uncoupled LV/Kolmogorov prey-predator model
[15,16]. In this case, each agent size grows according to its
particular rate αi , up to its maximum capacity βi or its possible
maximum size, as it happens in the population dynamics model
of Verhulst [21,22].

Thereafter, the interaction function γ (si,sj ) is supposed to
be non-linear, symmetric, and monotonically decreasing with
distance from its center [20,23]

γ (si,sj ) = K exp

[
−

(
si − sj

σ

)2
]
, (4)

where σ > 0, is a positive (kernel bandwidth) parameter that
controls or scales the size similarity, i.e., it regulates the
difference in size of agents and determines the interaction
levels. On the other hand, K determines the type of scenario:
K > 0 (competitive case, as studied in [20]), or K < 0
(cooperative case), as studied here below. The absolute value
|K| defines the amplitude of the interaction. Therefore, the
dynamics is dominated by the interaction which can be
“strong” or “weak” depending on the sizes of agents. It seems
obvious that when a big agent is interacting with a small one,
the intensity of their interaction is weak or almost null, since
their “size distance” is large. A contrario, when two agents
with the same or similar sizes are interacting, the intensity
of their interaction can be very strong. It is easy to see from
Eq. (4) that γ (si,sj ) varies between 0 and K .

It is not too difficult to conserve a full set of different αi and
βi , characterizing each agent. However, the writing is much
heavier if doing so. In order to remain within the purpose
of this paper, it is advantageous to consider that all agents
have the same basic dynamics properties. This is equivalent to
rescaling the various sizes and the time scales. Thus, thereafter,
let αi = 1 and βi = 1. The whole model becomes

ṡi = si(1 − si) −
∑
i �=j

K exp

[
−

(
si − sj

σ

)2
]
sisj . (5)

III. DETAILED ANALYSIS OF THE COOPERATIVE
SCENARIO

A cooperative scenario occurs when K is negative in Eq. (5),
i.e., creating a positive feedback. Instead of stabilizing the
system, this leads to very unstable and complex behaviors.
Therefore, the various interesting values of K , must be chosen
carefully. It will be seen in Sec. IV A, that this choice depends
on the total number of agents which are cooperating. This
analysis will show that there is a quite limited range of K

values such that the model system reaches a stable behavior in
the steady state.

First, it is obvious that cooperation is at its maximum and
equal to K , when si = sj , because of the definition of γ (si,sj ).
The possible variation range of γ (si,sj ) is shown in Fig. 1, as
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|si-sj|

γ (
s i,
s j)

FIG. 1. Interaction function γ vs. absolute difference of sizes
|si − sj |, for different scaling similarity parameter σ values and for
K = −1.

a function of the difference in sizes, for different values of σ .
As can be seen in this figure, when the (absolute) difference in
sizes increases, the cooperation decreases: γ (si,sj ) becomes
less negative; its possible values all within the range −K <

γ (si,sj ) < 0. It is clear that, for example when σ = 10 and

|si − sj | < 1, the cooperation is almost constant and equal to
γij (si,sj ) = −K . When σ → 0, the interaction function looks
like an inverted Dirac distribution, at the origin.

In the following Sec. IV, it is shown how a narrow
and limited range of K values, for a different number of
agents, leads the system to stable configurations in the steady
stationary state. The emergence of different behaviors will be
also shown, i.e., the formation of clusters of agents whose sizes
are larger than their limit, i.e., its maximum capacity (βi = 1)
in absence of interaction. More interestingly, the coexistence
of several stable configurations is proved analytically and
validated by numerical simulations.

IV. ANALYSIS OF FIXED POINTS AND RANGE
OF PARAMETER K

By definition, a fixed point (FP) is a point in the phase space
where all the time derivatives are zero, i.e.,

ṡi = 0, for i = 1, . . . ,n. (6)

For the stability analysis associated to every fixed point, one
looks at the eigenvalues of the Jacobian matrix J evaluated
at the corresponding FP. It is rather easily derived that the
Jacobian matrix elements are

[J ](i,k) = ∂ṡi

∂sk

=
{

1 − 2si − ∑
i �=j sj γ (si,sj )

[
1 − 2

σ 2 si(si − sj )
]
, for k = i,

−siγ (si,sk)
[
1 + 2

σ 2 sk(si − sk)
]
, for k �= i.

(7)

A. Trivial fixed points for an arbitrary number n of agents

In this section, the existence of fixed points and their
stability analysis are presented when the number of agents
allows some analytical work.

From Eq. (5) and (6), at least three trivial FP can be detected:
(I) si = 0, for i = 1, . . . ,n, i.e., all agents have zero size;
(II) si = 1 and sj = 0, for every j �= i, i.e., all agents have

zero size, except one;
(III) si = b, for i = 1, . . . ,n, i.e., all agents have the same

size b.
In addition to types (I), (II), and (III) FP, there are many

other points that verify the condition of a fixed point. These
points are found by numerically seeking the roots of the non-
linear Eq. (6); see Sec. IV B.

If the Jacobian matrix is evaluated at type (I) FP, from
Eq. (7) the identity matrix is obtained; all eigenvalues are
equal to one (λi = 1). Therefore, it is an unstable fixed point.

Next, evaluating Eq. (7) at the second type (II) of fixed
points, e.g., for the case s1 = 1 and s2 = s3 = , . . . , = sn = 0,
one gets

J =

⎡
⎢⎢⎢⎣

−1 −a −a . . . −a

0 1 − a 0 . . . 0
0 0 1 − a . . . 0
: : : . . . :
0 0 0 . . . 1 − a

⎤
⎥⎥⎥⎦,

with

a ≡ K exp(−σ−2).

It can be shown that the eigenvalues of J in this case are

λ1 = −1,
(8)

λ2,3,...,n = 1 − a = 1 − K exp(−σ−2).

From these equations, it can be concluded that, when K < 0,
type (II) FP is not stable since it has n − 1 positive eigenvalues;
this fact is neither dependent on the number of agents nor on
the value of the parameter σ .

Finally, analyzing the stability of the type (III) FP, one can
calculate the corresponding constant b from Eq. (6) as follows:

0 = b(1 − b) − (n − 1)K b2

= 1 − b − (n − 1)Kb

= 1 − b[1 + (n − 1)K].

Thus,

b = 1

1 + (n − 1)K
, for K �= − 1

(n − 1)
.

It can be observed that the total quantity n of cooperating
agents which are in the system, determines the amplitude
of the cooperation K , as well as the final size, e.g., b,
which characterize the agent cluster. Furthermore, the Jacobian
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TABLE I. Fixed points and their stability in the n = 5 agent case.

Stability

K = −0.0625 K = −0.125 K = −0.25 K = −0.5 K = −1

Cases
N◦

Levels
N◦ Agents

by level
4 overlapped stable

configurations
4 overlapped stable

configurations
3 overlapped stable

configurations
1 only one stable

configuration
non stable

configuration

I 1 5 always stable always stable never stable never stable never stable
II 2 4-1 stable in

0.003 � σ � 0.140
stable in

0.004 � σ � 0.387
stable in 0.014 � σ never stable never stable

III 2 3-2 stable in
0.001 � σ � 0.043

stable in
0.001 � σ � 0.109

stable in
0.001 � σ � 0.4

never stable never stable

IV 3 3-1-1 stable in
0.044 � σ � 0.077

stable in
0.110 � σ � 0.186

stable in
0.410 � σ � 0.630

never stable never stable

V 3 2-2-1 stable in 0.003 = σ stable in
0.003 � σ � 0.004

stable in
0.004 � σ � 0.005

stable in
0.007 � σ � 0.009

never stable

VI 4 2-1-1-1 stable in
0.004 � σ � 0.022

stable in
0.005 � σ � 0.049

stable in
0.006 � σ � 0.12

stable in
0.010 � σ � 0.480

never stable

VII 5 1-1-1-1-1 never stable never stable never stable never stable never stable

matrix, evaluated at the type III fixed point reads

J = 1

1 + (n − 1)K

⎡
⎢⎢⎢⎣

−1 −K −K . . . −K

−K −1 −K . . . −K

−K −K −1 . . . −K

: : : . . . :
−K −K −K . . . −1

⎤
⎥⎥⎥⎦,

whose eigenvalues are

λ1,...,n = K − 1

1 + (n − 1)K
, for K �= − 1

(n − 1)
, (9)

which reveals that type III is a stable fixed point for the range
of K values:

− 1

n − 1
< K < 1.

This equation allows two possible scenarios:
(i) cooperative case: − 1

n−1 < K < 0, and
(ii) competitive case: 0 < K < 1, as analyzed in [20].
It should be noticed that, when the quantity n of cooperating

agents tends to infinity (n → ∞), the K range allowing this
type of stable FP is drastically reduced. In such a case, b → 1.

B. Non-trivial fixed points for a small number of agents

Non-trivial FP can be numerically found “easily” when the
number of agents is small. In order to illustrate the analysis,
let us examine the case of n = 5 agents. Considering the
degeneracy of several solutions, seven possible fixed points
can be detected as representing different possible scenarios
and combinations of agents grouped into clusters or levels as
it is summarized as follows:

Case I (one level): five agents (5) are grouped in one
cluster.

Cases II and III (two levels): there are two configurations
called (4-1) and (3-2), i.e., either composed of a group of four
agents plus one lonely agent, on one hand, or composed by a
group of three agents and a group of two agents.

Cases IV and V (three levels): there are two possible
configurations composed by either a (3-1-1) or a (2-2-1),
respectively.

Case VI (four levels): there is only one configuration,
called (2-1-1-1).

Case VII (five levels): there is only one configuration, of
course, called (1-1-1-1-1).

The type of stability associated to each FP can be deter-
mined numerically by evaluating the Jacobian matrix and by
computing its eigenvalues [24]. A stable configuration, which
is associated to a stable FP, corresponds to a steady state of the
system, which could include clusters of agents (more than one
agent in a same level).

This algebra allows that more than one stable configuration
may coexist, depending on the parameter σ values.

A technical point: the above-mentioned FPs were found by
searching for the roots of Eq. (5) using the Newton-Raphson
(NR) algorithm for a set of randomly selected seeds [25].
To determine the stability of the above mentioned FPs,
the eigenvalues of the associated Jacobian matrices were
computed using a QR type algorithm for a wide range of
σ values.

Cases where the fixed points that emerge in steady state
(stable), depending on the σ value, are outlined in Table I.
However, the stability of case (I) is found to depend only on
K , regardless of the σ value, while case (VII) is never stable,
regardless of the values of K and σ . It has also been found
that the final configuration of the system depends on the initial
conditions. After 100 iteration steps different si values levels
of the respective fixed points are asymptotically reached. The
solution for case (VI), i.e., (2-1-1-1), appears mostly when a
random set of initial conditions is used. However, when the
set of initial conditions is chosen very close to the asymptotic
values characterizing other fixed points, the three cases (III)
(3-2), (II) (4-1), and (I) (5), emerge. This fact clearly shows
that four stable configurations may coexist, i.e., for the same σ

value, there are four possible solutions. Practically, this hints at
the difficulty of forecasting cluster solutions, since the initial
conditions are rarely precisely known.
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(b)(a)

(d)(c)

11

11

22

22

3

3

3

3

4

4

4

4

FIG. 2. (Color online) Simulations of the time evolution of the size of (n = 5) agents for four different sets of initial conditions; all for
σ = 0.01. (a) Case VI (2-1-1-1): the highest level with two agents (red and green) and the rest levels with one agent each one. Initial condition
was chosen randomly in the range [0,1]. (b) Case III (3-2): the highest level with three agents and the lowest level with two agents. (c) Case II
(4-1): the highest level with four agents and only one agent in the lowest level. (d) Case I (5): all agents in the same level. Initial conditions for
(b), (c), and (d) were chosen very close to the corresponding FP in order to assure the convergence (|s0

i − s∗
i | < 0.01 with s0

i is the used initial
condition and s∗

i is the theoretical value at the fixed point).

In view of such findings, it seems of interest to display
how stable configurations can be reached. In Fig. 2, the time
evolution of agents, when σ = 0.01, n = 5, K = −0.0625, is
shown; the above remarks are emphasized by displaying the
results for four different sets of initial conditions. Notice that
the highest levels are mostly populated and the sizes always
exceed 1. This effect has always been found in the numerical
simulations, even for a different number of cooperating agents
(see, for example, Figs. 5 and 6). At once, this fact shows
the benefit of cooperation. When a collaborative partnership
among a relatively small number of partners takes place, and
all agents act in good faith prioritizing the common good, all
the participants receive the same benefits.

Another meaningful and enlightening type of display shows
the σ dependence of stable FPs. In Fig. 3, the agents sizes that
correspond to each stable FP, as a function of parameter σ , are
presented for a subset of representative values of the parameter
K . To find these FPs, the NR method was used in order to find
the roots of the corresponding non-linear system of equations,
using 100 000 random starting points, but finally keeping only
the stable FP. To evaluate numerically the eigenvalues of the
Jacobian matrix at different σ values, a QR-like algorithm was
used. From such simulations, we confirm that there are several
overlapping regions (σ intervals) of stable configurations (see
detailed explanations in the caption of Fig. 3). In other words,
for a given σ value, clusters are possibly found with different
asymptotic values si .

C. Attractor strength

All eigenvalues have negative real part in the case of a stable
fixed point. Moreover, the absolute value of the most negative
eigenvalue real part is considered as determining the “force of
the attractor” or the “speed of convergence” towards it [24,26].
We have computed such an absolute maximum value of the
real part of eigenvalues, at each stable fixed point versus σ .
This is shown in Fig. 4.

While the dynamics of the system is dominated by the FP,
which has the highest absolute value real part of eigenvalues.
Nevertheless recall that the precise dynamics also depends
on the initial conditions. For example, Fig. 4 shows that the
eigenvalue associated to case (VI) (2-1-1-1) dominates that
of the other fixed points, i.e., the probability of reaching this
configuration is much higher than the other FP. Simulations
have confirmed such a forecast.

The time evolution is non-oscillatory in the case of five
agents (see Fig. 2), and it is also seen on Figs. 5 and 6, in the
case of ten agents, where the transition time is very short not
allowing to make a visually pleasant Poincare map.

V. SIMULATIONS AND RESULTS FOR n = 10

Even though the case of n � 5 agents is fine enough to illus-
trate the main features of the model, and their consequences
(they are also summarized in the Conclusion section), one
might wonder whether larger systems might present additional
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4 solutions
3 solutions
2 solutions
1 solution

2-1-1-1 (case VI)
2-2-1 (case V)
3-1-1 (case IV)
3-2 (case III)
4-1 (case II)
5 (case I)

4 solutions
3 solutions
2 solutions
1 solution

2-1-1-1 (case VI)
2-2-1 (case V)
3-1-1 (case IV)
3-2 (case III)
4-1 (case II)
5 (case I)

3 solutions
2 solutions
1 solution

2-1-1-1 (case VI)
2-2-1 (case V)
3-1-1 (case IV)
3-2 (case III)
4-1 (case II)

1 solution
2-1-1-1 (case VI)
2-2-1 (case V)

(b)(a)

(c) (d)

.

.

.

.

.

.

.

.

.

.
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.
-3 -3-2 -2-1 -10 0

-2 -1 . -1-3-3 -2 -1 0

FIG. 3. (Color online) Agent sizes si vs. σ (n = 5). Intervals in σ with different numbers of overlapped solutions were found. (a) K =
−0.0625 and five intervals: 0.001 < σ � 0.003 (two solutions), 0.003 < σ � 0.022 (four solutions), 0.022 < σ � 0.077 (three solutions),
0.077 < σ � 0.14 (two solutions) and 0.014 < σ � 1 (one solution). (b) K = −0.125 and six intervals: 0.001 < σ � 0.003 (two solutions),
0.003 < σ � 0.005 (three solutions), 0.005 < σ � 0.049 (four solutions), 0.049 < σ � 0.186 (three solutions), 0.186 < σ � 0.387 (two
solutions), and 0.387 < σ � 1 (one solution). (c) K = −0.25 and five intervals: 0.001 < σ � 0.004 (one solution), 0.004 < σ � 0.014 (two
solutions), 0.014 < σ � 0.12 (three solutions), 0.12 < σ � 0.63 (two solutions), and 0.63 < σ � 1 (one solution). (d) K = −0.5 and one
interval with only one solution: 0.007 < σ � 0.48.

features. Thus, we present some additional simulations results
for a system with only ten agents. In fact, we consider that this
is quite a sufficient number in order to describe most of the
economic fields, academically studied or not.

In order to span a large domain of cooperation possibilities,
here K = −0.25 was used. The obtained behaviors are shown
in Figs. 5 and 6, for σ = 0.01 and σ = 0.09, respectively.
These figures, illustrate that in this cooperative scenario,
groups of agents are able to exceed their own size capacity limit
determined by β = 1 [without interaction, i.e., γ (si,sj ) = 0].
It is noted that, in the example of Fig. 5, after a chaotic
transition time interval, agents reach their steady state. On the
other hand, for a larger σ , see Fig. 6, i.e., for a “long interaction
size range”, the agents reach their steady state faster. In these
examples, the strong cooperation of four agents allows them
to reach a size equal to 4. There is another group consisting of

three agents whose sizes are equal to 2. Then the third group is
composed of two agents of size 1.33 for each one, and finally
the smaller group consists of only one agent which size is
equal 1. It is also emphasized that at this FP the steady state
was always reached, indicating that its associated probability
of occurrence, after a not too long time, is very close
to 1.

Therefore, this mainly simulation study on a one-shot
cooperation case (K = −0.25) confirms the findings for a
smaller number of agents under the variation of the parameters
and initial conditions, discussed in the other subsections.

VI. CONCLUSIONS AND DISCUSSION

The study of complex systems a very active area of
research. The mathematical tools developed in this field are
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FIG. 4. (Color online) Maximum absolute eigenvalue real part of the Jacobian matrix vs. σ value (n = 5). (a) K = −0.0625 in the
interval 0.003 < σ � 0.022 (four solutions) the FP of type 2-1-1-1 (case VI) dominates over the rest. (b) K = −0.125 in the interval
0.005 < σ � 0.049 (four solutions) the FP of type 2-1-1-1 (case VI) dominates over the rest. (c) K = −0.25 in the interval 0.014 < σ � 0.12
(three solutions) the FP of type 4-1 (case II) dominates over the rest. (d) K = −0.5 in the interval 0.007 < σ � 0.48 there is only one
solution.

so versatile that they allow applications to diverse kinds of
problems in different research areas such as communication
networks [27,28], biology [29,30], socioeconomy [17,19],
etc. We have considered a peer-to-peer interaction system,
but allowing for cooperation between agents rather than
competition.

In this work, we have found different behaviors. All lead to
a structuration of the system with a remarkable group (cluster)
hierarchy. Multiple stable solutions for a given σ value can
be found, but always one solution dominates. The largest
group with the largest size markedly dominates in the system.
Moreover, the dominating group occurs more quickly when the
interaction encompasses a wider size range. It is interesting
to note that the σ value can be interpreted in a social or
economical context as the way in which agents interact. For a
small σ value, the interaction is restricted to agents with very

similar sizes and agents with different sizes do not interact
with each other. On the other side, having a large σ value
allows agents with different sizes interact, which is close to
the meaning of social equality. In other words, in the latter case,
powerful (big) social groups are able to cooperate with weak
(small) groups. In the case of an economical system, having a
large σ value may correspond to a “free market” situation in
which all agents (big and small ones) are allowed to interact
each other. On the other hand, having a small σ value may
correspond to the case of having government regulations that
constrain the agents to interact with only agents of similar
sizes.

Summarizing, sometimes a solution, e.g., case (VII) in
Sec. IV B is never stable, regardless of σ , K , and n values,
while cases are always stable for K > −1

n−1 , e.g., case (I).
According to σ ranges, the spread of cooperation, there are

022805-7



L. F. CARAM, C. F. CAIAFA, M. AUSLOOS, AND A. N. PROTO PHYSICAL REVIEW E 92, 022805 (2015)

FIG. 5. (Color online) Simulation example of the time evolution
of the model with n = 10, σ = 0.01, and K = −0.25: there are
four final clusters, each containing four, three, two, and one agents,
respectively. It is highlighted that some agents with an initial small
size are able to reach the highest level (see, for example, the agent
denoted by a dark blue diamond). Conversely, some agents starting
with a large size evolves to one of the lowest levels (see, for example,
the agent denoted by a black square).

stable steady states, but sometimes not. Thus, it is possible
to have more than one stable configuration, two, three, or
even four, in the five-agent case, depending on the σ value.
Moreover, the ranges of σ where the steady state solution is
unique can be also observed (see Table I). Stressing the K value
order of magnitude, like K = −1, case no stable solution is
found, regardless of the σ value

After making a large number (104) of numerical simulations
for uniformly distributed random initial conditions, we have
always obtained the solution corresponding to the eigenvalue
with highest absolute value of the real part. This suggests that
the probability to obtain other solutions is almost vanishing. In

FIG. 6. (Color online) Simulation example of the time evolution
of the model with n = 10, σ = 0.09, and K = −0.25: there are
four final clusters, each containing four, three, two and one agents,
respectively.

contrast, for non-uniformly distributed initial conditions and
in particular those close to other relevant fixed points, possible
solutions emerge. In so doing, we can claim that there is much
coherence in the model.

From a “practical” point of view, our main finding has
been to show the power of cooperation in order to increase
“size”. When agents cooperate, they are able to triply or even
quadruply increase their size, in some sense their market
share. This should be contrasted with previous studies in
which the competitive scenario leads to the winner takes
all: agents are clustered at sizes lower than 1, i.e., their
theoretical capacity when behaving independently of each
other [17,18,20]. Cooperation, instead, allows for the group of
cooperative agents to configure a cluster with a characteristic
level higher than the individual capacity, obtained without
interactions, which is defined by the β = 1 value.

The model describes approximately what is happening in
society, at least in common sense expectations. Consider a
few examples (i) cooperation rather than competition between
Coca-Cola and Pepsi Cola in order to share the market
and avoid many intruders; (ii) cooperation between a few
co-authors in order to improve their number of publications,
citations, whence their h-index; (iii) in sport, cooperation
(within theoretical competition) in order to win a race or a
game; (iv) cooperation in the car industry in order to be the first
to propose an electric car (Daimler AG, parent of Mercedes-
Benz cooperate with Tesla Motors; Renault-Nissan Alliance
has made agreements to promote emission-free mobility in
France, Israel, Portugal, Denmark); (v) let us briefly mention
competition AND cooperation between political parties in
order to form a coalition government (when the cooperating
weakest ones can overcome the top party, though a case indeed
not found in our model).

It is highlighted that we have considered here only sym-
metric interactions allowing us to unveil the main advantages
of cooperation. It is worth mentioning that in real cooperative
socioeconomical systems sometimes not all agents cooperate
in the same way. This important characteristic of real systems
could be incorporated in the model through an asymmetric
interaction kernel in a future work, for example, by considering
Kij and Kji or σij and σji to be different. We think that
the current model, rather than expecting to be faithfully
representing a real world system, helps in describing the
behavior of agents in an ideal cooperative scenario and
suggesting explanations for the outcome. No need to say that in
the real world, there are mixed types of interactions including
cooperation and competition. For example, in a real world, it
is expected that agents cooperate with each other within some
group but compete with agents outside the group. We plan to
study these more realistic multiagent systems in the future by
simulations.

It is outside the aim of this paper to discuss whether
the economic environment determines if the fair types or
the selfish types dominate equilibrium behavior, nor whether
cooperation or competition has to be favorited [4]. It should be
surely interesting in further work to adapt the model to very
specific cases, e.g., to research sport or other socioeconomic
activities. Recall that the time scale can be adapted. Moreover
spatial distribution [31], transport costs, and similar economic
considerations could introduce new parameters.
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