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Mechanics of invagination and folding: Hybridized instabilities when one soft tissue
grows on another
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We address the folding induced by differential growth in soft layered solids via an elementary model that
consists of a soft growing neo-Hookean elastic layer adhered to a deep elastic substrate. As the layer-to-substrate
modulus ratio is varied from above unity toward zero, we find a first transition from supercritical smooth folding
followed by cusping of the valleys to direct subcritical cusped folding, then another to supercritical cusped
folding. Beyond threshold, the high-amplitude fold spacing converges to about four layer thicknesses for many
modulus ratios. In three dimensions, the instability gives rise to a wide variety of morphologies, including almost
degenerate zigzag and triple-junction patterns that can coexist when the layer and substrate are of comparable
softness. Our study unifies these results providing understanding for the complex and diverse fold morphologies
found in biology, including the zigzag precursors to intestinal villi, and disordered zigzags and triple junctions
in mammalian cortex.
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I. INTRODUCTION

Some biological tissues have evolved into folded mor-
phologies to accommodate large surfaces in small volumes;
folding of the mammalian brain is associated with expansion
of its outer cerebral cortex, and the folded epithelium in the
gut provides large surface area for absorption of nutrients.
Pattern formation in morphogenesis is typically attributed
to chemical instabilities within Turing’s reaction-diffusion
paradigm [1], but increasing experimental evidence shows
that these folded morphologies actually emerge from smooth
precursors via mechanical instabilities driven by differential
growth of layered tissues [2,3]. Recent studies have considered
mechanical descriptions of brain folding [4–8], epithelial
folding in the gut [3,9] and carcinomas [10], fingerprint
formation [11], and circumferential buckling in tubular organs
and tumors [12–14].

We consider the most elementary model for soft tissue
folding: a growing elastic layer with shear modulus μ1 and
relaxed thickness h adhered to an infinite substrate with shear
modulus μ2 ≡ μ1/η. The layer’s growth induces compression,
ultimately causing it to buckle [14–29]. If η � 1, the layer
buckles supercritically into smooth wrinkled patterns [15–20]
with wavelength l ∼ hη1/3 � h explicable via small strains
and linear stability analysis [21]. If η � 1, the substrate
does not deform, but after sufficient growth the layer’s free
surface invaginates into cusped furrows called sulci or creases
via an exotic supercritical nonlinear instability that eludes
analytic treatment [30–36]. However, most cases of biological
interest involve a growing soft tissue on a comparably soft
substrate—a mechanically intriguing regime [22–29] that must
span a transition from smooth to cusped folding. Previous
theoretical studies have focused on two dimensions and have
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considered post-bifurcation behavior when approaching this
transition from the stiff-layer smooth wrinkling side [26–28]
and the linear stability of circular layers on either side of
the transition [29]. Here we use linear analysis and numerics
to explore folding around the transition itself, including
beyond threshold behavior in two and three dimensions. We
discover that the transition occurs via an unexpected region of
subcritical cusped folding and is accompanied by an unusually
rich set of three-dimensional pattern morphologies, which we
argue underpin the mechanics and diversity of invaginations
in developmental biology.

II. RESULTS

We examine the stability of a layer occupying 0 < z < a

atop a substrate occupying z < 0. The layer has undergone
growth, swelling, or prestrain such that, without adhesion, it
would undergo a relaxing deformation G = diag(gx,gy,gz),
becoming a flat slab with thickness h = a/gz. We model
both tissues as incompressible neo-Hookean elastic solids so
that, if this reference state is subject to a displacement u and
corresponding deformation gradient F = I + ∇u, the elastic
energy per unit volume is 1

2μ2Tr(FFT ) in the substrate and
1
2μ1Tr(FG−1G−T F T ) in the layer, while incompressibility
requires Det(F ) = Det(G) = 1.

A. Linear instability

We first consider uniaxial growth, G = diag(g,1,1/g), and
we consider the layer’s linear stability to infinitesimal isochoric
perturbations, u = f (z) sin(kx)ẑ + [f ′(z)/k] cos(kx)x̂. The
full calculation is in Appendix B; here we restrict ourselves
to an overview. The linearized Euler-Lagrange equations for
the solids require g4f (4) − k2(g4 + 1)f (2) + k4f = 0 (with
g = 1 in the substrate), solved by f (z) = a4e

kz + a3e
−kz +

a2e
kz/g2 + a1e

−kz/g2
in the layer and f (z) = ekz(b1 + zkb2) in

the substrate. Imposing material continuity at the interface and
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FIG. 1. (Color online) Elastic linear instability of a growing slab
on a substrate, showing a transition from finite to zero wavelength
instability at modulus ratio ηb ≈ 0.525. (a) Growth g required for
instability at wavelength l relative to a deformed thickness a for a
range of moduli ratios. (b) and (c) Wavelength and threshold growth
of the first unstable mode as a function of η. Dashed lines indicate
the asymptotic results for stiff layers.

natural boundary conditions at the free surface and interface,
we conclude the layer becomes linearly unstable when g
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where b = 1 + g4. Figure 1(a) plots this threshold as a function
of wavelength for different modulus ratios. Minimizing this
threshold over wavelengths gives the wavelength and threshold
of the first unstable mode as a function of η, plotted in Figs. 1(b)
and 1(c). As expected, the instability reproduces the long-
wavelength wrinkling limit for η � 1 and the zero-wavelength
Biot instability [22] at g = gb = 1.839 . . . for η � 1. The
transition from finite- to zero-wavelength instability happens
continuously at

ηb =
g4

b − 2g2
b +

√
5g8

b + 8g6
b + 2g4

b + 1 + 1

g6
b + 3g4

b − g2
b + 1

= 0.525 . . . .

However, the zero-wavelength Biot instability is never ob-
served: it is always preceded by a point of nonlinear instability
to infinitesimal cusped sulci [32]. In incompressible neo-
Hookean materials, this occurs at a uniaxial stretch λs ≈
0.647 [32], corresponding to gs = 1/λs ≈ 1.55. Thus we
expect finite-wavelength wrinkling as predicted by linear sta-
bility for η > ηs ≈ 1.14, where the linear threshold intersects
gs [see Fig. 1(c)], and direct sulcification at gs for η < ηs .

B. Folding in two dimensions

We verify these predictions and explore folding beyond
threshold with numerical simulations (Appendix A), starting
with uniaxial growth in two dimensions. When η > ηs , the
surface indeed buckles smoothly at the linear instability
threshold. This buckling amplifies surface compression in
the valleys, producing the sulcification strain there shortly
thereafter. The valleys then sulcify in a secondary bifurcation
that occurs before gs up to η ≈ 10 [Fig. 2(a)]. Cusps form
first on the surface and then on the interface between the layer
and substrate at high g [Fig. 2(c)]. However, the interface in
real systems may not be strictly sharp, suppressing interfacial
cusping.

When η < ηs , sulcification sets in at gs , before the linear
instability. For η near ηs , the energy of the system at g = gs is
minimized by a cusped fold that has a finite amplitude [see the
layer with η = 1 and g = 1.55 ≈ gs in Fig. 2(c)], implying that
sulcification is a nonlinear subcritical instability when η is near
ηs . The instability is known to be supercritical in both the stiff
layer wrinkling limit η � 1 and the η → 0 pure sulcifications
limit [33,36], so this region of subcriticality between the
two limits is a surprise, stemming from hybridization of
the two modes. In Fig. 3 we show hysteresis loops for
the instability at three values of η characterizing the three
regimes: linear and supercritical for η � 1, nonlinear and
subcritical for η ≈ 1, and nonlinear and supercritical for η �
0.5. Analogous subcritical instabilities were recently identified
in two-dimensional elastic systems with jointly compressed
layer and substrate [37,38]. These systems differ from ours
particularly strongly in the region of subcriticality: indeed,
at η = 1 the distinction between layer and substrate vanishes
in the jointly compressed system, so the wavelength scales
with the total depth of the system, whereas in our system
the layer is distinguished by its growth even at η = 1, and
the wavelength is always finite despite the substrate being
infinite.

We optimized the wavelengths of the folds for minimum
energy [Fig. 2(b)] finding that in the smooth-folding regime,
η > ηs , the wavelength l decreases past threshold (in Eulerian
coordinates), which is similar to folding of stiff layers [15].
In contrast, when η < ηs , the optimal wavelength increases
past threshold. Consequently, the optimal wavelength settles
to about four times the undeformed layer thickness over a wide
range of η when g becomes large. This agrees with the folding
patterns in the brain and the gut [3,8], and it is a hallmark of
mechanical compressive folding.

The low η folds are notably asymmetric, with a deeply
cusped upper surface and a wavy bottom surface, in contrast
to nearly top-bottom symmetric folds at η > ηs that take a
sawtoothlike form at high amplitudes [Fig. 2(c)]. This agrees
again with the observations in folded tissues; the brain has
a low modulus ratio between the cortex and sublayers (η ≈
1 [2]) leading to thick and deeply cusped asymmetric folds
[Fig. 2(d)] [39], whereas narrower folds with a sawtooth profile
[Fig. 2(e)] are seen during gut development, due to a relatively
stiff epithelium that folds on a softer mesenchyme [3,40].
We note, however, that in a developing chick gut, the
epithelium and mesenchyme are both confined by outer layers
of smooth muscle, which contributes to folding at early
stages [3].
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FIG. 2. (Color online) Folding of a uniaxially growing layer in two dimensions. (a) Morphologies as a function of modulus ratio η and
growth ratio g = gx . The diagram includes the linear instability curve (blue line, dotted for η < ηs ≈ 1.14, where the sulcification threshold is
met before the linear instability) and numerically determined thresholds for cusp formation (black line). (b) Energy-minimizing wavelengths
as a function of g for a range of moduli ratios η. Hollow and solid circles correspond to smooth and cusped folds, respectively. The blue curve
is the wavelength of linear instability (the dotted end is above the sulcification threshold gs ≈ 1.55). (c) Simulated minimum energy states
near threshold (left column) and far from threshold (middle and right column) for η = 0.5, 1, and 4. Color indicates isotropic stress: dark red
� −5μ, dark blue � 5μ (μ = μ1 in the layer and μ = μ2 in the substrate). (d) Cortical folds in a ferret brain (braincatalogue.org). (e) Cross
sections of previllous folds in intestinal epithelium of a chick embryo on days 13 and 14 [40] (credits: A. E. Shyer).
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FIG. 3. (Color online) Hysteresis loops for three different modulus ratios, demonstrating the three different folding regimes. (a) When
η = 0.5, sulcification sets in supercritically at g = gs ≈ 1.55, producing a nonlinear supercritical instability, reminiscent of pure sulcification.
(b) When η = 1, sulcification occurs subcritically at g = gs , immediately producing a deep cusped fold, while in unfolding the fold also
disappears subcritically at a lower value of g. Folding is nonlinear and subcritical. (c) When η = 4, folding is linear and supercritical,
reminiscent of pure wrinkling.
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FIG. 4. (Color online) Three-dimensional folding of an equibiaxially growing layer. (a) Energy-minimizing periodic patterns near threshold
(left) and far from the threshold (right, zigzag, and triple-junction patterns are shown for each η). (b) Diagram of energy-minimizing ordered
patterns as a function of η and g. The symbols (Z’s for zigzags, Y’s for triple junctions, o’s for smooth dents, etc.) indicate the minimum
energy pattern at each simulated point. The blue curve is the threshold for linear instability or sulcification. The dashed lines are contours
for growth strains ε/εc. (c) Deformation energies of zigzags and triple junctions relative to the energies of flat reference states. (d) and (e)
Energetically optimal half-wavelengths [lx , ly , and lh are indicated in (a)] of zigzags and triple junctions, respectively. Thick black curves
indicate the wavelength of linear instability. (f) Zigzags in epithelium of a developing chick gut [3]. (g) A simulated soft layer growing in a
large simulation domain (η = 1 and g = gx = gy = 2) folds spontaneously into a disordered mixture of Y- and T-shaped triple-junction folds
and S-shaped zigzag folds, reminiscent of the folded cerebral cortex (h) [41].

C. Folding in three dimensions

If G = diag(gx,gy,1/(gxgy)) is not uniaxial, but we never-
theless consider x-z plane-strain deformations, then, as seen
in Eq. (B3), the elastic energy depends on two dimensionless
parameters, η/g2

x and ηg2
xg

2
y . Our plane-strain calculations

thus hold with the identifications η → gyη and g → gx
√

gy .
In particular, for transversely isotropic growth, g = gx = gy ,
the sulcification threshold is at gx

√
gy = g3/2 ≈ 1.55, i.e.,

gs ≈ 1.34, and the linear threshold intersects gs at ηs ≈ 0.86.
This plane-strain calculation captures the full linear stability
of the system since the Fourier modes that would make up a

truly three-dimensional pattern cannot interact at the level of
linear stability.

Before examining folded states in three dimensions, we
recall previous results in the stiff- and soft-layer limits: In
stiff layers (η � ηs), a hexagonally ordered pattern of dents
forms near threshold [19,20] (although analyses based on
the plate theory predict a checkerboard pattern in the stiff
film limit [18,19]) and a zigzag (herringbone) pattern is
the preferred far-from-threshold pattern [19,20]. In contrast,
in clamped soft layers (η = 0), we previously identified a
square pattern of linelike sulci with alternating orientations as
the optimal near-threshold pattern and a hexagonal array of
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triple-junction sulci as the optimal far-from-threshold
pattern [36]. There should thus be transitions between the two
sets of patterns as the layer stiffness is reduced from large
toward zero.

Whereas folding of relatively stiff layers can be studied
even at large overstresses using experimental setups based
on swelling elastomers [19,20], folding of soft layers is
harder to realize in experimental model systems because
large swelling ratios are needed to reach far-from-threshold
states. Patterns of linelike sulci and triple-junction sulci have
been produced experimentally in soft layers adhered to rigid
substrates [24,30,31], but very few experiments have explored
three-dimensional folding patterns in the regime of modest
stiffness ratios [8,24].

We simulate three-dimensional folding patterns induced by
transversely isotropic growth of the layer on periodic domains
that contain one unit cell of the pattern with energetically
optimized wavelengths (Appendix A). We use external guiding
forces to initiate the patterns that, once formed, are stable
in the neighborhood of η,g space, where they are the
energy-minimizing patterns. Optimal near-threshold patterns,
including a rectangular array of linelike sulci at η � ηs and
smooth hexagonal dents at η > ηs , are shown on the left of
Fig. 4(a). These patterns minimize the energy only at ε/εc

close to unity, where we define the relative growth strain
ε/εc = g−1

gc−1 to conveniently quantify the distance from the
threshold (ε = g − 1 and εc = gc − 1, where gc is the growth
ratio at the threshold). As in two dimensions, folding is
subcritical when η is near ηs , evidenced by a finite-amplitude
pattern at the threshold g = gs when η = ηs [Fig. 4(a)].
For far-from-threshold states (ε/εc � 2), we construct zigzag
patterns as well as patterns of hexagonal triple junctions,
discovering that these two patterns are almost equally good
energy minimizers [Fig. 4(c)]. However, the triple junctions are
slightly better at low η and/or high ε/εc, while zigzags become
relatively better toward large η, as expected. Figure 4(b) shows
a phase diagram summarizing these findings.

The optimal wavelengths of the zigzags and triple junctions
are shown in Figs. 4(d) and 4(e), respectively. As in the
uniaxial case, the wavelengths decrease with g when η > ηs ,
but they remain nearly steady when η ≈ ηs , resulting in an
approximate collapse of the wavelengths toward large g such
that the width of the folds is again roughly four times the
undeformed layer thickness. This means that further expansion
of the layer is accommodated by increasing amplitude. The
optimal x,y-aspect ratio of zigzags decreases with decreasing
η such that the zigzags in soft layers are relatively shorter than
their stiff-layer counterparts [19].

Given the nearly equal energies of the zigzag and triple-
junction folds, it is not surprising that systems with modest
modulus ratios, such as the folded cerebral cortex [Fig. 4(h)]
or its gel layer mimics [8], show disordered mixtures of
zigzags and triple junctions [in contrast, epithelium of the gut
shows ordered zigzags, see Fig. 4(f), due to a higher modulus
ratio and anisotropy [3]]. By simulating unaided folding of
the biaxially growing layer in a large simulation domain
whose width is multiple times the wavelength of the patterns
(Appendix A), we see comparatively ordered near-threshold
patterns similar to those in Fig. 4(a), but the far-from-threshold
patterns appear as disordered mixtures of zigzag folds and

triple junctions, reminiscent of the folded cerebral cortex
when η ≈ 1 [Figs. 4(f) and 4(g)]. The disordered patterns
include some T-shaped triple-junction folds that lack the
rotational symmetry of the Y-shaped ones. T-shaped folds do
not, however, form a simple periodic pattern, and they may
thus be considered as variants of the ideal Y-shaped folds.
We note that the disordered patterns resulting from unaided
folding have slightly higher energies than the corresponding
periodic zigzag or triple-junction patterns.

III. SUMMARY

Our study demonstrates that complex fold patterns emerge
from even the simplest systems incorporating elasticity and
differential growth, providing a guide for more specific
applications incorporating, for example, curved geometries,
anisotropy, prestressed substrates, compressibility, and stress
relaxation. We show a transition as a function of modulus ratio
from supercritical smooth finite-wavelength buckling followed
by sulcification of valleys to direct strongly subcritical sulcifi-
cation at 0.86 < ηs < 1.14, depending on growth anisotropy.
This is accompanied by a transition from contraction to elon-
gation of past threshold wavelengths, driving a convergence to
spacings within three to four layer thicknesses over a range of
modulus ratios in both two and three dimensions. In equibiaxial
growth, there is also a beyond threshold transition from zigzags
to triple-junction folds within the typical range of modulus
ratios in soft layered tissues, underpinning the morphogenetic
diversity of mechanical folding.
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APPENDIX A: DETAILS OF NUMERICAL SIMULATIONS

The simulations are based on the explicit finite-element
method with discretizations to constant strain triangle (2D)
or tetrahedron (3D) elements. The elements have a quasi-
incompressible nodal pressure formulation with a bulk mod-
ulus K = 103μ (2D) or K = 102μ (3D). The simulated
substrate has a thickness ten times the layer thickness. Whether
the substrate has a clamped or free base has a negligible effect
on the results, confirming that it provides a good approximation
of an infinite substrate.

In 2D plane-strain simulations, the domain includes a
half-fold with symmetric boundary conditions at the sides.
The domain is discretized to a rectangular mesh of triangles
such that the growing layer includes 200 elements through
its thickness. A fold is initiated by applying a small normal
force to the surface at the edge of the domain. The surface
is prevented from crossing the vertical line that defines the
boundary of the domain to prevent self-intersection of the fold.
The energetically optimal wavelength is searched by adjusting
the relative width of the domain.

In 3D simulations, the domain has periodic boundary
conditions at the lateral boundaries. The domain is discretized
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to tetrahedrons such that the nodes form a hexagonal prism
mesh. The growing layer includes 10 elements through its
thickness. Self-contacts of the surface are accounted for by
preventing nodes penetrating faces at the surface. In the
simulations of periodic patterns with a unit-cell-wide domain,
point forces are applied in selected locations of the domain to
initiate the formation of the patterns. When the dimensions of
the domain are close to the optimal wavelength of the desired
pattern, a stable periodic pattern forms easily. Dimensions
of the domain are fine-tuned to find the energy-minimizing
wavelength. In the simulations of large rectangular domains
[Fig. 4(f)], the domain has a width 30 times the layer thickness,
and the layer is allowed to fold and relax freely. The surface
of the layer in this case has small random perturbations that
allow folding to initiate.

The simulation widths for the hysteresis loops in Fig. 3
were 2.50h for η = 0.5, 4.71h for η = 1 (corresponding to
the energy-minimizing wavelength at g = gs), and 7.54h for
η = 4 (corresponding to the wavelength of linear instability).
The hysteresis loops were calculated in unloading. The loading
curves are deduced from the fact that we know the system
simply becomes unstable at the lower of the linear stability
threshold or gs .

APPENDIX B: DETAILS OF LINEAR STABILITY
ANALYSIS

The total elastic energy of the layer and substrate is

E =
∫ ∞

−∞

∫ ∞

−∞

∫ a

−∞
1
2μ Tr(FG−1G−T F T )dz dx dy, (B1)

with

(μ,G) =
{

(η,diag(gx,gy,1/(gxgy))), 0 < z < a,

(1,I ), z < 0.
(B2)

If we restrict attention to x-z plane-strain deformations, then
the above integrand can be written out in terms of components
of F as

c1 + 1
2η

[
g2

xg
2
y

(
F 2

xz + F 2
zz

) + g−2
x

(
F 2

xx + F 2
zx

)]
, 0 < z < a,

c2 + 1
2

(
F 2

xz + Fzz + F 2
xx + F 2

zx

)
, z < 0, (B3)

where the constants c1 and c2 do not depend on F , and hence
they do not enter into energy minimization.

We enforce incompressibility, encoded by Det(F ) = 1, by
introducing a Lagrange multiplier pressure field P , leading to
the effective energy density

L = 1
2μTr(FG−1G−T F T ) − μP [Det(F ) − 1]. (B4)

Minimizing this energy with respect to variations in u and P

gives the Euler-Lagrange equations

∇ · σ = 0, (B5)

Det(F ) = 1, (B6)

where σ = ∂L/∂∇u is the stress tensor, given by

σ = μ(FG−1G−T − PF−T ). (B7)

Energy minimization also requires the free surface to be
stress-free, and the layer and substrate stresses to match at

their interface:

σ · ẑ|z=a = 0, σ · ẑ|z=0+ = σ · ẑ|z=0− . (B8)

We restrict our attention to growth in the x direction, gx =
g, gy = 1, for which we expect buckling in the x-z plane, so
we consider the linear stability of the flat state to infinitesimal
sinusoidal perturbations with wave number k, writing the
fields as

P = P0 + ε sin(kx)P1(z),
(B9)

u = ε[cos(kx)d(z)x̂ + sin(kx)f (z)ẑ].

Working in an x-z basis, to first order in ε, we thus have

F = I + ε

(−kd(z) sin(kx) cos(kx)d ′(z)

k cos(kx)f (z) sin(kx)f ′(z)

)
,

(B10)

F−T = I − ε

(−kd(z) sin(kx) k cos(kx)f (z)

cos(kx)d ′(z) sin(kx)f ′(z)

)
.

At zeroth order in ε, we have F = F−T = I and hence
piecewise constant stress σ = μ(G−1G−T − P0I ). The bulk
equations are thus already satisfied, and the boundary condi-
tions require σ · ẑ = 0 throughout, solved by

P0 = ẑ·G−1G−T · ẑ =
{
g2, 0 < z < a,

1, z < 0.
(B11)

Expanding Eq. (B6) to first order in ε reduces it to ∇ · u = 0,
requiring d(z) = f (z)/k. In the layer, Eq. (B5) expanded to
first order requires

k2[f ′(z) + g2P1(z)] − g4f ′′′(z) = 0, (B12)

−g4f ′′(z) + k2f (z) + g2P ′
1(z) = 0. (B13)

The first of these can be solved algebraically for P1, giving

P1(z) = g2f (3)(z)

k2
− f ′(z)

g2
, (B14)

and substituting this into the second gives the governing
equation for f (z):

g4f (4)(z) − (g4 + 1)k2f ′′(z) + k4f (z) = 0. (B15)

The same results hold in the substrate, but with g = 1. The
solution for f in the layer and the substrate is thus

f (z) =
{

a4e
kz + a3e

−kz + a2e
kz/g2 + a1e

−kz/g2
, < z < a,

ekz(b1 + zkb2), z < 0,

(B16)

where the ai and bi are constants of integration, and we have
discarded the unbounded solutions in the substrate. Continuity
of z displacement at the interface requires continuity of f2 at
z = 0, giving

b1 = a1 + a2 + a3 + a4, (B17)

while continuity of x displacement requires continuity of f ′
2 at

z = 0, giving

b2 = (a2 − a1)/g2 − (2a3 + a2 + a1). (B18)
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The first-order correction to the free boundary conditions at
z = a requires

a1(g4 + 1) + a2(g4 + 1)e
2ak

g2 + 2a3g
4e

a( 1
g2 −1)k

+ 2a4g
4e

a( 1
g2 +1)k = 0, (B19)

−2a1g
2 + 2a2g

2e
2ak

g2 − a3(g4 + 1)e
a( 1

g2 −1)k

+ a4(g4 + 1)e
a( 1

g2 +1)k = 0, (B20)

and the first-order correction to the interfacial boundary
conditions at z = 0 requires

a1(ηg4 + η + 2) + a2(ηg4 + η − 2) + 2a3(ηg4 + g2)

+ 2a4g
2(g2η − 1) = 0, (B21)

2a1g
2(η + 1) − 2a2g

2(η − 1) + a3(ηg4 + 2g2 + η)

+ a4[2g2 − (g4 + 1)η] = 0. (B22)

These four linear equations can be reexpressed as a single
matrix equation of the form M(a1,a2,a3,a4) = 0, which will
only admit nontrivial solutions if Det(M) = 0, the condition
displayed in Eq. (1). We find the first point of instability by
finding the wave number that satisfies this condition with the
minimum g. Solutions to this equation are shown for a variety
of different moduli ratio in Fig. 1(a) in the main text. Each line
shows the strain required for instability at each wavelength for
a given slab. The actual point and wavelength of instability are
given by the first unstable mode, that is, by the minimum of the
curve. Inspecting Fig. 1(a), we see that all layers are unstable
to a zero-wavelength instability at g = gb = 1.839 . . . , which
is the Biot strain. We can extract this from the determinant
condition by noting that it contains two terms that diverge at
small wavelength:

(g6 − 3g4 − g2 − 1)A(g,η)e
ak+ ak

g2 + B(g,η)e
ak− ak

g2 = 0,

(B23)

where

A = (g2 − 1)2[g6η2 − g4η(3η + 2) − g2(η + 2)2 − η(η + 2)],

(B24)

B = −(g2 + 1)2(g6 + 3g4 − g2 + 1)

× [g6η2 + g4η(3η − 2) − g2(η − 2)2 + (η − 2)η].

(B25)

For an asymptotically small wavelength, the left exponential
dominates, and since A �= 0, the condition is only satisfied at

the Biot strain gb = 1
3 (

3
√

19 + 3
√

33 + 3
√

19 − 3
√

33 + 1) =
1.839 . . . , where g6 − 3g4 − g2 − 1 = 0. Further inspecting
Fig. 1(a), we see that, for sufficiently soft layers (η �
0.525 . . . ), this zero-wavelength Biot solution is the first unsta-
ble mode, whereas for stiffer layers there is a finite-wavelength
buckling at a lower growth, giving rise to a more conventional
buckling. We characterize the instability by minimizing the
curves in Fig. 1(a) from the main text over the wavelength
to find the first unstable mode for each modulus ratio, which
gives the wavelength of instability and the growth required.
These are plotted against the modulus ratio in Figs. 1(b)
and 1(c), which again clearly show the transition from Biot
zero-wavelength behavior to finite-wavelength buckling at
η � 0.525 . . . .

For layers marginally stiffer than ηb, the threshold for
instability is just below gb, so we can analyze the instability
by setting g = gb + ε and considering the leading behavior in
ε. The Biot polynomial then becomes g6 − 3g4 − g2 − 1 =
(6g5

b − 12g3
b − 2gb)ε, so the condition for instability becomes

(
6g5

b − 12g3
b − 2gb

)
εA(gb,η)e

ak+ ak

g2
b + B(gb,η)e

ak− ak

g2
b = 0,

(B26)

which is solved by

ε = B(gb,η)e
− 2ak

g2
b(

6g5
b − 12g3

b − 2gb

)
A(gb,η)

. (B27)

This small correction to the Biot threshold for short but
nonzero wavelengths is positive, indicating the Biot point
is a minimum in Fig. 1(a) if B(gb,η) > 0, and negative,
indicating the Biot point is a maximum, if B(gb,η) < 0.
The crossover occurs at B(gb,ηb) = 0, which, inspecting the
form of B, requires g6

b(ηb)2 + g4
bηb(3ηb − 2) − g2

b(ηb − 2)2 +
(ηb − 2)ηb = 0, satisfied if

ηb =
g4

b − 2g2
b +

√
5g8

b + 8g6
b + 2g4

b + 1 + 1

g6
b + 3g4

b − g2
b + 1

= 0.525 . . . .

(B28)

Further analysis indicates that the transition is continuous but
logarithmic, in the sense that the unstable wavelength vanishes
as λ ∼ 1/ log(η − ηb).
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